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Структура границ зерен в упорядоченном твердом растворе

системы Ni-Al эквиатомного состава (молекулярная динамика)
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В статье представлены результаты молекулярно-динамического моделирования малоугловой (〈001〉,
θ = 8◦) и большеугловой (〈001〉, θ = 36.9◦) межзеренных границ кручения в β-фазе твердого раствора

Ni-Al, структура типа CsCl. Установлено, что первая организуется с образованием сетки винтовых

сверхдислокаций (векторы Бюргерса a〈100〉), структурная толщина границы 0.85 nm. Вторая граница

структурно не организована, толщина 0.29 nm (по одному слою каждого зерна).
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1. Введение

Представления об атомной структуре межзеренных

границ успешно развивались, в основном, на примерах

однокомпонентных структур, в подавляющем большин-

стве металлических: малоугловые с компенсацией ори-

ентационного несоответствия дислокациями с полным

вектором Бюргерса (до коалесценции ядер дислокаций);
большеугловые — в рамках концепции решетки совпа-

дающих узлов (РСУ) и O-решетки (совпадающих мест

с одинаковыми внутренними координатами в пределах

кристаллических решеток пары зерен) и зерногранич-

ных дислокаций (ЗГД) [1–6].

Для разных осе-угловых пар есть соответствующий

набор локальных минимумов энергии (т. е. специаль-

ных большеугловых границ), с наибольшей статистикой

представленный в [6,7].

Исследования структуры межзеренных границ в упо-

рядоченной структуре типа CsCl ограничены первыми

результатами молекулярно-динамического моделирова-

ния малоугловых и большеугловых границ в систе-

ме Pd-Cu [8–13]1. Установлено, что в межзеренных

границах (малоугловая 〈001〉, θ = 8◦ и большеугловая

〈001〉, θ = 36.9◦ граница кручения, большеугловая гра-

ница наклона 〈100〉, θ = 36.9◦) в упорядоченной струк-

туре системы Pd-Cu (β-фаза) формируются границы

структурно-неорганизованного типа и промежуточная

квазиаморфная фаза.

Как показали результаты молекулярно-динамического

моделирования, атомы водорода задерживаются на де-

фектах кристаллического строения, в частности, в Pd

1 Система Pd-Cu с широкой температурной областью упорядочения

(до 598 ◦С) в концентрационном интервале (36−47 аt.% Pd) в разные

годы обсуждалась в разных аспектах применения [9−13].

на малоугловых межзеренных границах наклона и кру-

чения, на большеугловой границе, близкой к специаль-

ной [14]. Поэтому вопрос о структуре границ зерен

имеет принципиальное значение и с позиции реаль-

ной водородопроницаемости мембранной фольги си-

стемы Pd-Cu, установления проявления особенностей

электронной структуры в разных твердых растворах,

упорядочивающихся по типу CsCl.

В [15,16] методом молекулярной статики показано,

что модель, содержащая специальную большеугловую

границу наклона (〈100〉, θ = 36.9◦) в твердом растворе

Ni-Al, не стабильна, меньшую энергию имеют границы,

в которых атомы смещены на небольшие расстояния в

плоскости границы относительно положений в РСУ.

Нам пока не известны работы по изучению релаксиро-

ваной атомной структуры межзеренных границ в других

системах со структурой типа CsCl.

Цель настоящей работы: выявить закономерности

структурной организации межзеренных малоугловых и

большеугловых границ кручения; обосновать получае-

мые результаты с позиции развитых представлений об

особенностях дислокаций в системах упорядоченных по

типу B2 (применительно к малоугловым границам), с
позиции электронной структуры поверхности твердого

раствора Ni-Al.

2. Методика исследования

Модели представлены двумя сопрягающимися плоско-

стями (001) кристаллами β-фазы эквиатомного состава

с взаимной разориентацией вокруг оси 〈001〉 (грани-
ца кручения) на угол 36.9◦ (большеугловая граница)
и θ = 8◦ (малоугловая граница). Размер моделей для

двух типов границ был одинаковым и подобран таким
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образом, чтобы он был достаточным для визуализации

структуры границы.

После создания моделей была проведена статиче-

ская релаксация системы, а затем изотермический от-

жиг при заданной температуре с временным шагом

1t = 1.5 · 10−15 s в течение 1000001t, т. е. продолжи-

тельность отжига составила 1.5 · 10−10 s. Температура

отжига составила 27, 327, 527 и 727 ◦С для моде-

ли с большеугловой границей и 27 ◦С для модели с

малоугловой. Методика расчета состояла в численном

интегрировании уравнений движения атомов по алгорит-

му Верле [17]. Межатомное взаимодействие в системе

рассчитывали в рамках метода погруженного атома [18].

3. Результаты и обсуждение

3.1. Большеугловая граница.

На рисунке 1 представлено изображение контактиру-

ющих слоев зерен в β-фазе твердого раствора системы

Ni-Al после отжига при температуре 27 ◦С, из которого

следует, что в данной системе формируется структурно-

неорганизованная граница зерен, при этом, в отличие

от системы Pd-Cu [13], перемешивание между слоями

разных зерен не происходит, а атомные перестройки

затрагивают преимущественно атомы Ni в первом слое.

Это может быть связано с особенностями электронной

структуры NiAl, определяемой d-электронами Ni [19].
Структурная ширина границы, определяемая как рассто-

яние, в пределах которого координация атомов отлича-

ется от координации атомов в зернах, т. е. суммарная

толщина контактирующего слоя — по одному атомному

слою каждого зерна (0.29 nm). На границе выделены

фрагменты (рис. 1, b, c), содержащие структурные эле-

менты двух типов — соответствующие параллельной

ориентации каждого из зерен, однако их количество

невелико (в них содержатся ∼ 16% атомов). Система
Ni-Al характеризуется тем, что упорядоченная фаза

существует вплоть до температуры плавления (1638 ◦С)
в отличие от системы Pd-Cu, что позволило провести

моделирование при более высоких температурах (327,
527 и 727 ◦С) в пределах существования β-фазы. Уста-

новлено, что граница имеет аналогичную полученной

при температуре 27 ◦С структуру.

Моделирование в аналогичных условиях однокомпо-

нентной наночастицы Ni на поверхности монокристал-

ла Pd показало [20], что для формирования специ-

альной границы (〈001〉, θ = 36.9◦, 6 = 5) достаточно

МД-отжига в течение 3 · 10−11 s, что в 50 раз меньше

проведенного в системе Ni-Al.

3.2. Малоугловая граница.

На рисунке 2 представлено изображение контактиру-

ющих слоев зерен в β-фазе твердого раствора системы
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Рис. 1. Контактирующие слои зерен модели, содержащей

большеугловую границу в β-фазе системы Ni-Al, после отжига

при температуре 27 ◦С (а) и увеличенный фрагмент, содержа-

щий структурные элементы двух типов (b, c). На рисунках а

и b показано по два слоя каждого зерна, на рисунке c —

по одному. Размер кружков условный, подобран для лучшего

восприятия изображения. Цифрами 1 и 2 обозначены номера

зерен.

Ni-Al после отжига при температуре 27 ◦С, из кото-

рого следует, что в данной системе компенсация ори-

ентационного несоответствия происходит посредством

формирования сетки дислокаций. Период сетки дисло-

каций составляет ∼ 2 nm, модуль вектора Бюргерса —

∼ 0.28 nm, что соответствует модулю вектора a〈100〉,
т. е. вектора сверхдислокации. Анализ структуры внут-

ренних слоев зерен показал, что структурные искажения

затрагивают, кроме первых, также вторые и третьи слои

зерен. Таким образом, структурная ширина малоугловой

границы составляет 6 атомных слоев, т. е. 0.85 nm.

Полученная разница в структурной ширине границ

согласуется с результатами работ [21,22]. Молекулярно-

динамическое моделирование бикристалла Pd, содержа-

щего малоугловые границы зерен 〈001〉, 8◦ и 〈110〉,
8◦, показало [21], что структурная ширина малоугловой

границы составляет 4 и 18 атомных слоев соответствен-

но; структурная толщина большеугловой специальной

границы в бикристалле золота составляет 4 слоя [22].
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Рис. 2. Контактирующие слои зерен модели, содержащей

малоугловую границу в β-фазе системы Ni-Al, после отжига

при температуре 27 ◦С. Изображены два слоя каждого зерна,

цифрой обозначен номер зерна. Размер кружков условный,

подобран для лучшего восприятия изображения

В [23] показано, что сегрегация Au на границе кру-

чения (001) пленочных бикристаллов Fe приводит к

изменению типа дислокационной структуры границы:

границы в чистом бикристалле состояли из регулярных

сеток дислокаций с векторами Бюргерса b1,2 = a/2〈111〉.

В бикристалле из пленок состава Fe — 0.18 at.% Au

граница образована дислокациями в направлениях 〈100〉

с вектором Бюргерса, соответственно, a〈100〉. Предпо-

ложение о том, что наблюдаемое превращение в мало-

угловой границе связано с сегрегацией в ней атомов Au,

подтверждено двумя методами анализа локального эле-

ментного состава: спектроскопией обратного резерфор-

довского рассеивания и рентгеновской спектрометрией.

Формирование дислокационных структур малоугло-

вой границы кручения в системе NiAl подтверждает

более сильную межатомную связь в cравнении с си-

стемой PdCu (в первой, согласно диаграмме состояния,

упорядочение сохраняется до точки плавления).

С точки зрения результатов фотоэлектронной спек-

троскопии [19] электронная структура и спектраль-

ные свойства поверхности (001)NiAl определяются d-

электронами Ni (в модели контактирующая плоскость

одного зерна), d-зона на поверхности сужена и сдвинута

в зону более высоких энергий на ∼ 2/5 eV относительно

атомов слоя Ni в объеме, что может активировать

атомы этого слоя и процессы его разупорядочения на

границе. Итог: большеугловая граница кручения фор-

мируется структурно неорганизованной, соответственно,

концепции РСУ, O-решетки и ЗГД для характеризации

большеугловых границ зерен неприемлема.

4. Выводы

Малоугловая граница кручения организуется с образо-

ванием сетки винтовых сверхдислокаций (векторы Бюр-

герса a〈100〉), структурная толщина границы 0.85 nm (по
3 слоя каждого зерна).

Большеугловая граница кручения формируется струк-

турно неорганизованной, соответственно, концепции

РСУ, O-решетки и ЗГД для характеризации большеуг-

ловых границ зерен не приемлема.
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