04,08

Парамагнитные центры неконтролируемых примесей в ZnWO₄, легированном редкими землями и литием

© В.А. Важенин¹, М.Ю. Артёмов¹, А.П. Потапов¹, К.А. Субботин^{2,3}, А.В. Фокин¹, Ю.И. Зимина^{2,3}, А.И. Титов², Д.А. Лис²

Москва, Россия

Москва, Россия

E-mail: vladimir.vazhenin@urfu.ru

Поступила в Редакцию 28 июня 2025 г. В окончательной редакции 28 июля 2025 г. Принята к публикации 8 августа 2025 г.

Монокристаллы ZnWO4, выращенные методом Чохральского и легированные Yb или Tm, а также Li, были исследованы методом ЭПР. Наблюдались переходы моноклинных центров Fe^{3+} , Cr^{3+} и Gd^{3+} , аналогичные ранее исследованным спектрам в кристаллах без лития. Спектры триклинных центров, детектированные в образцах, не содержащих примеси лития, и отнесенные к димерам (парамагнитный ион — вакансия цинка) не наблюдались. Но появились новые сателлиты, сопровождающие переходы моноклинных центров в большом диапазоне ориентаций магнитного поля. Логично предположить, что эти центры (триклинные, а также моноклинные) возникают в результате ассоциации парамагнитных ионов с ионами лития в позициях цинка. Измерение ориентационного поведения внутридублетных (в случае Gd^{3+} — также и междублетных) переходов в двух ортогональных плоскостях позволило определить параметры их спиновых гамильтонианов.

Ключевые слова: вольфрамат цинка, примесные ионы, группа железа, РЗИ, парамагнитный резонанс.

DOI: 10.61011/FTT.2025.09.61617.216-25

1. Введение

Монокристалл вольфрамата цинка ($ZnWO_4$) давно и хорошо известен как эффективный сцинтилляционный материал [1–5], в частности, перспективный для применения в качестве криогенного сцинтилляционного детектора при обнаружении редких событий [1,6]. Кроме того, в последнее время кристаллы $ZnWO_4$, легированные трехзарядными редкоземельными ионами (P3U, Ln^{3+}), активно изучаются как перспективные лазерные среды [7–11].

Одной из важнейших проблем кристалла ZnWO₄, является резкое ухудшение его спектральногенерационных и сцинтилляционных характеристик при попадании в состав кристалла даже следовых количеств случайных примесей 3*d*-ионов, в первую очередь, железа. В этом случае в кристалле возникает заметное паразитное оптическое поглощение в диапазоне длин волн короче 600 nm [3,12-14], препятствующее получению эффективной лазерной генерации РЗИ на данном кристалле в видимом диапазоне спектра. При этом также снижается интенсивность фото- рентгенои катодолюминесценции [15], а также световыхода сцинтилляции кристалла [16,17].

Несмотря на отсутствие сомнений в том, что данное паразитное поглощение напрямую связано с присутствием в кристалле примеси железа, конкретная при-

рода этого поглощения остается не до конца понятной. По крайней мере, величины пиковых сечений данного поглощения ($\sim 10^{-16}\,\mathrm{cm}^2$) исключают возможность трактовки этих полос поглощения как принадлежащих обычным электронно-колебательным переходам внутри 3d-оболочки ионов Fe^{2+} или Fe^{3+} . Более того, введение некоторых дополнительных легирующих примесей в кристалл $(Nb^{5+}, Ta^{5+}, Sb^{5+}, Ag^+$ и др.) полностью удаляет данное паразитное оптическое поглощение [13,16], хотя очевидно, что железо из кристалла при этом никуда не исчезает. Кроме того, эффективность сцинтилляции кристалла при введении этих дополнительных примесей не восстанавливается [16]. Таким образом, можно предположить, что случайная примесь железа и некоторых других 3d-ионов образует в кристалле $ZnWO_4$, некие особые структуры, дающие полосы поглощения аномально высокой удельной интенсивности, которые легко разрушаются при введении указанных дополнительных примесей. Изучение строения и кристаллохимического поведения таких структур продолжает оставаться актуальной задачей.

Важной проблемой вольфрамата цинка как лазерной матрицы является также тот факт, что гетеровалентное замещение относительно мелких двухзарядных ионов Zn^{2+} весьма крупными трехзарядными РЗИ в структуре кристалла без введения в его состав дополнительных зарядовых компенсаторов приводит к резкому ухуд-

¹ Уральский федеральный университет (Институт естественных наук и математики), Екатеринбург, Россия

² Институт общей физики им. А.М. Прохорова РАН,

³ Российский химико-технологический университет им. Д.И. Менделеева,

шению механических прочностных характеристик кристаллов [18,19]. При этом коэффициенты распределения даже самых мелких из них $(Tm^{3+} \ u \ Yb^{3+})$ между кристаллом и расплавом едва дотягивают до 0.25 [18,19].

По идее, отчасти решить эту проблему должно было бы дополнительное введение в кристалл ионов-зарядовых компенсаторов (Li $^+$, Na $^+$, K $^+$, Nb $^{5+}$, Ta $^{5+}$) [11,18 $^-$ 21]. Однако на практике оказалось, что Na $^+$ и K $^+$ лишь незначительно увеличивают коэффициенты распределения РЗИ в кристалле ZnWO4 [11,20,21], а ионы Nb $^{5+}$ и Ta $^{5+}$ невозможно ввести в кристалл в сколь-нибудь существенных концентрациях без резкого ухудшения оптического качества кристалла (растрескивание и образование включений побочных фаз).

Наилучшим из опробованных на сегодняшний день зарядовых компенсаторов представляется ион Li⁺. Введение этого иона в структуру кристалла в эквимолярных с РЗИ фактических концентрациях позволило увеличить коэффициент распределения ионов Yb³⁺ в вольфрамате цинка до 0.5 [18], а ионов Tm³⁺ до 0.45 [19]. При этом фактические концентрации РЗИ в кристалле удалось довести до нескольких at.% по отношению к цинку, а механические прочностные характеристики таких кристаллов не хуже, а по предварительным данным — даже несколько лучше, чем для номинально-чистого ZnWO₄ [18,19].

Однако и здесь имеются вопросы и проблемы. Коэффициент распределения самого лития в кристалле вольфрамата цинка ниже, чем для Yb^{3+} и Tm^{3+} . Более того, выявлены тенденции к его дальнейшему уменьшению с ростом концентрации РЗИ в кристалле [18,19], хотя, казалось бы, механизм сопряженного изоморфизма, включающийся при совместном легировании кристалла ионами Li⁺ и РЗИ, должен давать обратную тенденцию. На практике это означает, что для выращивания по Чохральскому кристаллов Ln³⁺, Li⁺:ZnWO₄ с эквимолярными фактическими концентрациями РЗИ и лития на уровне несколько at.% каждого, номинальная концентрация лития в исходном расплаве должна быть порядка 20-25 at.% по отношению к суммарному количеству ионов, претендующих на цинковые позиции структуры кристалла $(Zn^{2+} + Ln^{3+} + Li^{+})$, а общая концентрация обоих допантов в расплаве даже на начальном этапе роста — лишь вдвое меньше концентрации цинка. По мере протекания ростового процесса эти концентрации становятся еще выше. Столь высокие концентрации допантов фактически означают выращивание кристалла уже не совсем из расплава, а скорее — из достаточно концентрированного раствора в расплаве со всем комплексом вытекающих из этого проблем, от необходимости резкого снижения скорости кристаллизации до повышенной вероятности образования пузырей и включений побочных фаз в кристалле.

Наконец, литий — не самый удобный для анализа химический элемент в силу малого атомного номера. Арсенал аналитических методов, пригодных для контроля фактической концентрации лития и его ассоциатов

с редкоземельными ионами в твердотельных образцах весьма ограничен и связан, как правило, с необходимостью перевода анализируемого образца в форму раствора. Поэтому оптимизация концентрации лития в расплавах для выращивания кристаллов Ln, Li:ZnWO₄ на основе уточнения механизмов кристаллохимических процессов, протекающих при таком двойном легировании, а также поиск иных, более эффективных зарядовых компенсаторов гетеровалентного введения РЗИ в состав кристалла вольфрамата цинка является актуальной задачей. Целенаправленное решение данной задачи весьма проблематично без четкого знания фактических концентраций и структур примесных дефектов, возникающих в кристалле при введении в его состав РЗИ и зарядовых компенсаторов различных видов.

Метод электронного парамагнитного резонанса (ЭПР) весьма эффективен для исследования структурной локализации РЗИ-активаторов в кристаллах с учетом образующихся при их гетеровалентном вхождении дефектов (включая намеренно привносимые примесные дефекты), компенсирующих избыточный заряд. Кроме того, ЭПР является эффективным методом обнаружения микроконцентраций случайных примесных ионов с неспаренными электронами в кристаллах и выявления природы активных центров на их основе.

Настоящая работа является продолжением цикла наших ЭПР-исследований кристаллов ZnWO₄, легированных РЗИ, а также совместно легированных РЗИ и различными зарядовыми компенсаторами. Следует отметить, что наблюдение большинства трехзарядных РЗИ (кроме ионов Gd^{3+}) методами ЭПР представляет определенные сложности, в частности, их сигналы наблюдаются только при криогенных температурах. Вместе с тем ионы Gd³⁺ доступны для уверенного ЭПР детектирования даже при температурах значительно выше комнатной. С другой стороны, эти ионы в микроконцентрациях практически всегда присутствуют в качестве случайной примеси в кристаллах, легированных другими РЗИ, а кристаллохимическое поведение ионов Gd³⁺ весьма сходно с таковым для остальных трехзарядных РЗИ. Поэтому в настоящем цикле работ мы, имея возможность ЭПР наблюдения примесных ионов гадолиния, рассматриваем их как маркер, отражающий присутствие и структурную локализацию остальных РЗИ в кристаллах вольфрамата цинка.

В первой работе настоящего цикла [22] мы изучали кристалл $Tm:ZnWO_4$, выращенный методом Чохральского на воздухе из платинового тигля. Фактическая концентрация тулия в кристалле составила 0.62 at.% по отношению к содержанию цинка, при этом никаких зарядовых компенсаторов в состав кристалла не вводилось. В работе были обнаружены и исследованы моноклинные парамагнитные центры (ПЦ) случайных примесей Fe^{3+} , Cr^{3+} и Gd^{3+} (далее по тексту — центры Fe1, Cr1 и Gd1), заместившие ионы Zn^{2+} с нелокальной компенсацией избыточного положительного заряда.

Кроме того, указанный образец демонстрировал ЭПР-спектры дополнительных ПЦ триклинной симметрии, обозначаемых как Fe2, Fe3, Cr2, Cr3 и Gd2, Gd3 и предположительно возникающих в результате появления в ближайшем окружении соответствующего парамагнитного иона вакансии цинка, понижающей симметрию ПЦ. Были определены параметры спиновых гамильтонианов (СГ) всех указанных центров. Сделаны оценки отношения концентраций триклинных и моноклинных центров железа, хрома и гадолиния.

В данной работе мы продолжаем исследование, начатое в [22]. В ее рамках исследовано несколько образцов монокристаллов вольфрамата цинка, со-легированных ионами Tm/Li и Yb/Li. Оценивается роль лития как зарядового компенсатора при вхождении РЗИ в кристалл.

2. Образцы и методика эксперимента

Для ЭПР-исследований в рамках настоящей работы были взяты образцы кристаллов ZnWO₄, выращенных методом Чохральского в рамках работ [18] и [19], со следующими номинальными (шихтовыми) концентрациями легирующих примесей: № 1: 5 at.% Yb + 5 at.% Li, № 2: 4 at.% Yb + 16 at.% Li и № 3: 7 at.% Tm + 24 at.% Li. Фактические концентрации легирующих примесей в этих кристаллах по отношению к содержанию цинка составили: образец № 1: 2.0 at.% Yb + 1.5 at.% Li; образец № 2: 2.7 at.% Yb + 2.5 at.% Li; образец № 3: 3.7 at.% Tm + 1.9 at.% Li. Подробное описание синтеза шихты, выращивания и отжига кристаллов, измерения фактических концентраций легирующих примесей, а также уточнения ориентации кристаллов относительно осей оптической индикатрисы приведено в работах [18,19].

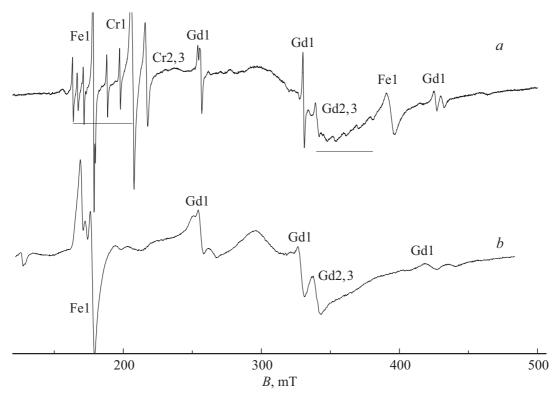
Исследуемые образцы изготавливались в форме прямоугольных параллелепипедов с полированными гранями, ортогональными осям оптической индикатрисы (далее по тексту — плоскости N_g , N_m , N_p). Связь кристаллографических осей с осями оптической индикатрисы для номинально-чистого $ZnWO_4$ приведена в работах [7,8].

Пространственная группа ZnWO₄ — P2/c (C_{2h}^4) № 13, параметры элементарной ячейки $\mathbf{a}=4.69\,\mathrm{\mathring{A}},\,\mathbf{b}=5.72\,\mathrm{\mathring{A}},\,\mathbf{c}=4.92\,\mathrm{\mathring{A}},\,\beta=90.6^\circ$ [23]. Оба катиона в кристалле окружены шестью ионами кислорода, образующими моноклинно искаженные октаэдры, локальная группа симметрии позиций Zn²+ и W⁶⁺ — 2(C₂).

Ориентационное поведение положений ЭПР переходов измерялось при вращении магнитного поля в плоскости $\mathbf{a}-\mathbf{c}$ и в плоскости $\perp N_g$ на спектрометре X-диапазона EMX Plus Bruker при комнатной температуре в магнитных полях до 1.4 Т. Параметры спиновых гамильтонианов определялись как в лабораторной системе координат XYZ ($\mathbf{Z} \parallel \mathbf{N}_m, \mathbf{Y} \parallel \mathbf{N}_p \equiv \mathbf{b}$), так и в локальной (главной) СК хуz Cr1 (z повернута от оси $+\mathbf{a}$ к $+\mathbf{c}$ на 4.2°). Именно в этой СК приведены параметры

триклинных центров Fe2, Fe3, Cr2, Cr3, Gd2, Gd3 в работе [22].

Образец в резонаторе спектрометра крепился к торцу кварцевой трубки, закрепленной в штатном автоматическом гониометре. Начальная установка кристалла в микроволновом резонаторе (плоскость $N_m \perp B$, где B — индукция магнитного поля) производилась путем наблюдения луча лазера, отраженного от полированной грани образца через штатное окно резонатора.


3. Результаты и обсуждение

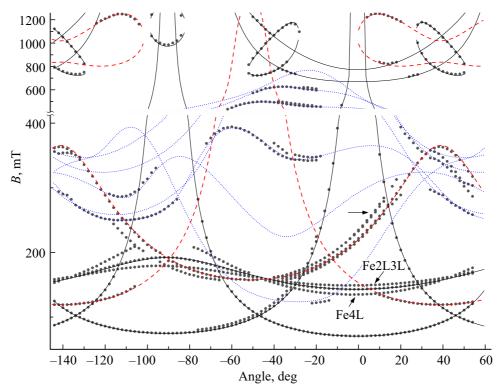
Аккуратная установка ориентации граней образца относительно направления магнитного поля и измерение угловой зависимости положений ЭПР сигналов в плоскости ${\bf a-c}$ позволили определить угол между главной осью z моноклинного центра Cr1 [22] и осью N_m. Для образца ZnWO₄ No 2 этот угол оказался равен +10°, для образца No 3 +11°, а для образца No 1 -5°. Для кристалла, исследованного нами в работе [22], легированного только тулием с фактической концентрацией 0.6 at.% по отношению к цинку (далее — образец No 0), этот угол составляет +12°. Погрешность определения всех указанных углов составляет ± 1 °. Средняя величина угла для образцов No 0, 2 и 3 — около +11°.

Таким образом, образец № 1 явно выбивается из указанного ряда. По нашему мнению, это связано с тем, что ориентация данного образца относительно осей оптической индикатрисы проведена с ошибками. В связи с ошибкой в ориентации грани образца № 1 измерения поведения спектра на нем проводились в плоскости, перпендикулярной направлению (далее по тексту — N), отстоящему от N_g в плоскости $\mathbf{a} - \mathbf{c}$ на $\sim 16^\circ$.

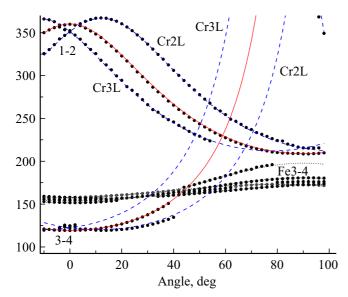
Согласно результатам работ [7,8,24] угол между осью N_m и главной осью z моноклинного центра Cr1 для слаболегированного ZnWO₄ составляет +15.9°. Вопрос, насколько легирование кристаллов влияет на величину данного угла, сейчас нами исследуется. По результатам этого исследования мы планируем опубликовать отдельную работу.

На рис. 1 приведены ЭПР спектры в ориентации В || Ү || **b** двух легированных РЗИ образцов ZnWO₄. Как и ожидалось, в кристалле, со-легированном тулием и литием видны сигналы тех же случайных примесей — Fe^{3+} и Gd^{3+} , что и для ранее изученного кристалла № 0, легированного только тулием. При этом, однако, хорошо видно, что увеличение концентрации примеси тулия, а также введение лития приводит к росту ширины линии и, следовательно, к ухудшению разрешения. На низкополевом крыле перехода Fe1 (177 mT) высоколегированного образца № 3 появились интенсивные сигналы, которых не было в спектре кристалла № 0. Кроме того, в образце № 3 практически исчезли сигналы ПЦ Cr1, Cr2, Cr3 и Mn²⁺ [22], хотя в других исследованных образцах (№ 1 и 2) слабый спектр Cr1 все-таки наблюдается. Учитывая, что образцы № 0 и 3

Рис. 1. Фрагменты ЭПР спектров (первая производная спектра поглощения) при В \parallel Y \parallel **b**. a — образец № 0 на частоте 9608 MHz [22], b — образец № 3 на частоте 9570 MHz. Горизонтальные отрезки показывают диапазоны полей двух секстетов сверхтонкой структуры центра Mn^{2+} .


выращивались с использованием одних и тех же партий исходных реактивов ZnO, WO_3 и Tm_2O_3 , этот факт можно объяснить либо случайным попаданием микропримесей Cr и Mn в расплав, а оттуда и в образец N_2 0 из технологической оснастки в процессе выращивания или подготовки шихты, либо слишком сильным уширением и, соответственно, уменьшением пиковой интенсивности соответствующих линий, в результате чего эти сигналы перестают разрешаться на фоне более сильных сигналов железа и гадолиния.

В трех литий-содержащих образцах (образцы № 1-3) измеренные угловые зависимости положений ЭПР переходов моноклинных центров Fe1 (электронный спин S = 5/2), Cr1 (S = 3/2) и Gd1 (S = 7/2) удовлетворительно описываются параметрами СГ, приведенными в [22] для образца № 0 (без лития) (рис. 2). Близкие величины параметров СГ были также получены авторами [24–28] для образцов ZnWO₄, легированных железом, хромом или гадолинием. В работе [27] в легированном хромом вольфрамате цинка помимо моноклинного центра хрома (Cr1) были также обнаружены малоинтенсивные ЭПРспектры двух пар триклинных центров Cr³⁺ (Cr2, Cr3 и Cr4, Cr5), попарно связанных операцией C2. Авторы работы предполагали, что указанные центры соответствуют ассоциатам $Cr^{3+} - V_{Zn}$. Отсутствие в спектре [27] междублетных переходов затруднило оценку величины расщепления в нулевом магнитном поле (РНП).


На рис. 2 видно, что кроме переходов указанных моноклинных центров имеют место также сигналы новых центров. Обозначим их как Fe2L, Fe3L, Cr2L, и Cr3L. Эти сигналы, с ориентационным поведением близким к переходам центров Fe1 и Cr1, аналогичны исчезнувшим резонансам триклинных центров Fe2, Fe3, Cr2, и Cr3, описанным в работе [22] и соответствующих, по-видимому, ассоциатам хрома и железа с цинковыми вакансиями. Однако расстояния по полю от сигналов моноклинных центров здесь иные, чем для примесновакансионных ассоциатов (рис. 2). Мы полагаем, что сигналы Fe2L, Fe3L, Cr2L, и Cr3L соответствуют ассоциатам ионов Fe³⁺ и Cr³⁺ с ионами лития в позиции цинка.

Кроме того, нам удалось детектировать дополнительные сателлиты (в частности моноклинный ПЦ, обозначенный нами как Fe4L, приведенный на рис. 2), которые также демонстрируют угловую зависимость, близкую к переходам основных моноклинных центров.

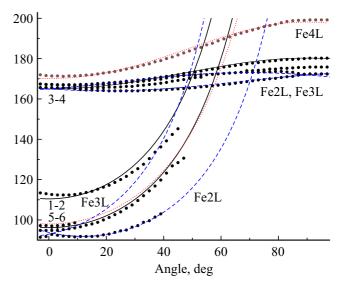

Сигналы триклинных центров Gd2 и Gd3, показанные на рис. 8 работы [22] и связанные, по-видимому, с ассоциатами $Gd^{3+}-V_{Zn}$, в литий-содержащих образцах отсутствуют, но на крыльях переходов Gd1 появляются слабые сателлиты, которые на рис. 2 видны в небольшом диапазоне углов вблизи -30° . Скорее всего, эти сигналы обусловлены димерами $Gd-Li_{Zn}$ с большим расстоянием до иона лития (Li не в ближайшей позиции Zn). Для

Рис. 2. Ориентационное поведение положений ЭПР сигналов образца № 1 при вращении магнитного поля в плоскости $\mathbf{a} - \mathbf{c}$ на частоте 9728 MHz. Ноль оси абсцисс соответствует z (Fe1). Точки — эксперимент, черные сплошные кривые — расчет для Fe1, красные штриховые — для Cr1, синие пунктирные — для Gd1 с параметрами [22]. Горизонтальная стрелка указывает на переходы 1-2 центров Cr2L и Cr3L.

Рис. 3. Угловая зависимость положений двух внутридублетных переходов центров Cr2L, Cr3L и Cr1 образца № 1 в плоскости \bot N, на частоте 9727 MHz. Точки — эксперимент, красные сплошные кривые — расчет для центров Cr1, синие штриховые — для Cr2L, Cr3L, черные пунктирные — расчет для переходов Fe³+.

Рис. 4. Угловая зависимость положений трех внутридублетных переходов центров Fe2L, Fe3L и Fe1 образца № 3 в плоскости \perp N $_g$ на частоте 9703 MHz. Точки — эксперимент, черные сплошные кривые — расчет для центров Fe1, синие штриховые — для Fe2L, Fe3L, красные пунктирные — для Fe4L.

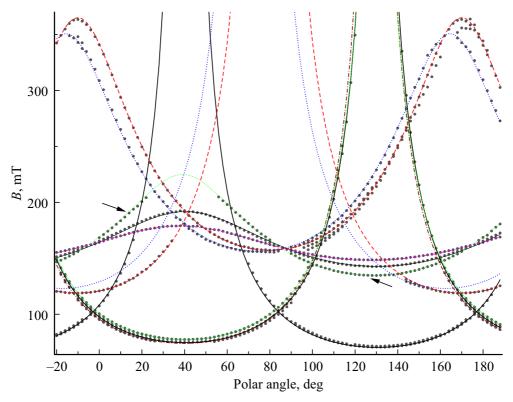


Рис. 5. Ориентационное поведение положений ЭПР сигналов образца № 2 при вращении магнитного поля в плоскости $\mathbf{a} - \mathbf{c}$ на частоте 9715 MHz. Отсчет углов на оси абсцисс от оси оптической индикатрисы N_m . Точки — эксперимент, черные сплошные кривые — расчет для Fe1, красные штриховые — для Cr1, синие короткие штриховые — для Cr2L, пурпурные штрихлунктирные — Fe2L, зеленые пунктирные — Fe4L \mathbf{c} параметрами табл. 1—3. Стрелки указывают на угловую зависимость положения перехода 3—4 центра Fe4L.

более точного заключения нужна теоретическая модель о связи параметров СГ с димерными расстояниями.

Таким образом, легирование образцов $N\!\!_{2}$ $1\!\!_{-}3$ литием привело к исчезновению (или уменьшению интенсивности ниже предела чувствительности спектрометра) сигналов парамагнитных димеров, ассоциированных с V_{Zn} , и к возникновению заметного количества димеров, по-видимому, с участием ионов Li_{Zn} . Количественно оценить концентрации этих центров при таком низком содержании парамагнитных примесей очень затруднительно.

Спектры пар центров Fe2L и Fe3L (Cr2L и Cr3L), также, как и Fe2 и Fe3 (Cr2 и Cr3) в плоскости ${\bf a}$ — ${\bf c}$ всех образцов эквивалентны, а в плоскости, перпендикулярной оси ${\bf N}_g$ их сигналы заметно расщепляются, сливаясь при ${\bf B} \parallel {\bf Y} \parallel {\bf b}$ (рис. 3, 4). В отличие от ориентационного поведения спектра образца № 2 (рис. 5) на образце № 1 (рис. 2) при углах больше ${\bf 5}^\circ$ наблюдается небольшое расщепление перехода ${\bf 1}$ —2 (1, 2 — номера уровней энергии) центров Cr2L и Cr3L (помечены горизонтальной стрелкой). Данное расщепление объясняется выходом магнитного поля из плоскости ${\bf a}$ — ${\bf c}$ (по нашим оценкам на величину порядка ${\bf 1}^\circ$). Дополнительный ряд точек ниже сигналов центра Cr1 в этом диапазоне углов обусловлен существованием еще одного димерного

центра, параметры которого определить не удалось из-за недостатка экспериментальных данных.

Сателлит перехода 3-4 Fe1 (Fe4L, на рис. 3,4 при 90° его положение $\sim 200\,\mathrm{mT}$), в отличие от центров Fe2L, Fe3L и Fe2, Fe3 в этой плоскости не расщепляется. Другие внутридублетные переходы (5-6 и 1-2) этого ПЦ скорее всего скрыты в крыльях сигналов Fe1. В плоскости $\mathbf{a}-\mathbf{c}$ положения перехода 3-4 центра Fe4L, (на рис. 5 помеченные стрелками), также не демонстрирует расщепления. На рис. 4 виден еще один не расщепляющийся в этой плоскости спутник сигнала Fe1 (при 90° положение $\sim 176\,\mathrm{mT}$), положения которого в плоскости $\mathbf{a}-\mathbf{c}$ измерить не удалось.

Оптимизация параметров триклинного СГ [29] центров Cr2L, Cr3L в трех образцах проводилась методом наименьших квадратов с использованием положений переходов в двух плоскостях. Используя в качестве начального набор параметров центров Cr1 [22], были получены результаты, приведенные в табл. 1.

Из табл. 1 видно, что в единой СК с z (Cr1) [22] неплохо описывающие экспериментальные зависимости (рис. 5) наборы параметров СГ, так же, как и величины РНП заметно отличаются для различных исследованных образцов, хотя речь идет об одном и том же ПЦ. Это обусловлено отсутствием в используемом эксперимен-

Образцы	Nº 1			2 3	Nº 2	
Параметры	$Z \perp N$	z(Cr1)	$Z N_m$	z(Cr1)	$Z N_m$	z(Cr1)
g	1.96					
b ₂₀ , MHz	26220	25800	15460	17780	16930	19270
b_{21} , MHz	-1790	-17210	-34690	-13080	-37310	-15900
b_{22} , MHz	-10280	-9860	-4550	-6870	-5230	-7570
c_{21} , MHz	± 30840	± 30720	± 18290	± 19620	± 23780	± 25890
c ₂₂ , MHz	0	∓1340	∓4380	∓2555	∓7130	∓4960
РНП, GHz	≈ 56		pprox 40		≈ 45	
F(n), MHz	28(183)		40(123)		47(177)	

Таблица 1. Параметры СГ центров Cr2L, Cr3L (двойные знаки c_{21} и c_{22}) в трех образцах ZnWO₄ и в двух системах координат при Y \parallel b. F — среднеквадратичное отклонение, n — количество использованных положений сигналов. РНП — расщепление в нулевом магнитном поле

тальном материале положений междублетных переходов, напрямую связанных со значением РНП. К параметрам моноклинного центра Cr1 ($b_{20}=25490\,\mathrm{MHz}$, $b_{22}=-7230\,\mathrm{MHz}$, PНП $\approx 51\,\mathrm{GHz}$ [22]), а также триклинных центров Cr2, Cr3 ($b_{20}=22000\,\mathrm{MHz}$, $b_{22}=-12100\,\mathrm{MHz}$, PНП $\approx 59\,\mathrm{GHz}$ [22]) в системе координат центра Cr1 наиболее близки значения b_{2m} и величина РНП, полученные для центров Cr2L, Cr3L в образце № 1 (табл. 1). В главной СК этот центр имеет моноклинный СГ с $b_{20}=27880\,\mathrm{GHz}$, $b_{22}=8620\,\mathrm{GHz}$ и углами Эйлера $\alpha=245.7^\circ$, $\beta=13.3^\circ$, $\gamma=205.3^\circ$.

Аналогичная процедура оптимизации для ПЦ Fe2L, Fe3L и Fe4L привела к результатам, представленным в табл. 2, 3. Как и в случае ПЦ Cr2L, Cr3L наборы параметров триклинных центров Fe2L, Fe3L и моноклинного Fe4L в единой СК заметно отличаются от образца к образцу. Для этих центров зарегистрировать междублетные переходы также не удалось. Таким образом, параметры СГ, приведенные в табл. 2, 3 и удовлетворительно описывающие эксперимент в трех образцах, не могут претендовать на характеристические величины энергетической структуры перечисленных ПЦ.

Расщепление в нулевом поле моноклинных центров Cr1 и Fe1 примерно равно 51 GHz и 61 + 77 = 138 GHz, соответственно [24,25]. Эти величины довольно близки к значениям РНП, приведенным в табл. 1-3 для димерных центров Cr2L, Cr3L, Fe2L, Fe3L и Fe4L. О близости их энергетической структуры говорит и тот факт, что переходы димеров, как правило, сопутствуют сигналам одиночных ПЦ. Следовательно, междублетные переходы димерных ПЦ должны происходить примерно в тех же полях, в которых детектируются аналогичные сигналы для центров Cr1 и Fe1. Отсутствие этих переходов в наших измерениях скорее всего обусловлено малой концентрацией в образцах неконтролируемых примесей хрома и железа и еще меньшим (более, чем на порядок, см. ниже) количеством димерных центров. Для дальнейшего прогресса в исследованиях димерных центров в ZnWO₄ необходимо проведение измерений образцов, специально легированных ионами железа, хрома или

гадолиния в концентрациях, кардинально превышающих таковые в исследованных в настоящей работе образцах. Этим мы и планируем заняться на следующем этапе нашей работы.

Для оценки интегральных интенсивностей ЭПР сигналов использовались спектры в ориентации магнитного поля, соответствующей углу (-74°) на рис. 2. Сильное перекрытие переходов моноклинных центров Fe1 и Cr1 и триклинных центров не позволяло провести корректное двойное интегрирование наблюдаемых сигналов. Поэтому за интегральную интенсивность принималось произведение пиковой интенсивности первой производной на квадрат ширины линии ΔB_{pp} . Учет расчетных вероятностей наблюдаемых переходов привел к величинам отношений концентраций, приведенным в табл. 4. Сигналы сателлитов Gd1 оказались слишком слабы для анализа, особенно в образце N 2.

Димерные триклинные центры Cr2, Cr3, Fe2, Fe3 [22] и Cr2L, Cr3L, Fe2L, Fe3L попарно эквивалентны только при магнитном поле в плоскости $\mathbf{a}-\mathbf{c}$ и при $\mathbf{B}\parallel\mathbf{b}$. Такое возможно, если компенсатор V_{Zn} (или Li_{Zn}) в димере локализован в соседнем (ниже или выше позиции парамагнитного иона) слое ионов Zn, перпендикулярном оси \mathbf{b} . Операция симметрии кристалла C_2 порождает второй димерный центр \mathbf{c} альтернативным направлением оси связи, при этом ограничений на направление оси связи димера в плоскости $\mathbf{a}-\mathbf{c}$ нет.

Спектр центра Fe4L в отличие от выше перечисленных ПЦ не демонстрирует расщеплений сигналов ЭПР в исследуемых плоскостях и, следовательно, является моноклинным. Такое поведение следует ожидать у димерных ассоциатов, ось связи которых параллельна **b** или лежит в плоскости **a**—**c**. В этом случае реализуются два эквивалентных димера с антипараллельными осями связи. Для решения вопроса о локализации зарядокомпенсирующих дефектов необходимо привлечение микроскопической теории, учитывающей энергию связи рассматриваемых димеров.

Что касается соотношений концентраций моноклинных ПЦ, соответствующих гетеровалентно входящим

Образцы	Nº 3		Nº 1		Nº 2	
Параметры	$Z \parallel N_m$	z (Cr1)	Z⊥ N	z (Cr1)	$Z N_m$	z(Cr1)
g	2.002					
b_{20}	3810	-5010	-7020	-3700	2995	-6000
b_{21}	90290	91300	74310	77200	102220	101880
b_{22}	-8810	14	2120	-1190	-8060	940
b_{40}	120	100	0	0	280	240
b_{41}	0	300	0	-20	0	780
b_{42}	0	480	0	-140	0	615
b_{43}	-4665	-4175	-3150	-3080	-5940	-5400
b_{44}	0	-430	0	140	0	-500
c_{21}	± 18980	± 19290	± 15140	± 15460	± 19310	± 19940
c_{22}	∓1720	± 122	± 2170	± 1500	=2670	∓950
РΗП	$\approx 164(74+90)$		$\approx 140(64 + 76)$		$\approx 191(92 + 99)$	
F(n)	23 (251)		15 (181)		16 (212)	

Таблица 2. Параметры СГ центров Fe2L, Fe3L (двойные знаки c_{21} и c_{22}) в трех образцах ZnWO₄ и в двух системах координат при $Y \parallel \mathbf{b}$. F(n), b_{nm} и c_{nm} в MHz, РНП в GHz. В строке РНП для Fe^{3+} (S = 5/2) приводится сумма двух междублетных интервалов

Таблица 3. Параметры СГ центров Fe4L в трех образцах ZnWO₄ и в двух системах координат при $Y \parallel \mathbf{b}$. F(n) и b_{nm} в MHz, PHП в GHz

Образцы	Nº 3		Nº 1		Nº 2	
Параметры	$Z \parallel N_m$	z(Cr1)	Z⊥ N	z (Cr1)	$Z N_m$	z(Cr1)
g	2.002					
b_{20}	1570	-4900	-11690	-8310	540	-4790
b_{21}	66200	66910	74655	79850	60550	60280
b_{22}	-10060	-3590	1390	-1990	-8260	-2930
b_{40}	-770	-790	-685	-705	-370	-400
b_{41}	1810	-1520	-1160	260	1160	-430
b_{42}	180	460	810	680	175	510
b_{43}	-3020	-1710	-3940	-4580	-3170	-2010
b_{44}	-550	-1090	-590	-400	-860	-1090
РНП	$\approx 123 (53 + 70)$		149(62+87)		$\approx 109(44 + 65)$	
F(n)	35 (197)		15 (107)		26 (206)	

Таблица 4. Отношение концентраций моноклинных и триклинных центров Fe^{3+} и Cr^{3+} в трех кристаллах легированного вольфрамата цинка

Nº	Измеренные концентрации	Отношение концентраций			
образца	допантов	c(Fe2L + Fe3L)/cFe1	c(Cr2L + Cr3L)/cCr1		
1	2.0 at.% Yb + 1.5 at.% Li	0.016	0.12		
2	2.7 at.% Yb + 2.5 at.% Li	0.04	0.17		
3	3.7åt.% Tm + 1.9 at.% Li	0.06	0.11		

в структуру кристалла ионам Fe^{3+} и Cr^{3+} с нелокальной компенсацией заряда, и триклинных ПЦ с ионами лития, локализованными в непосредственной близости от парамагнитного иона, то из табл. 4 очевидно доминирование центров с нелокальной компенсацией заряда, содержание которых на 1-2 порядка

больше, чем железо-литиевых и хром-литиевых ассоциатов. Такие цифры указывают на то, что в кристаллах ZnWO₄ механизм, способствующий димерной самоорганизации ионов $Fe^{3+}(Cr^{3+})$ и ионов Li^+ , не слишком эффективен, хотя в какой-то степени, все же, присутствует.

4. Заключение

Обсуждается проблема получения качественных кристаллов $ZnWO_4$ как лазерной матрицы в условиях необходимости замещения относительно мелких двухзарядных ионов цинка крупными трехзарядными РЗИ. Оптические свойства кристаллов зависят как от типа дефектов, компенсирующих избыточный заряд РЗИ, так и от микроскопических концентраций неконтролируемых 3d-ионов. Для получения информации о структуре случайных примесей и их взаимодействии с компенсаторами заряда был использован метод ЭПР.

Монокристаллы ZnWO₄ с фактическими концентрациями легирующих примесей (2.0 at.% Yb + 1.5 at.% Li); (2.7 at.% Yb + 2.5 at.% Li); (3.7 at.% Tm + 1.9 at.% Li), выращенные методом Чохральского, были исследованы на спектрометре ЭПР X-диапазона. Спектры моноклинных центров Cr1, Fe1 и Gd1 с нелокальной компенсацией заряда в указанных образцах практически не отличались от спектров в кристалле № 0, легированном 0.6 at.% Тт и не содержащем лития [22].

Сигналы триклинных ПЦ Cr2, Cr3, Fe2, Fe3, считающихся локально компенсированными за счет близко расположенных вакансий цинка, исчезли, но появилось несколько новых сигналов (Cr2L, Cr3L, Fe2L, Fe3L, Fe4L) с иным расстоянием по полю от переходов соответствующих моноклинных центров. Спектр триклинных центров Gd2 и Gd3 не наблюдался, тогда как на крыльях переходов Gd1 возникли слабые сателлиты. Логично предположить, что все указанные спутники переходов центров Cr1, Fe1 и Gd1 являются соответствующими переходами в димерных комплексах с участием Li_{Zn}.

Используя ориентационное поведение положений внутридублетных переходов ПЦ Cr2L, Cr3L, Fe2L, Fe3L и Fe4L в процедуре оптимизации получены параметры их спиновых гамильтонианов. Различие соответствующих параметров СГ в трех образцах (табл. 1–3) обусловлено неопределенностями в расчетах, связанными с отсутствием в спектре междублетных переходов, дающих информацию о величине РНП.

Показано, что механизм, способствующий самоорганизации ионов $Fe^{3+}(Cr^{3+})$ и Li^+ в димерные центры в кристалле вольфрамата цинка не слишком эффективен: подавляющее количество ионов Fe^{3+} и Cr^{3+} в изученных кристаллах имеют нелокальную компенсацию заряда, т.е., ближайший ион лития отстоит от иона $Fe^{3+}(Cr^{3+})$ достаточно далеко, чтобы не оказывать заметного воздействия на локальную симметрию парамагнитного центра.

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки Российской Федерации, тема № FEUZ-2023-0017 с использованием оборудования УЦКП "Современные нанотехнологии" УрФУ (рег. № 2968).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] V.B. Mikhailik, H. Kraus. J. Phys. D: Appl. Phys. **39**, 1181 (2006).
- [2] V. Nagirnyi, E. Feldbach, L. Jonsson, M. Kirm, A. Kotlov, A. Lushchik, V.A. Nefedov, B.I. Zadneprovski. Nuclear Instruments and Methods in Physics Research A 486, 395 (2002).
- [3] L.L. Nagornaya, A.M. Dubovik, Y.Y. Vostretsov, B.V. Grinyov, F.A. Danevich, K.A. Katrunov, V.M. Mokina, G.M. Onishchenko, D.V. Poda, N.G. Starzhinskiy, I.A. Tupitsyna. IEEE Trans. Nucl. Sci. 55 (3), 1469 (2008).
- [4] D.M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V.B. Mikhailik, H. Kraus. J. Phys.: Cond. Matter 21, 1 (2009).
- [5] A. Dubovik, Yu.Yu. Vostretsov, B. Grinberg, F. Danevich, H. Kraus. Acta Physica Polonica A 117, 1 (2010).
- [6] M. Buryi, V.V. Laguta, Jirí Hybler, M. Nikl. Physica Status Solidi B 248, 993 (2011).
- [7] A. Volokitina, S.P. David, P. Loiko, K. Subbotin, A. Titov, D. Lis, R.M. Sole, V. Jambunathan, A. Lucianetti, T. Mocek, P. Camy, W. Chen, U. Griebner, V. Petrov, M. Aguilo, F. Díaz, X. Mateos. Journal of Luminescence 231, 117811 (2021).
- [8] G.Z. Elabedine, K. Subbotin, P. Loiko, Z. Pan, K. Eremeev, Y. Zimina, Y. Didenko, S. Pavlov, A. Titov, E. Dunina, L. Fomicheva, A. Kornienko, A. Braud, R.M. Solé, M. Aguiló, F. Díaz, W. Chen, P. Volkov, V. Petrov, X. Mateos. Opt. Materials 157 (1), 116039 (2024).
- [9] Z. Xia, F. Yang, L. Qiao, F. Yan. Optics Communications 387, 357 (2017).
- [10] F.G. Yang, Z.Y. You, C.Y. Tu. Laser Phys. Lett. 9 (3), 204 (2012).
- [11] F.G. Yang. J. Materials Research, 27 (16), 2096 (2012).
- [12] X. Leng, D. Li, C. Xu, Y. Xu, X. Jin. Optik 125, 1267 (2014).
- [13] A. Watterich, O.R. Gilliam, L.A. Kappers. Solid State Commun. 88, 619 (1993).
- [14] A. Kornylo, A. Jankowska-Frydel, B. Kuklinski, M. Grinberg, N. Krutiak, Z. Moroz, M. Pashkowsky. Radiat. Meas. 38, 707 (2004).
- [15] K. Subbotin, A. Titov, V. Solomatina, A. Khomyakov, E. Pakina, V. Yakovlev, D. Valiev, M. Zykova, K. Kuleshova, Y. Didenko, D. Lis, M. Grishechkin, S. Batygov, S. Kuznetsov, I. Avetissov. Materials 16, 2611 (2023).
- [16] X. Leng, D. Li, C. Xu, Y. Xu, X. Jin. Optik 125, 1267 (2014).
- [17] L.N. Limarenko, Y.V. Zorenko, M.M. Batenchuk, Z.T. Moroz, M.V. Pashkovskii, I.V. Konstankevich. J. Appl. Spectrosc. 67 (2), 287 (2000).
- [18] K.A. Subbotin, A.I. Titov, S.K. Pavlov, P.A. Volkov, V.V. Sanina, D.A. Lis, O.N. Lis, Y.I. Zimina, Y.S. Didenko, E.V. Zharikov. J. Crystal Growth 582, 126498 (2022).
- [19] Yu.I. Zimina, K.A. Subbotin, A.I. Titov, P.A. Volkov, Ya.S. Didenko, D.A. Lis, S.K. Pavlov, E.V. Zharikov. Physics of Wave Phenomena, 33, 3, 227 (2025).
- [20] F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, X. Lu. Optical Materials 157, 9, 116039 (2024).
- [21] F. Yang, C. Tu. The spectroscopy investigation of ZnWO₄:Tm³⁺ single crystal. J. Alloys and Compounds, 535, 83 (2012).

- [22] В.А. Важенин, А.П. Потапов, К.А. Субботин, М.Ю. Артёмов, Ю.И. Зимина, А.В. Фокин, А.И. Титов, Д.А. Лис, П.А. Волков. ФТТ 67, 478 (2025).
- [23] W.S. Brower Jr., P.H. Fang. J. Appl. Phys. 41, 2266 (1970).
- [24] S.K. Kurtz, W.G. Nilsen. Phys. Rev. 128, 1586 (1962).
- [25] W.G. Nilsen, S.K. Kurtz. Phys. Rev. 136, A262 (1964).
- [26] Е.Н. Емельянова, Н.В. Карлов, А.А. Маненков, В.А. Миляев, А.М. Прохоров, С.П. Смирнов, А.В. Ширков. ЖЭТФ **44**, 868 (1963).
- [27] В.А. Ацаркин, Л.П. Литовкина, М.Л. Мейльман. ФТТ 7, 3099 (1965).
- [28] А.А. Рядун, Е.Н. Галашов, В.А. Надолинный, В.Н. Шлегель. Журнал структурной химии **53**, 696 (2012).
- [29] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.

Редактор В.В. Емцев