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NV−-центры в алмазе и карбиде кремния как основа мазеров,

работающих при комнатной температуре
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Успешная реализация когерентного микроволнового усиления (мазерного эффекта) при комнатной

температуре (300K) на основе оптически выстроенных триплетных спиновых подуровней отрицательно

заряженных азотно-вакансионных центров (NV−) в алмазе ознаменовала новую веху в развитии твер-

дотельных мазеров. В настоящей работе представлен сравнительный анализ спиново-оптических свойств

NV−-центров в алмазе и NV−-центров в карбиде кремния (SiC) с пониженным содержанием магнитного

изотопа 29Si (I = 1/2), с точки зрения перспективности использования последнего для создания мазеров,

работающих при комнатной температуре. Продемонстрировано сходство механизмов оптической накачки,

формирующей инверсную населенность основного триплетного состояния в обеих системах. Вместе с тем

времена поперечной спиновой релаксации T∗

2 ≈ 1.5 µs для NV−-центров в изотопно-модифицированном
28SiC существенно превышают соответствующие значения для алмаза (T∗

2 ≈ 0.3 µs). При этом времена

продольной релаксации остаются сопоставимыми с требованиями поддержания инверсной населенности:

порядка 1.5ms для NV− в алмазе и 100 µs для NV− в 28SiC. Сочетание возможности выращивания

крупных монокристаллов SiC и высокой допустимой концентрации активных центров открывает перспективы

для создания масштабируемой и технологически эффективной платформы для твердотельных мазеров,

работающих при комнатной температуре.
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вакансионный дефект.
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1. Введение

Мазеры — приборы, основанные на когерентном

усилении микроволн посредством стимулированного из-

лучения, являются важными платформами для сверх-

чувствительных измерений слабых полей, прецизионной

спектроскопии и частотной метрологии [1–3]. Класси-
ческим примером твердотельного мазера служат ру-

биновые кристаллы Al2O3 с ионами Cr3+, имеющего

основное квартетное спиновое состояние (S = 3/2) [4,5],
нашедшие применение в системах дальней космической

связи, радиоастрономии [6–8]. Основным условием для

возникновения мазерной генерации является создание

долгоживущей инверсии населенности спиновых под-

уровней, характеризуемых расщеплением в микровол-

новом диапазоне, которое создается под воздействием

внешнего магнитного и кристаллического полей. При

наличии инверсии слабое микроволновое поле, прохо-

дящее через активную среду, индуцирует вынужденные

переходы, сопровождающиеся испусканием фотонов той

же частоты и фазы, что и возбуждающее поле, приводя

к когерентному усилению микроволнового сигнала. При

наличии обратной связи в виде резонатора, характери-

зуемого добротностью Q, такое усиление многократно
накапливается, и, если энергия, отдаваемая спиновыми

центрами, превышает потери в резонаторе, система

переходит в режим устойчивой генерации. Помимо ин-

версной населенности, возможность достижения такого

режима требует соблюдения следующих физических

условий: совпадение частоты микроволнового поля с

резонансным переходом; длительное время жизни спи-

новых подуровней, характеризуемое временем спин-

решеточной релаксации T1; высокая фазовая спиновая

когерентность, характеризуемая временем T ∗
2 и малые

потери в резонаторе, что обеспечивается добротно-

стью Q. Эти требования выражаются через безразмер-

ный параметр кооперативности, (обозначается как C),
который определяет способность спиновой системы пре-

одолеть потери и обеспечить генерацию. Данный пара-

метр рассчитывается по следующей формуле:

C =
4g2

s N

ks kc

,

где ks = 2/T ∗
2 , kc = ωc/Q, gs — связь одного спина с

резонаторной модой, ωc — частота резонансной моды,

N — число активных центров [9].
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Для реализации мазерной генерации необходимо вы-

полнение условия C > 1, при котором усиление от

активной среды превышает потери в резонаторе. Даже

при превышении порогового значения усиления C > 1,

устойчивое вынужденное излучение возможно лишь при

наличии накачки, обеспечивающей постоянную инвер-

сию населенностей. Условие ее эффективности формули-

руется через минимально необходимую частоту накачки:

̟thr = 1
T1K(C−1) , где T1 — продольное время релаксации

спина, а K — коэффициент эффективности накачки,

характеризующий вероятность перевода системы в ин-

версное спиновое состояние. Это выражение отражает

фундаментальное требование: скорость накачки долж-

на превышать скорость спонтанной релаксации, чтобы

сохранялась инверсия и обеспечивались условия для

устойчивого генерационного режима. Из рассмотрения

кооперативности и частоты пороговой накачки ̟thr

становится очевидно, что времена релаксации T1 и T ∗
2 ак-

тивных центров, а также их количество напрямую опре-

деляют возможность реализации мазерного эффекта и

его эффективность. Добротность резонатора варьируется

в диапазоне от 103 до 109 [10] в зависимости от техни-

ческого решения и напрямую не относится к спиновым

и оптическим свойствам активной среды. Именно ком-

бинация собственных свойств парамагнитных центров и

способов создания инверсной населенности приводит к

тому, что мазеры на основе ионов переходных метал-

лов в Al2O3 функционируют при температуре жидкого

гелия. Так, инверсная населенность спиновых подуров-

ней Cr3+ при микроволновой накачке достигается при

T . 4K [5,6,8,11]. При этой температуре, согласно ста-

тистике Больцмана, ионы преимущественно находятся

на нижнем уровне спинового квартета. Это обеспечивает

высокую поляризацию и эффективный перенос накачки

на верхние уровни. Низкая температура критична для

создания неравновесного распределения, обеспечиваю-

щего работу мазеров на Cr3+. При этом время T1 в этом

температурном диапазоне может принимать значения от

единиц до сотен миллисекунд [11,12], а T ∗
2 составляет

порядка 10 ns [8]. Вторым способом создания инверсной

населенности в системах типа Al2O3 : Сr
3+ является

использование оптической накачки основного состоя-

ния [13]. Однако в электронной спиновой системе ионов

хрома при температурах выше 50K наблюдается значи-

тельное укорочение времени спин-решеточной релакса-

ции, согласно зависимости T1 ∝ T−7, а при температуре

жидкого азота время релаксации T1 составляет порядка

17µs [11,12]. Дальнейшее повышение температуры до

комнатной приводит к существенному уменьшению это-

го времени до 3µs [11]. Как следствие, мазерный эффект

при высоких температурах получить не удается, ввиду

короткого T1, ограничивающего время жизни инверсного

состояния.

Из вышеизложенного следует, что для реализации

мазеров, функционирующих при комнатной температу-

ре, усиливающая спиновая система должна совмещать:

длительные времена T1 и T ∗
2 ; эффективную оптическую

накачку, приводящую к инверсной населенности спи-

новых подуровней; достаточную концентрацию актив-

ных центров. Выполнение всех этих условий позволило

реализовать первый импульсный твердотельный мазер,

работающий при комнатной температуре, где в качестве

усиливающей среды использовались молекулы пентаце-

на (N = 0.01%) в монокристаллической органической

матрице пара-терфенила [14]. За счет оптической на-

качки удалось создать инверсную населенность между

метастабильными триплетными подуровнями молекул

пентацена с временем жизни T1 ≈ 45µs. В совокупности

с относительно длительным временем фазовой когерент-

ности T ∗
2 ≈ 400 ns [15] и использованием высокодоброт-

ного (Q = 1.8 · 105) резонатора это позволило получить

когерентные микроволновые импульсы длительностью

около 450µs на частоте 1.45GHz при T ≈ 300K. Таким

образом, стало очевидно, что оптически поляризован-

ные спиновые состояния в твердотельных матрицах

при наличии всех вышеперечисленных свойств могут

стать основой для разработки высокоэффективных ма-

зеров, работающих при комнатной температуре. Для

этих целей было предложено использовать оптически

выстроенные триплетные (S = 1) спиновые состояния

отрицательно заряженных азотно-вакансионных центров

(NV−) в алмазе [16] и квартетные состояния (S = 3/2)
вакансий кремния в карбиде кремния (SiC) [17]. Оба

типа этих центров обладают длительными временами

когерентности при комнатной температуре и оптиче-

ски индуцированной инверсной населенностью спино-

вых подуровней [16,18]. Так, типичные времена T 1 и

T∗
2 составляют порядка 2−5ms и 200−500 ns [19–21],

соответственно, для ансамблей NV−-центров в алмазе.

Для ансамблей V−
Si центров в SiC наблюдаются следу-

ющие времена релаксации T1 и T ∗
2 : 100−300µs [22,23]

и 250−300 ns [24,25], соответственно. Это позволило

продемонстрировать мазерную генерацию с использо-

ванием таких активных сред, как алмаз (NV−) [20] и

карбид кремния (V−
Si ) [25]. Особую значимость пред-

ставляет достижение мазерного эффекта при комнатной

температуре как в органических, так и в неорганических

кристаллах, т. е. без использования криогенной техни-

ки [9,26–29].
Значительный интерес вызывает карбид кремния —

высокотехнологичный полупроводниковый материал,

для которого уже разработана технология выращивания

объемных кристаллов диаметром более 4-дюймов с вос-

производимыми параметрами. Методы микроволновой

и оптической спектроскопии показали наличие в SiC

NV−-центров по своей природе, структуре и спиновым

свойствам схожих с NV−-центрами в алмазе [30–32].
На рис. 1 приведены микроскопические модели этих

центров в решетке алмаза и карбида кремния поли-

типа 6H. NV-центр в SiC представляет собой ком-

плекс, состоящий из отрицательно заряженной вакансии

кремния (VSi-) и ближайшего к ней атома азота, в

позиции замещения углеродного атома (NC) [30–32]. По-

скольку политип 6H-SiC характеризуется наличием трех

неэквивалентных кристаллографических позиций: одной
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Рис. 1. (а) Микроскопическая модель NV-центра в решет-

ке алмаза. Кристаллографическое направление 〈111〉 указано

красной стрелкой. (b) Структура решетки 6H-SiC в плос-

кости (112̄0). Направление гексагональной оси c показано

красной стрелкой. Обозначены неэквивалентные позиции: гек-

сагональная (h) и квазикубические (k1, k2).

гексагональной (h) и двух квазикубических (k1, k2), то
NV-центры в 6H могут быть сформированы в конфи-

гурациях, включающих три аксиальные (NVhh, NVk2k1,

NVk1k2) и три базальные (NVhk1, NVk1h, NVk2k2).
В рамках данной работы будет рассмотрена только

аксиальная конфигурация NVk1k2, на примере которой

проводится сравнительный анализ спиновых и опти-

ческих свойств NV-центров в алмазе и в изотопно-

модифицированном 6H-28SiC c пониженным содержани-

ем магнитного изотопа 29Si (I = 1/2) c целью продемон-

стрировать перспективность системы 6H-28SiC : NV− в

качестве активной среды для мазеров, работающих при

комнатной температуре [33].

2. Экспериментальная часть

Кристаллы карбида кремния 6H-28SiC с пониженным

содержанием магнитного изотопа кремния 29Si (I = 1/2)
были получены методом сублимационного осаждения

из паровой фазы при высоких температурах (Physical
Vapour Transport — PVT) [34] с использованием прекур-

сора, обогащенного немагнитным изотопом 28Si. В ка-

честве затравочной подложки применялась стандартная

пластина 6H-SiC с природным изотопным составом:
29Si (4.7%, I = 1/2), 28Si (92.2%, I = 0), 30Si (3.1%,

I = 0), а также углеродные изотопы 12C (98.9%, I = 0)
и 13C (1.1%, I = 1/2). В качестве источника изотопа
28Si применялся промышленно доступный порошковый

прекурсор с уровнем чистоты 99.98% по содержанию

данного изотопа. Таким образом концентрации изотопов
29Si и 30Si в исходном материале были снижены более

чем на порядок по сравнению с их естественным со-

держанием. Для создания NV−-центров выращенные об-

разцы подвергались облучению электронами с энергией

2MeV при дозе 2 · 1018 cm−2, после чего отжигались при

температуре 900 ◦C в течение двух часов в атмосфере

аргона. Эксперименты методом электронного парамаг-

нитного резонанса (ЭПР) проводились в непрерывном и

в импульсном режимах с использованием коммерческих

спектрометров Bruker ESP300 и E680 в диапазонах

частот 9.4GHz (X-диапазон) и 94GHz (W-диапазон),
соответственно. Спектры ЭПР регистрировались в им-

пульсном режиме путем измерения интегральной ин-

тенсивности сигнала электронного спинового эха (ЭСЭ,
electron spin echo — ESE) в зависимости от магнитного

поля B с использованием последовательности Хана:

π/2−τ−π−τ−ESE. Длительность π/2-импульса соста-

вила 44 ns, а задержка — τ = 280 ns. Схематически

последовательность представлена на вставке рис. 2, а.

Исследования были выполнены при комнатной темпера-

туре (T = 300K) с использованием оптического возбуж-

дения лазерами с длиной волны 532 nm для NV−центров

в алмазе и 980 nm для NV-центров в SiC.

3. Результаты и обсуждение

На рис. 2 приведены спектры электронного спинового

эха NV−-центров в алмазе и SiC, зарегистрированные в

W-диапазоне при температуре T = 300K с оптическим

возбуждением лазером λ = 532 nm. Набор аксиальных

NV−центров в SiC указан стрелками, расщепления меж-

ду спектральными линиями ЭПР по магнитному полю

соответствует удвоенной величине расщепления спино-

вых подуровней триплета (S = 1) в нулевом магнитном

поле (Zero Field Splitting — ZFS), схематично обозна-

ченной на рис. 2, c как 2D. А именно, 1B ∼= 2D/gµB ,

где D — это величина ZFS, g — электронный g-фактор

(g ≈ 2.00), µB — магнетон Бора. Определенные таким

образом параметры D имеют следующие значения: для

NVhh: D ≈ 1.33GHz; для NVk2k1: D ≈ 1.28GHz; для

NVk1k2: D ≈ 1.36GHz. Полученные результаты полно-

стью согласуются с данными, ранее установленными ме-

тодами микроволновой спектроскопии [31,35,36]. В ал-

мазе, как и в SiC, наблюдаются сигналы ЭПР NV−-

центров. Имеет смысл рассмотреть спектральные линии

с максимальным расщеплением между компонентами

тонкой структуры в магнитном поле, что соответствует

NV-центрам, ориентированным по направлению 〈111〉
решетки алмаза, которое совпадает с направлением

постоянного магнитного поля. Параметр ZFS для NV−-

центров в алмазе имеет значение D = 2.87GHz [16].
Ввиду того, что расщепление между спектральными

линиями в эксперименте составляет 195.9mT (рис. 2, b),
можно установить, что отклонение магнитного поля со-

ставляет порядка 9.5◦ от идеальной ориентации. Важной

особенностью спектров как в SiC, так и в алмазе явля-

ется ярко выраженная картина спинового выстраивания

основного состояния за счет спин-зависимой оптиче-

ской накачки с участием процесса безызлучательной

рекомбинации из возбужденного состояний 3E через

метастабильное состояние (MS) в основное. Цикл оп-

тической накачки схематически представлен на рис. 2, c,

4 Физика твердого тела, 2025, том 67, вып. 9
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Рис. 2. (а) Спектр ЭПР NV−-центров в 6H-28SiC, зарегистрированный при ориентации внешнего магнитного поля B ‖ c и

оптическом возбуждении λ = 532 nm. На вставке показана импульсная последовательность Хана, используемая для регистрации

спектров ЭПР NV−-центров в алмазе и SiC. Сигналы ЭПР аксиальных и базальных NV−-центров обозначены горизонтальными

стрелками. Магнитные дипольные переходы между cпиновыми подуровнями аксиальных центров в низком (mS = 0 ↔ mS = +1)
и в высоком (mS = 0 ↔ mS = −1) магнитных полях обозначены стрелками: NVhh, NVk2k1 , NVk1k2 . (b) Спектр ЭПР NV−-центров

в алмазе, зарегистрированный при ориентации поля B c отклонением на ±9.5◦ от оси 〈111〉 алмазной решетки. Горизонтальной

стрелкой показаны переходы между спиновыми подуровнями NV−-центров mS = 0 ↔ mS = +1 и mS = 0 ↔ mS = −1, с главной

z -осью D-тензора, совпадающей с направлением магнитного поля. (c) Диаграмма процесса оптической накачки спиновых

подуровней NV−-центров в алмазе и в SiC. Оптическое возбуждение из основного состояния (3A2) в возбужденное (3E)
показано вертикальной стрелкой. Канал безызлучательной спин-зависимой рекомбинации из 3E в 3A2 через метастабильное

состояние (MS) показан пунктирными стрелками. Спин-зависимая фотолюминесценция обозначена PL. Преимущественное

заселение подуровня mS = 0 в 3A2 схематично показано кружками. Зелеными стрелками показаны разрешенные переходы ЭПР

с учетом их инвертированного характера. Разделение спиновых подуровней в нулевом магнитном поле обозначено как 2D.

(d) Три линии СТС, возникающие из-за взаимодействия электронного спина NV-центров с ядерным спином 14N (I = 1). Спектры
построены в координатах B− B0, где B0 соответствует значениям резонансных магнитных полей центральных компонент СТС

(mS = 0, mI = 0) ↔ (mS = 1, mI = 0) в алмазе и в 6H-28SiC. СТС обозначены штриховыми линиями c указанием константы A

в MHz.

он приводит к преимущественному заселению спинового

подуровня mS = 0, формируя инверсную населенность

относительно состояния с проекцией спина mS = −1.

Создание инверсной населенности хорошо наблюда-

ется в спектрах ЭПР ввиду инвертированности фаз

сигналов магнитного резонанса одноименных центров

в низких и высоких магнитных полях. При этом, ре-

зонансное излучение микроволн регистрируется на вы-

сокополевых компонентах, соответствующих переходу

mS = 0 ↔ mS = −1, что иллюстрируется диаграммой,

представленной на рис. 2, c. Таким образом, основное

требование для создания мазера, связанное с инверсией

населенности у NV-центров в SiC, реализуется посред-

ством механизма рекомбинации, характерного для NV−-

центров в алмазе, инверсия происходит относительно

подуровня mS = −1.

Рассмотрим сверхтонкое взаимодействие (СТВ) элек-

тронного спина NV-центров в кристаллических мат-

рицах с собственным ядерным спином атома азота,

входящего в состав NV-центра. Ввиду того, что изотоп
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NV−-центры в алмазе и карбиде кремния как основа мазеров... 1651

t, µs
0 0.3 0.6 0.9 1.2

NV : Diamond
*T  = 0.4 µs2

b

O
D

M
R

 i
n
te

n
si

ty
, 
ar

b
. 
u
n
it

s

t, µs
0 1 2 3 4

E
S

E
 i

n
te

n
si

ty
, 
ar

b
. 
u
n
it

s

28NV: 6H- SiC
*T  = 1.5 µs2

c

5

Time, µs

0 2 4 6 8

T  = 1.8 ms NV : Diamond1

a

O
D

M
R

 i
n
te

n
si

ty
, 
ar

b
. 
u
n
it

s

0 200 400 600 800

E
S

E
 i

n
te

n
si

ty
, 
ar

b
. 
u
n
it

s

28T  = 0.1 ms NV : 6H- SiC1

B = 0.2 mT

2800 2850 2900

f, MHz

Time, µs

O
D

M
R

 i
n
te

n
si

ty
,

 a
rb

. 
u
n
it

s

Рис. 3. (а) Зависимости спин-решеточной релаксации, измеренные для NV−-центров в алмазе и для NVk2k1 в 6H-28SiC

методами ЭСЭ в W-диапазоне и ОДМР в магнитном поле B = 0.2mT, соответственно. На вставке представлен спектр

ОДМР, пунктирной линией обозначена частота сигнала, на которой проводились измерения релаксационных характеристик.

Для регистрации кривой релаксации NVk2k1-центров по изменению амплитуды спинового эха низкополевой компоненты

тонкой структуры в зависимости от времени задержки 1 после инвертирующего π импульса использовалась импульсная

последовательность: π−1−π/2−τ−π−τ−ESE. Магнитно-дипольный переход mS = 0 ↔ mS = −1 использовался для определения

времени релаксации NV−-центров в алмазе методом ОДМР. Применялась следующая последовательность микроволновых

импульсов: π−1−π/2−τ−π−τ−π/2−ODMR, в которой последний π/2 импульс прикладывался для переноса когерентности в

населенность состояния mS = 0. (b) Осцилляции Раби, наблюдаемые при возбуждении перехода mS = 0 ↔ mS = −1 резонансным

СВЧ-импульсом переменной длительности t + 1t в магнитном поле B = 0.2mT. (c) Сигнал спада свободной индукции NVk2k1-

центров, зарегистрированный на низкополевой компоненте тонкой структуры после возбуждающего микроволнового импульса.

14N обладает ядерным спином I = 1, то для рассмат-
риваемых центров сверхтонкая структура (СТС) будет
состоять из трех эквидистантных линий (n = 2I + 1) с
расщеплением между линиями, равным величине СТВ,
характеризуемого константой A. Это хорошо видно на
рис. 2, d. Также заметно, что и СТВ, и ширина сверх-
тонких компонент NV−-центров в 6H-28SiC значитель-
но меньше аналогичных параметров для NV−-центров
в алмазе. А именно, A(14N) в SiC составляет всего
1.20MHz, тогда как для алмаза A(14N) ≈ 2.24MHz, что
согласуется с результатами экспериментов по двойному

электронно-ядерному резонансу [37–39]. Таким образом,
величина СТВ NV−-центра в алмазе с 14N в два раза
превышает аналогичную величину для NV−-центра с
14N в SiC. И СТВ с 14N, и механизмы неоднородного
уширения линии магнитного резонанса являются огра-
ничивающими факторами эффективного поперечного
времени спиновой релаксации (фазовой когерентности),
которое определяется как: T∗

2 = 1/(γeH1/2), где H1/2 —
ширина линии на полувысоте в единицах постоянного
магнитного поля, а γe — гиромагнитное отношение для
электрона. Очевидно, что такой ключевой параметр для
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реализации мазера, как T ∗
2 , в случае NV−-центров в

6H-28SiC выглядит предпочтительней, что делает данную

систему более перспективной для практического приме-

нения.

Стоит отдельно подчеркнуть схожесть этих двух цен-

тров в кристаллических матрицах алмаза и SiC, что

хорошо прослеживается на примере анализа такого

параметра, как расщепление в нулевом магнитном поле

(параметр D). Принимая во внимание, что в основном

состояние центра расщепление, преимущественно опре-

деляется спин-спиновым взаимодействием [40], можно

провести прямой анализ масштабирования величины

этого взаимодействия при переходе от решетки алмаза

к решетке SiC. Начнем с анализа значения D в алмазе:

D = 3µ0
16πh

· (gµB )2

〈r〉3 , где 〈r〉 — среднее расстояние между

неспаренными электронами. Используя это приближе-

ние и значение D = 2.87GHz для NV−-центра в алма-

зе [16,38], можно определить, что среднее расстояние

между неспаренными электронами, формирующими три-

плет, составляет около 2.4�A, что сопоставимо с рассто-

янием 2.43�Aмежду базальными атомами углерода, окру-

жающими углеродную вакансию, на которых локализо-

вана основная часть спиновой плотности. В 6H-SiC это

расстояние больше и составляет примерно 3.08�A. Таким

образом, можно предположить, что для NV-центров

в 6H-SiC значение ZFS будет меньше примерно в

(3.08/2.43)3 ≈ 2.18 раза, то есть около 1.32GHz. Это

значение хорошо согласуется с экспериментальными

данными, полученными для NV-центров в 6H-28SiC и

наглядно демонстрирует структурную схожесть этих

центров в алмазе и SiC. Согласованность достигается

путем прямого перерасчета основного спектроскопиче-

ского параметра D через кристаллические параметры

матрицы.

Проанализировав сходство оптических и спиновых

свойств NV-центров в SiC и алмазе, представляем срав-

нительный анализ их спиновой динамики. Исследование

выполнено путем измерения времен спин-решеточной

релаксации и фазовой памяти. Полученные результаты

приведены на pис. 3. На рис. 3, a−c зеленым цветом

показаны экспериментальные данные, черным — аппрок-

симация моноэкспоненциальной функцией.

Экспериментальные данные по измерению продоль-

ного времени релаксации в SiC аппроксимировались

биэкспоненциальной функцией I(1) = I0 + A1 · e(−1/T1)

+ A2 · e(−1/T ′

1 ) с характеристическими временами

спин-решеточной релаксации T1 = 0.1ms и T ′
1 = 32µs.

Время спин-решеточной релаксации T1 = 1.86ms для

NV-центров в алмазе было получено путем аппрок-

симации кривой релаксации моноэкспоненциальной

функцией I(1) = I0 + B · e(−1/T1). Аппроксимация

осцилляций Раби и кривой спада свободной индукции

моноэкспоненциальной функцией I(t) = I0 + C · e(−t/T∗

2 )

выявили времена фазовой памяти T ∗
2 = 0.4µs и

T ∗
2 = 1.5µs для NV−-центров в алмазе и 6H-28SiC,

соответственно. Таким образом, NV−-центры в карбиде

кремния 6H-28SiC характеризуются более короткими

временами спин-решеточной релаксации T1 по

сравнению с аналогичными центрами в алмазе. Однако,

несмотря на это, они обладают существенно более

длительным временем фазовой памяти, превышающим

типичные значения для NV−-центров в алмазе в

3−5 раз. Это позволяет заключить, что спиновые

NV−-центры в изотопно-очищенных матрицах карбида

кремния представляют собой перспективную платформу

для реализации мазеров, работающих при комнатной

температуре. Этот вывод подтверждается эксперимен-

тальными результатами по мазерной генерации на ва-

кансионных кремниевых центрах VSi- в карбиде кремния.

Несмотря на сопоставимые времена спин-решеточной

релаксации этих центров с NV−-центрами в 6H-28SiC,

время их фазовой памяти составляет лишь 250−300 ns.

4. Заключение

В работе проведен сравнительный анализ спиновых

и оптических свойств NV−-центров в алмазе и в

изотопно-модифицированном карбиде кремния 6H-28SiC.

Особое внимание уделялось оценке их перспективности

в качестве активной среды для создания твердотель-

ных мазеров, работающих при комнатной температуре.

Несмотря на более короткие времена спин-решеточной

релаксации (T1) NV−-центров в 6H-28SiC по сравнению

с аналогичными центрами в алмазе, их время фазовой

когерентности существенно выше значений для алма-

за (1.5 мкс против ∼ 0.4µs). Это связано с меньшим

сверхтонким взаимодействием c ядерным спином азота,

входящего в состав центра и снижением неоднородного

уширения за счет использования изотопно-очищенной

матрицы. Оптическая накачка, приводящая к инверсной

населенности триплетного основного состояния в NV−-

центрах SiC посредством механизма, схожего с тем, что

наблюдается в алмазе, в сочетании с высокой струк-

турной и спектроскопической идентичностью этих цен-

тров, позволяют рассматривать систему 6H-28SiC : NV−

как перспективную альтернативу алмазу для создания

мазеров нового поколения. Преимуществом SiC яв-

ляется технологическая масштабируемость материала

и возможность выращивания крупных монокристаллов.

Совокупность этих факторов открывает путь к созданию

компактных, стабильных и энергоэффективных твердо-

тельных мазеров, способных работать при комнатной

температуре.
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