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Влияние параметров искрового плазменного спекания

на термоэлектрические свойства материалов на основе

твердого раствора Mg3Sb2-Mg3Bi2 n-типа
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Методом механохимического синтеза с последующим искровым плазменным спеканием получены образцы

на основе твердого раствора Mg3Sb2-Mg3Bi2. Выявлены закономерности влияния параметров процесса

компактирования на электро- и теплофизические свойства образцов. Установлено, что применение двуста-

дийного режима нагрева способствует увеличению электропроводности до 325 S/cm при температуре 390K,

одновременно обеспечивая снижение решёточной теплопроводности до 0.49W/(m ·K). В совокупности

данные изменения позволяют достичь максимального значения термоэлектрической добротности z T ,

равного 1.38 при температуре 732K.

Ключевые слова: термоэлектрические материалы, фазы Цинтля, коэффициент Зеебека, электропровод-

ность, теплопроводность.

DOI: 10.61011/FTT.2025.09.61614.149-25

1. Введение

Термоэлектрические генераторы (ТЭГ) являются уни-

версальными устройствами для утилизации бросового

тепла и выработки электроэнергии. В настоящее время

для изготовления ТЭГ используются теллуриды свинца

и германия [1], однако ряд термоэлектрических мате-

риалов (ТЭМ) содержит токсичные для окружающей

среды элементы, такие как свинец, кадмий, мышьяк

и др., а теллур и германий относятся к дорогостоящим

элементам [2]. В связи с этим одной из основных

задач является поиск перспективных ТЭМ на основе

экологичных и дешевых компонентов.

Главной характеристикой, определяющей качество

ТЭМ, является безразмерный параметр, называемый

термоэлектрической добротностью, который описывает-

ся формулой [3]

z T =
α2σ

κ
T, (1)

где σ , S/cm — удельная электропроводность; α, µV/K —

коэффициент Зеебека; κ = κlat + κel — общая тепло-

проводность, где κlat и κel — решеточная и элек-

тронная сос тавляющие теплопроводности соответствен-

но,W/(m ·K); T — абсолютная температура,K.

Одними из перспективных среднетемпературных ТЭМ

являются фазы Цинтля. Фазы Цинтля — интер-

металлические соединения, образованные щелочными

и щелочноземельными металлами [4–6] и элементами

групп 13−15 периодической таблицы, которые образуют

анионные кластеры.

В последнее время интерес вызывают ТЭМ на основе

твердого раствора Mg3Sb2-Mg3Bi2, являющееся класси-

ческими представителями фазы Цинтля. Из литератур-

ных данных известно, что материал имеет высокое тео-

ретическое значение добротности 2.1 при температуре

750K [7]. По сравнению с другими среднетемпературны-

ми ТЭМ, материалы на основе Mg3Sb2 более экологич-

ны и не содержат дорогостоящих элементов. В чистом

виде Mg3Sb2 обладает дырочным типом проводимости,

из-за высокой равновесной концентрации вакансий маг-

ния (VMg) [2,8], и долгое время рассматривался как пер-

спективный материал p-типа с z T < 1 [9,10]. В 2016 г.

группа ученых [11] успешно получила антимонид магния

n-типа проводимости, за счет легирования теллуром

и добавления избыточного магния, который снижает

концентрацию VMg; полученное соединение имело зна-

чение z T равное 1.5 при 716K.

Одинаковая гексагональная структура Mg3Sb2 и

Mg3Bi2 с пространственной группой симметрии P3̄m1
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позволяет образовывать непрерывный ряд твердых рас-

творов без фазового расслоения [12]. В большин-

стве случаев при образовании твердого раствора по-

движность носителей заряда снижается из-за рассея-

ния на структурном беспорядке. В твердом растворе

Mg3Sb2-Mg3Bi2 подвижность носителей заряда увели-

чивается из-за меньшей эффективной массы электро-

нов Mg3Bi2, чем в Mg3Sb2. В образующемся твердом

растворе происходит уменьшение средней эффективной

массы электронов, что увеличивает подвижность и, со-

ответственно, электропроводность. К тому же рассеяние

фононов при замещении сурьмы висмутом снижает теп-

лопроводность без значительного увеличения рассеяния

носителей заряда, что способствует сохранению высокой

подвижности [11].

Спекание порошка, полученного механохимическим

синтезом (МХС) — основным способом получения

Mg3Sb2-Mg3Bi2, является важным этапом в изготовле-

нии объемных ТЭМ, т. к. на данном этапе определя-

ется направление, скорость и температуру прессова-

ния, а также скорость вторичной рекристаллизации. На

стадии прессования происходит формирование микро-

структуры объемного ТЭМ, что оказывает влияние на

термоэлектрические свойства. Процесс компактирова-

ния проводится такими методами, как горячее прес-

сование (ГП) [10,13,14] и искровое плазменное спека-

ние (ИПС) [11,12]. Метод ИПС основан на одновремен-

ном воздействии на материал импульсного постоянного

тока высокой интенсивности и одноосного давления; при

этом образцы спекаются в течение короткого времени

при относительно более низкой температуре по сравне-

нию с ГП, что позволяет избежать роста зерен, который

ухудшает теплофизические свойства материала.

В таблице A1 приложения представлены литератур-

ные данные различных режимов спекания ТЭМ на

основе Mg3Sb2 и значения их пиковой термоэлектри-

ческой добротности. На основании изученных данных

подобраны режимы ИПС, которые реализованы в ходе

данной работы. Двустадийный процесс спекания изучен

в статье [15] без описания микроструктуры полученных

образцов. Более того (см. таблицу A1 приложения),
отсутствует информация о сравнении двустадийного

и одностадийного спекания порошков одного и того же

состава.

Цель настоящей работы — определение оптимальных

параметров искрового плазменного спекания ТЭМ на

основе твердого раствора Mg3Sb2-Mg3Bi2 и изучение их

влияния на термоэлектрические свойства.

2. Экспериментальная часть

Образцы твердого раствора Mg3.2Sb1.5Bi0.5 легирован-

ные Te и Cu получены методом МХС в планетарно-

шаровой мельнице (ПШМ) Retsch PM 400MA. Исход-

ные компоненты предварительно измельчались в ступке,

после чего в стехиометрическом соотношении поме-

щались в стакан из нержавеющей стали в инертной

атмосфере аргона с добавлением н-гексана (химической
чистоты) как среды для синтеза. Соотношение матери-

ала к размольным шарам с диаметром от 5 до 15mm

из нержавеющей стали составило от 1 : 5 до 1 : 10 со-

ответственно. Время МХС составило от 3 до 5 h, а ско-

рость вращения стаканов — 300−600 rpm. После помола

гексан выпаривался в сушильном шкафу при комнатной

температуре в течение 8 h, а полученный порошок про-

сеивался через 250-µm сито для разделения агломера-

тов. Консолидация порошков проводилась методом ИПС

на установке SPS-511S (Dr. Sinter Lab., Japan). Полу-

ченный порошок засыпался в графитовую пресс-форму

с диаметром 20mm. Загрузка и выгрузка производилась

в перчаточном боксе в инертной атмосфере аргона.

Полученные образцы отжигались в кварцевых тиглях

в течение 24 h при температуре 400−600 ◦C в атмосфере

аргона для устранения остаточных напряжений.

Для измерения свойств подготавливались образцы

в виде столбика 3×3×12mm3 и диска с диаметром

12.6mm и толщиной 1.5mm.

Фазовый анализ выполнялся методом рентгеновской

дифракции с помощью дифрактометра D2 Phaser CuKα

(Вruker, USA). Уточнение параметров решетки проводи-

лось методом Ритвельда в программе Full-Prof. Иссле-

дование микроструктуры проводилось методом сканиру-

ющей электронной микроскопии (СЭМ) на микроскопе

Quanta FEG 250 (FEI, USA).

Измерение электрического сопротивления проводи-

лось четырехзондовым методом, одновременно коэффи-

циент Зеебека измерялся дифференциальным методом.

Измерения проводились в атмосфере гелия на установке

ZEM-3 (ULVAC Riko, Japan). Температуропроводность
измерялась методом лазерной вспышки на установке

LFA 457 (Netzsch, Germany) в атмосфере аргона. Удель-

ная теплоемкость рассчитывалась по формуле Дебая

в программе Mathcad 15. Плотность образцов измеря-

лась методом гидростатического взвешивания. Тепло-

проводность рассчитывалась по формуле [16]

œ = DtCpd, (2)

где Dt, mm2/s — температуропроводность;

Cр, J/(K · kg) — удельная теплоемкость; d, g · cm−3 —

плотность.

Погрешности в измерении коэффициента Зеебека

и удельной электропроводности, а также рассчитанное

значение общей теплопроводности составили около 5%.

Все измерения проводились в температурном диапазоне

390−770K.

3. Обсуждение результатов

Выбор режимов для ИПС проводился на основании

анализа литературных данных соединений аналогичного

Физика твердого тела, 2025, том 67, вып. 9
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Таблица 1. Режимы ИПС

№ Маркировка,MPa- ◦C-min Давление P, MPa Температура T , ◦C Время t, min

1 50-650-10 50 650 10

2 60-700-5 60 700 5

3 60-400-8-800-4 60 400, 800 8, 4

4 50-800-10 50 800 10

5 45-680-8 45 680 8

6 50-750-5 50 750 5
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50-650-10   1

Powder   0

I /I  = 6.7 %(004) (101)

I /I  = 90 %(002) (101)

I /I  = 5.5 %(004) (101)

I /I  = 73 %(002) (101)

I /I  = 6.4 %(004) (101)

I /I  = 96 %(002) (101)
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I /I  = 63.7 %(002) (101)

I /I  = 5.3 %(004) (101)

I /I  = 77.6 %(002) (101)

I /I  = 6.3 %(004) (101)

I /I  = 85.4 %(002) (101)

I /I  = 6.4 %(004) (101)

I /I  = 50.1 %(002) (101)

# 96-155-0781

Рис. 1. Дифрактограммы порошка после МХС (кривая 0) и компактированных образцов твердого раствора Mg3Sb2-Mg3Bi2 (кри-
вые 1−6), полученных при различных режимах ИПС.

состава, основные параметры которых приведены в таб-

лице A1 приложения. Режимы ИПС, использовавшиеся

в рамках данной работы, и соответствующие им марки-

ровки представлены в таблице 1.

На рис. 1 представлены дифрактограммы порошка

после МХС и образцов полученных при различных

режимах ИПС после отжига.

Из представленных результатов (рис. 1, кривая 0)
следует, что фазовый состав порошка после МХС со-

ответствует α-фазе Mg3Sb2, пики от других фаз не

наблюдаются. Результаты исследования дифрактограмм

образцов при различных режимах спекания (рис. 1,

кривые 1−6) также показали, что дифракционные пи-

ки всех образцов соответствуют стандартным данным

для α-фазы Mg3Sb2, т. е. после ИПС и термического

отжига не происходит фазовых изменений. Во всех

синтезированных образцах обнаружена преимуществен-

ная ориентация зерен в направлении 〈001〉. Для коли-

3 Физика твердого тела, 2025, том 67, вып. 9
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Таблица 2. Результаты анализа кристаллических параметров a и c, плотности d, относительной плотности dr и ОКР (DCSR)
полученных образцов

Маркировка,MPa- ◦C-min a ,�A c,�A d, g/cm3
dr,% DCSR, nm

50-650-10 4.583 7.273 4.403 97.7 29

60-700-5 4.587 7.280 4.377 97.1 30

60-400-8-800-4 4.580 7.266 4.381 97.2 28

50-800-10 4.587 7.279 4.391 97.4 30

45-680-8 4.587 7.278 4.402 97.6 27

50-750-5 4.585 7.274 4.398 97.6 29

A50-650-10 A60-700-5

5 µm 5 µm5 µm 5 µm

a db e

A60-400-8-800-4

c f

5 µm 5 µm

A50-800-10 A45-680-8 A50-750-5

Рис. 2. СЭМ-изображения сколов образцов твердого раствора Mg3Sb2-Mg3Bi2, полученных при различных режимах ИПС.

чественной оценки преимущественной ориентации зе-

рен произведены расчеты относительной интенсивности

пиков порошкового материала. Полученные результа-

ты согласуются с данными, представленными в ра-

боте [17]. Образец 60-400-8-800-4, компактированный

в процессе двустадийного спекания (рис. 1, кривая 3),
демонстрирует менее выраженную преимущественную

ориентацию зерен в направлении 〈001〉, в сравнении

с другими образцами, полученными в одностадийном

процессе.

Данные кристаллических параметров, плотности и об-

ласть когерентного рассеяния (ОКР) полученных образ-

цов представлены в таблице 2.

Данные кристаллографических параметров решетки,

рассчитанные методом Ритвельда, согласуются с кар-

точкой № 96-155-0781. Разница в параметрах решетки

синтезированных образцов, предположительно, объяс-

няются вероятностью встраивания меди в междоузель-

ные позиции [18] кристаллической решётки антимонида

магния, замещением позиций самого магния [19] или

совмещением описанных процессов. Плотности всех

полученных образцов выше 97%. Размер ОКР образцов

лежит в диапазоне от 27 до 30 nm, что соответствует

погрешности расчетов.

Для установления влияния режимов ИПС на микро-

структуру получаемых материалов исследовали сколы

образцов методом СЭМ. Снимки сколов полученных

образцов представлены на рис. 2.

Из результата анализа микроструктуры сколов образ-

цов следует, что размер агломератов зерен образцов

на рис. 2, a, b, e и f равен единицам микрометров (спе-
кание при 650−750 ◦C), а другие два образца на рис. 2, c

и d имеют размер десятки микрометров (спекание
при 800 ◦C). Анализ морфологии и микроструктуры

сколов образцов выявил прямую зависимость их строе-

ния от температуры спекания. Для образцов, спеченных

в диапазоне 650−750 ◦C, микроструктура эволюциони-

рует от равномерной равноосной при 650−680 ◦C к бо-

лее крупной, однородной и пластинчатой при 750 ◦C.

Кардинальное изменение наблюдается при 800 ◦C, где

формируется столбчатая структура. Данная структура

не обнаруживается при более низких температурах, что

можно объяснить эффектом жидкофазного спекания при

высокой температуре [20], который благоприятствует

формированию крупного и анизотропного зерна. Столб-

чатая структура способствует увеличению электропро-

водности материала вдоль преимущественного направ-

ления из-за увеличения длины свободного пробега [21].

На картах распределения элементов (рис. A1−A6 при-

ложения) видно, что для образцов 50-650-10 и 50-750-5

наблюдается неоднородное распределение. Образцы

с режимами ИПС 60-700-5 и 45-680-8 имеют более

равномерное распределение элементов, однако присут-

ствуют дефекты поверхности. Для образцов с режимами

ИПС 60-400-8-800-4 и 50-800-10 характерно равномер-

ное распределение и однородная поверхность.
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Рис. 3. Температурные зависимости a) удельной электропроводности, b) коэффициента Зеебека и c) фактора мощности образцов

твердого раствора Mg3Sb2-Mg3Bi2 обозначены сплошными линиями. Литературные данные [19,22] обозначены пунктирными

линиями.

Поэтому образцы с режимами ИПС 60-400-8-800-4

и 50-800-10, характеризующиеся столбчатой структурой,

преимущественной ориентацией зерен вдоль направле-

ния 〈001〉, а также наиболее равномерным распреде-

лением элементов, выбраны для дальнейшего изучения

термоэлектрических свойств.

Рис. 3, a демонстрирует температурную зависимость

удельной электропроводности σ двух исследуемых об-

разцов. В температурном диапазоне 373−500K обра-

зец 50-800-10 проявляет полупроводниковый характер

проводимости с максимумом 250 S/cm при 473K, то-

гда как образец 60-400-8-800-4 демонстрирует метал-

лическое поведение. При температурах выше 500K

зависимости σ для обоих образцов становятся иден-

тичными, уменьшаясь практически линейно с ростом

температуры, что соответствует металлическому типу

проводимости.

На рис. 3, b приведена температурная зависимость

коэффициента Зеебека α. В изученном температурном

диапазоне значения α для обоих образцов демонстри-

руют схожий характер поведения, варьируясь в интер-

вале от −200 до −280µV/K. Наблюдается практически

линейный рост абсолютного значения коэффициента

Зеебека с увеличением температуры. Такая зависимость
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Рис. 4. Температурные зависимости a) общей; b) электронной и c) решеточной теплопроводностей образцов твердого раствора

Mg3Sb2-Mg3Bi2 обозначены сплошными линиями. Литературные данные [19,22] обозначены пунктирными линиями.

согласуется с типичным поведением металлов или вы-

рожденных полупроводников, где преобладает рассеяние

носителей заряда на акустических фононах.

На рис. 3, c представлена температурная зависимость

фактора мощности (PF = S2σ ) исследуемых образцов.

Анализ данных показывает преимущество двустадийного

режима спекания: образец 60-400-8-800-4 демонстрирует

более высокие значения PF по сравнению с односта-

дийным образцом 50-800-10 во всем изученном темпе-

ратурном диапазоне. Полученные значения обусловлены

синергетическим эффектом электрофизических харак-

теристик. Максимальные значения фактора мощности

достигаются при 504K и составляют 15.2 µW/(cm ·K2)
для двустадийного образца и 13.2µW/(cm ·K2) для од-

ностадийного.

На рис. 4, a представлена температурная зависимость

общей теплопроводности исследованных образцов. Из-

меренные значения κ для всех образцов варьируют-

ся в диапазоне 0.67−0.97W/(m ·K), что соответствует

ультранизкой теплопроводности в изученном темпера-

турном интервале. Анализ температурных зависимостей

показывает качественное сходство в поведении теп-

лопроводности экспериментальных образцов и данных

работ [19,22], что проявляется в идентичном наклоне

Физика твердого тела, 2025, том 67, вып. 9



Влияние параметров искрового плазменного спекания на термоэлектрические свойства материалов... 1637

T, K
400 500 600 700

0.2

0.8

1.4

800

0.6

1.0

1.8

60-400-8-800-4

50-800-10

Mg Sb Bi Te3.2 1.5 0.49 0.01

Mg Sb Bi Se3.2 1.5 0.49 0.01

0.4

1.6

1.2

z
T

Рис. 5. Температурные зависимости термоэлектрической доб-

ротности для образцов твердого раствора Mg3Sb2-Mg3Bi2 обо-

значены сплошными линиями. Литературные данные [19,22]
обозначены пунктирными линиями.

температурных кривых κ(T ). Такое совпадение может

свидетельствовать о схожих механизмах переноса тепла

в данных материалах.

На рис. 4, b представлены данные электронной тепло-

проводности исследуемых образцов. Анализ результатов

показал, что одностадийный образец демонстрирует зна-

чения κel ниже, чем значения образца, полученного дву-

стадийным методом. Полученный результат обусловлен

тем, что электронная составляющая теплопроводности

прямо пропорциональна электропроводности через за-

кон Видемана−Франца:

κe

σ
= LT, (3)

где L, 10−8W�K−2 — число Лоренца, рассчитанное по

эмпирическому выражению [23]:

L = 1.5 + exp
(

−
|S|

116

)

. (4)

На рис. 4, c представлена температурная зависимость

решеточной теплопроводности исследованных образцов.

Образец 60-400-8-800-4 демонстрирует немонотонное

поведение κlat(T ): первоначальное снижение теплопро-

водности в низкотемпературной области сменяется ее

ростом при повышении температуры. Такая особенность

может быть объяснена конкуренцией двух механизмов:

доминированием фононного рассеяния при низких тем-

пературах, приводящего к уменьшению κlat, и активацией

биполярной диффузии при повышенных температурах,

обусловливающей рост теплопроводности. В отличие

от этого, образец 50-800-10 показывает традиционное

монотонное уменьшение решеточной теплопроводности

с ростом температуры во всем исследованном диа-

пазоне.

На рис. 5 представлены температурные зависимо-

сти термоэлектрической добротности для исследуемых

образцов. Одностадийный образец имеет значения z T

в диапазоне 0.4−1.1 во всем изученном температурном

интервале. Напротив, двустадийный образец достига-

ет максимального значения z T = 1.38 при 732K, что

является значительным улучшением термоэлектриче-

ских характеристик. Улучшение параметра добротности

обусловлено синергетическим эффектом: во-первых, за

счет оптимизации электропроводности, во-вторых, по-

давления фононной составляющей теплопроводности.

Такая оптимизация транспортных свойств достигнута

путем рационального выбора параметров компактиро-

вания, включая температурный режим и продолжитель-

ность спекания. Полученные результаты демонстриру-

ют эффективность использования двустадийного синтеза

для улучшения термоэлектрических характеристик ма-

териала.

4. Заключение

Методом механохимического синтеза с последующим

искровым плазменным спеканием получен однофазный

термоэлектрический материал на основе твердого рас-

твора Mg3Sb2-Mg3Bi2. Проведенный комплексный ана-

лиз микроструктурных характеристик образцов, синте-

зированных при различных режимах спекания, позволил

найти оптимальные условия формирования материала.

Принципиально важным является установленная за-

висимость: применение двустадийного режима спекания

позволяет повысить электропроводность материала при

одновременном снижении решеточной составляющей

теплопроводности, что достигается за счет подавления

роста зерен, оптимизации дефектной структуры, управ-

ления фононным спектром рассеяния.

В результате проведенной оптимизации достигнуто

значение термоэлектрической добротности z T = 1.38

при 732K для исследуемой системы Mg3Sb2-Mg3Bi2. По-

лученные результаты демонстрируют перспективность

разработанной методики синтеза для создания высоко-

эффективных термоэлектрических материалов данного

класса.
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Рис. A.6. Результат элементного анализа поверхности образца с режимом ИПС (50-750-5) на СЭМ.
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