07

Быстродействующие детекторы УФ-излучения на основе пленок Ga₂O₃

© Д.А. Алмаев,^{1,2} А.В. Цымбалов,¹ В.В. Копьев ¹

¹ Национальный исследовательский Томский государственный университет, 634050 Томск. Россия

e-mail: almaev001@mail.ru

Поступило в Редакцию 26 марта 2025 г. В окончательной редакции 6 мая 2025 г. Принято к публикации 30 июня 2025 г.

Исследовано влияние температуры отжига в атмосфере Ar и времени роста пленок оксида галлия на электрические и фотоэлектрические характеристики структур Pt/Ga_2O_3 . Пленки оксида галлия были получены методом ВЧ-магнетронного распыления на сапфировых подложках с базовой ориентацией (0001). Пленки Ga_2O_3 характеризуются высокой прозрачностью в длинноволновом УФ (UVA) и видимом (VIS) диапазонах $T>80\,\%$. Максимальная фоточувствительность характерна для отожженных структур при $900\,^{\circ}\mathrm{C}$ с толщиной активной области $d=190\,\mathrm{nm}$. Значения токовой монохроматической чувствительности и отношения сигнал/шум составили $134\,\mathrm{mA/W}$ и $5.2\cdot10^5\,\mathrm{a}$ и. соответственно при напряжении $100\,\mathrm{V}$. Структуры характеризуются высоким быстродействием, наименьшие времена отклика и восстановления при напряжении $10\,\mathrm{V}$ составили $2.1\,\mathrm{u}$ $0.6\,\mathrm{ms}$ соответственно.

Ключевые слова: фотодетектор, оксид галлия, ВЧ-магнетронное распыление, УФ-излучение, быстродействие.

DOI: 10.61011/JTF.2025.11.61606.49-25

Введение

Оксид галлия (Ga_2O_3) относится к классу ультраширокозонных полупроводников n-типа проводимости с шириной запрещенной зоны в диапазоне $E_g=4.4-5.3\,\mathrm{eV}$. Ga_2O_3 обладает уникальными физикохимическими свойствами, соответствующими требованиям современной микро- и оптоэлектроники [1,2]. Данный материал демонстрирует полиморфизм и может существовать в пяти кристаллических модификациях: α , β , γ , δ и $\varepsilon(\kappa)$. Наиболее подробно изученной является β -фаза, характеризующаяся моноклинной кристаллической решеткой, высокой химической инертностью и термической стабильностью, что делает ее перспективной для применения в приборах, функционирующих в экстремальных условиях [3].

Благодаря своим уникальным свойствам Ga_2O_3 широко используется в различных технологических областях, включая силовую электронику, газовые сенсоры, прозрачные электроды и детекторы ультрафиолетового излучения [4]. Особый интерес представляет разработка УФ-фотодетекторов, основанных на Ga_2O_3 , что обусловлено высокой шириной его запрещенной зоны, селективностью и эффектом внутреннего усиления [5]. Среди известных конструктивных решений наибольшее распространение получили планарные структуры металл-полупроводник-металл (MSM), которые характеризуются высокой чувствительностью и технологической простотой [6].

Электрические и фотоэлектрические характеристики таких детекторов во многом определяются методами роста и последующей обработки структур на основе Ga₂O₃ [7]. В настоящее время формирование пленок оксида галлия осуществляется различными технологическими методами, включая импульсное лазерное осаждение (PLD), молекулярно-лучевую эпитаксию (MBE), осаждение металлоорганических соединений из газовой фазы (MOCVD), химическое газофазное осаждение при пониженном давлении (LPCVD), хлоридную газофазную эпитаксию (HVPE), атомно-слоевое осаждение (ALD) и ВЧ-магнетронное распыление (RFMS) [3,8]. Последний метод привлекает внимание благодаря высокой скорости роста пленок и экономичности производства, при этом сформированные структуры обладают высокой чувствительностью к УФ-излучению.

Оптические и фотоэлектрические характеристики структур напрямую зависят от технологии получения пленок оксида галлия, а также последующих операций. В связи с этим настоящая работа направлена на исследование влияния времени роста и температурных условий отжига пленок Ga_2O_3 на оптические, электрические и фотоэлектрические свойства структур Pt/Ga_2O_3 .

1. Методика исследования

Пленки Ga_2O_3 были получены методом RFMS мишени Ga_2O_3 (99.999%) на гладкие сапфировые подложки

 $^{^{2}}$ Томский государственный университет систем управления и радиоэлектроники, 634050 Томск, Россия

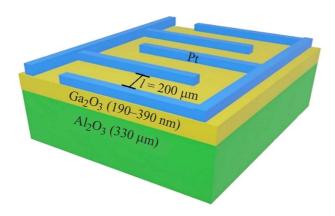


Рис. 1. Схематическое изображение структуры Pt/Ga₂O₃.

на установке AUTO-500 (Edwards) в газовой смеси Ar/O_2 . Напыление пленок происходило в течение $t_g = 30$ и 60 min. Концентрация кислорода в смеси поддерживалась равной (56.1 ± 0.5) vol.%. Расстояние между мишенью и подложкой составляло 70 mm. Давление в камере во время напыления поддерживалось равным $7 \cdot 10^{-6}$ bar. Преднамеренного легирования пленок в процессе роста не проводилось. На следующем этапе подложка делилась на несколько частей, которые затем отжигались в потоке аргона при температуре $T_{an}=700\,^{\circ}\mathrm{C},~800\,^{\circ}\mathrm{C}$ и 900°C в течение 30 min. Далее на поверхности пленок Ga₂O₃ формировались Pt-контакты со встречноштыревой топологией с межэлектродным расстоянием $l = 200\,\mu{\rm m}$. Сапфировые пластины с пленкой ${\rm Ga_2O_3}$ и Рt-контактами были разрезаны на отдельные образцы размером 0.3×0.3 cm. В результате было получено шесть серий образцов с разным временем роста и температурой отжига. Схематичное изображение MSMструктур Pt/Ga₂O₃ представлено на рис. 1.

Для определения фазового состава пленок был использован метод рентгенодифракционного анализа (РДА). Измерения проводились с помощью дифрактометра X'PERT PRO производства PANalytical с излучением $\mathrm{Cu}K_{\alpha}$ ($\lambda=1.5406~\mathrm{\AA}$) при напряжении $40~\mathrm{kV}$ и силе тока $30~\mathrm{mA}$.

В качестве источника излучения для измерения спектров пропускания использовалась дейтериевая лампа D-2000 Micropack, обеспечивающая стабильное излучение в диапазоне $\lambda=190-400$ nm. Прошедшее излучение попадало на вход спектрометра Ocean Optics Flame с рабочим диапазоном $\lambda=200-850$ nm. Измерение λ проводилось с оптическим разрешением 1 nm. Управление измерениями осуществлялось с использованием программного обеспечения OceanView.

Измерения вольт-амперных характеристик (BAX) в темновых условиях и при освещении проводились при помощи микрозондовой установки фирмы Nextron и источника-измерителя Keithley 2636A. В качестве источника монохроматического ($\lambda=254\,\mathrm{nm}$) излучения

была использована криптон-фторовая лампа с плотность потока излучения $P = 780 \, \mu \text{W/cm}^2$.

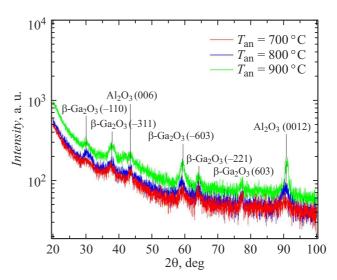
Отношение фототока I_{ph} к темновому току I_D (PDCR), токовая монохроматическая чувствительность R_{λ} , удельная обнаружительная способность D^* и квантовая эффективность η были рассчитаны при помощи следующих выражений [5]:

$$PDCR = I_{ph}/I_D, (1)$$

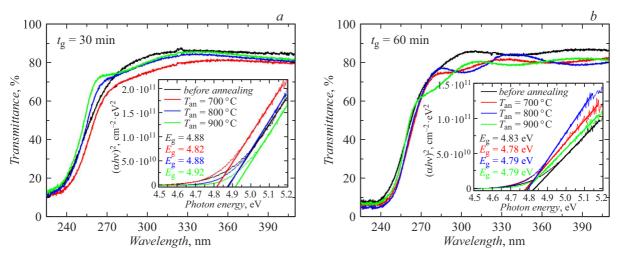
$$R_{\lambda} = I_{ph}/(P \cdot S_{\text{eff}}),$$
 (2)

$$D^* = R_{\lambda} \cdot (S_{\text{eff}}/(2 \cdot e \cdot I_D))^{1/2}, \tag{3}$$

$$\eta = R_{\lambda} \cdot h \cdot c / (e \cdot \lambda), \tag{4}$$


где $S_{\rm eff}$ — эффективная площадь облучаемой поверхности фотоприемника; e — заряд электрона; h — постоянная Планка; c — скорость света в вакууме.

Импульсные характеристики детекторов измерялись с помощью цифрового осциллографа Tektronix 104XS с полосой пропускания 1 GHz и УФ-светодиода с максимумом интенсивности на $\lambda=255\,\mathrm{nm}$.


Время нарастания фототока t_r определяется как время, в течение которого ток увеличивается от $10\,\%$ до $90\,\%$ максимального значения под воздействием облучения. Время спада фототока t_f определяется как время, в течение которого ток спадает от $90\,\%$ до $10\,\%$ максимального значения после воздействия излучения.

2. Результаты и обсуждение

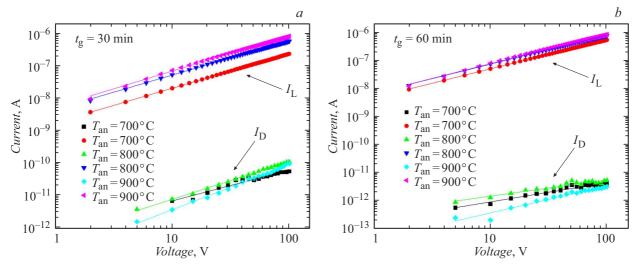

На дифрактограммах пленок Ga_2O_3 (рис. 2) наблюдается множество пиков, отвечающих отражениям от плоскостей (-110), (-311), (-603), (-221) и (603), которые относятся к β - Ga_2O_3 . Положение пиков и их интенсивность практически не зависят от температуры

Рис. 2. Спектры РДА пленок Ga_2O_3 на сапфировых подложках, отожженных при разных температурах.

Рис. 3. Спектр оптического пропускания пленок β -Ga₂O₃ для $t_g = 30$ и 60 min при разных T_{an} в аргоне. Вставка — зависимость $(\alpha h v)^2$ от энергии фотона.

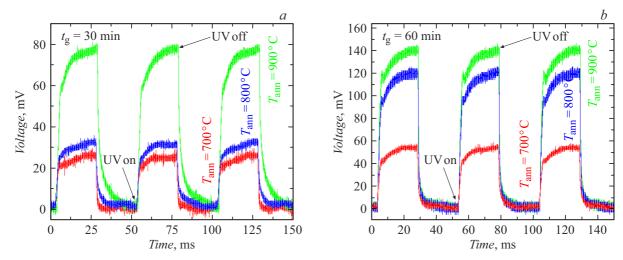
Рис. 4. ВАХ структур Pt/β - Ga_2O_3 в темновых условиях и при воздействии УФ-излучения.

отжига. На всех дифрактограммах присутствуют пики от сапфировой подложки, соответствующие семейству плоскостей (0001). РДА показал, что все пленки Ga_2O_3 являются поликристаллическими и соответствуют β -фазе.

На рис. 3 представлены спектры оптического пропускания пленок Ga_2O_3 до отжига и после отжига в атмосфере Ar для разных T_{an} . Для определения толщины пленок d использовалось выражение для коэффициента пропускания T, учитывающего многократное отражение внутри образца и интерференцию лучей, выходящих из образца [9]. Толщина пленок Ga_2O_3 составила 190 и 390 nm для $t_g=30$ и 60 min соответственно. Значения T уменьшаются с увеличением t_g почти в два раза, что соответствует изменению d. Кроме того, выполняется соотношение $\alpha d \approx 1$, где α — коэффициент поглощения, что указывает на отсутствие сильного поглощения.

Для определения значения оптической ширины запрещенной зоны E_g^{opt} была исследована зависимость lpha от

энергии фотона $h\nu$. Более точно данная зависимость аппроксимируется в координатах $(\alpha h\nu)^2$ от $h\nu$, что свидетельствует о прямых оптических переходах, а значения E_g^{opt} для пленок ${\rm Ga_2O_3}$ составили $4.82-4.92\,{\rm eV}$, что соответствует литературным данным [4]. Значения E_g^{opt} изменяются в пределах погрешности $(\pm 0.05\,{\rm eV})$.


На рис. 4 представлены ВАХ структур Pt/Ga_2O_3 . Зависимость I_D от U является линейной ($I_D \propto U^m$, где $m \approx 1$ (табл. 1)) и симметричной относительно полярности приложенного напряжения. Небольшие отклонения от линейности значений I_D вызваны их малой величиной, которые находятся в нижнем пределе измерительного оборудования. Значения I_D для структур Pt/Ga_2O_3 не превышают 100 рА при U=100 V, а проводимость определяется законом Ома в рассмотренных электрических полях. Воздействие УФ-излучения с $\lambda=254$ nm приводит к росту тока на 4-5 порядков. Наиболее заметно изменение фоточувствительности проявляется для более тонких пленок, значения полного тока при освещении I_L

t_g , min			30		60			
T_{an} , °C		700	800	900	700	800	900	
m	I_D	0.96 ± 0.06	1.16 ± 0.01	1.39 ± 0.02	0.69 ± 0.03	0.58 ± 0.03	0.96 ± 0.05	
	I_L	1.06 ± 0.01	1.05 ± 0.01	1.09 ± 0.01	1.03 ± 0.01	1.03 ± 0.01	1.05 ± 0.01	

Таблица 1. Значения показателя степени m для тонких пленок Ga₂O₃

Таблица 2. Значения фотоэлектрических характеристик структур Pt/Ga_2O_3 при $U=100\,V$

t_g , min		30		60			
T_{an} , °C	700 800 900		900	700	700 800		
I_D , pA	54	106	92	4.4	5.4	3.3	
PDCR, a.u.	$8.6 \cdot 10^3$	$1.1 \cdot 10^4$	$1.7\cdot 10^4$	$2.4\cdot 10^5$	$2.8\cdot 10^5$	5.2 · 10 ⁵	
R_{λ} , mA/W	36	88	124	86	124	134	
η, %	17.5	42.8	60.8	42.2	60.4	65.6	
D^* , cm·Hz _{0.5} /W	$1.5 \cdot 10^{11}$	$2.7 \cdot 10^{11}$	$4.2\cdot 10^{11}$	$7.5 \cdot 10^{11}$	$1.7 \cdot 10^{12}$	$2.5 \cdot 10^{12}$	

Рис. 5. Осциллограммы структур Pt/β - Ga_2O_3 при импульсном воздействии УФ-светоизлучающего диода с $\lambda=255\,\mathrm{nm}$.

увеличиваются с 9 до 780 nA в диапазоне напряжений от 0 до 100 V. Для фотоприемников с пленками Ga_2O_3 толщиной 390 nm значения I_L растут со 120 до 850 nA в аналогичном интервале напряжений. При этом наибольшая фоточувствительность характерна для структур на основе более толстых пленок, что связано с более высоким поглощением УФ-излучения. Стоить отметить отсутствие классического [7,8] для Ga_2O_3 насыщения фотопроводимости, которое ограничивает работу в широком интервале напряжений.

Из анализа ВАХ были рассчитаны основные фотоэлектрические характеристики, которые сопоставлены для всех серий образцов в табл. 2. Значения R_{λ} увеличиваются с ростом t_g и T_{an} . Наибольшее влияние толщины пленки на R_{λ} наблюдается при меньших значениях T_{an} , при $T_{an}=900\,^{\circ}\mathrm{C}$ значения R_{λ} почти совпадают, но значения PDCR и D^* изменяются более чем на порядок, что связано с изменением I_D .

Быстродействие фотодетекторов на основе структур Pt/Ga_2O_3 при $U=10\,\mathrm{V}$ было определено с помощью осциллограмм, представленных на рис. 5. Значения t_r и t_f сопоставлены в табл. 3. Из представленных данных

Таблица 3. Значения постоянных времени t_r и t_f для структур $\mathrm{Pt/Ga_2O_3}$ при $U=10\,\mathrm{V}$

t_g , min		30		60			
T _{an} , °C	700	800	900	700	800	900	
t_r , ms	2.1	5.0	7.2	5.9	5.5	6.1	
t_f , ms	0.6	3.8	5.9	1.6	1.4	2.7	

Структура	Au/Pt/Ti/Ga ₂ O ₃		Au/Ti/C	Al/Ga ₂ O ₃	Al/Ga ₂ O ₃			
λ, nm	254							
I_D , nA	_	$82 \cdot 10^{-6}$	$7 \cdot 10^{-3}$	4	0.1	$66.2 \cdot 10^{-3}$	$3 \cdot 10^{3}$	
$I_{ph}, \mu A$	57	$3 \cdot 10^{-2}$	6.5	21	0.1	$27.7 \cdot 10^{-3}$	1.5	
PDCR, a. u.	_	$3.6 \cdot 10^5$	$9.4 \cdot 10^5$	$5.3 \cdot 10^3$	$1 \cdot 10^3$	419	0.5	
R_{λ} , A/W	48.9	1.9	8.6	46.3		$0.8 \cdot 10^{-3}$	20	
η, %	$2.4 \cdot 10^4$	927.2	$4.2\cdot 10^3$	$2.2 \cdot 10^4$	-	0.4	$1\cdot 10^4$	
D*, cm·Hz _{0.5} /W	$1.4 \cdot 10^{14}$	$6.5 \cdot 10^{13}$	$1.6 \cdot 10^{12}$	$1.8 \cdot 10^{13}$	-	-	_	
t_r , ms	118	_	390	2820	1830	38680	15200	
t_f , ms	31	-	124	320	960	3980	53500	
Источник	[12]	[13]	[14]	[15]	[16]	[17]	[18]	

Таблица 4. Фотоэлектрические характеристики MSM-фотоприемников на основе пленок Ga2O3, полученных методом RFMS

видно, что существует связь между фоточувствительностью и быстродействием [10]. Структуры Pt/Ga_2O_3 характеризуются высокой стабильностью и повторяемостью характеристик в импульсном режиме, отсутствует выраженная остаточная фотопроводимость, как было показано ранее [10,11]. Под быстродействием следует понимать сумму t_r и t_f , которая не превышает $10\,\mathrm{ms}$ и определяет максимальную частоту приема импульсов фотоприемником без учета вспомогательной электроники.

Результаты исследования фотоэлектрических характеристик структур Pt/Ga_2O_3 , полученные в настоящей работе, могут быть сопоставлены с ранее опубликованными данными [12–18] (табл. 4). В нескольких работах наблюдаются высокие значения I_D , что приводит к низкому PDCR [15,16,18].

Увеличение T_{an} пленок Ga_2O_3 приводит к росту квантовой эффективности структур Pt/Ga₂O₃, что обусловлено фоторезистивным механизмом усиления, суть которого заключается в возрастании времени жизни основных носителей. Объясняется это тем, что повышение температуры отжига Ga_2O_3 способствует повышению качества пленки, тем самым приводя к снижению концентрации исходных дефектов в объеме пленки оксида галлия, которые отвечали за рекомбинацию основных носителей заряда. Помимо этого, с высокой температурой отжига происходит появление новых дефектов, способных давать вклад в фотопроводимость, таких, как вакансии кислорода, которые образуются в процессе отжига в инертной среде [19]. Вероятно, вакансии кислорода дают больший вклад в проводимость более тонких пленок, что проявляется в более высоких значениях I_D [20–22]. Увеличение толщины пленки Ga_2O_3 приводит к росту токовой монохроматической чувствительности за счет более высокого поглощения в активной области структуры.

Условие низких I_D и высоких PDCR является одним из ключевых в реальных условиях работы фотодетектора. Значения R_{λ} и η характеризуют фоточувствительность фотоприемника и зачастую значительно превышают теоретический максимум для Ga_2O_3 , что связано с внутренним усилением в данном материале. В большинстве случаев фоточувствительность определяется межэлектродным расстоянием, типом и топологией металлического контакта, что позволяет контролировать ее в широком диапазоне. Наиболее часто металлические контакты располагаются на расстоянии единиц и десятков μ m [6,7]. Настоящая работа была посвящена быстродействию фотоприемников на основе пленок Ga₂O₃, поэтому были использованы структуры с относительно большим межэлектродным расстоянием, что позволило значительно повысить быстродействие и общее качество фотоприемников, избегая при этом раннего насыщения фотопроводимости по напряжению.

Заключение

В работе были исследованы фотоэлектрические характеристики фотоприемников на основе структур Pt/Ga_2O_3 , полученных методом BЧ-магнетронного распыления. Проведен анализ влияния времени роста пленок и температуры их отжига на оптические и электрические свойства структур. Установлено, что увеличение толщины пленок Ga_2O_3 приводит к росту фоточувствительности, что связано с увеличением коэффициента поглощения в $V\Phi$ -диапазоне. Анализ BAX показал, что структуры Pt/Ga_2O_3 демонстрируют линейную зависимость тока от напряжения и значительный рост тока при воздействии $V\Phi$ -излучением. Фотодетекторы обладают высокой стабильностью и повторяемостью характеристик при импульсной засветке излучающим светодиодом, что делает их перспективными для исполь-

зования в быстродействующих системах детектирования. Сравнение полученных данных с литературными источниками показало, что изученные структуры обладают конкурентоспособными характеристиками, включая высокую чувствительность и быстродействие. Выявленная возможность управления фотоэлектрическими параметрами за счет толщины пленки и температуры отжига открывает перспективы дальнейшей оптимизации структур для практического применения в УФ-детекторах нового поколения.

Финансирование работы

Исследование выполнено при поддержке Программы развития Томского государственного университета (Приоритет-2030), проект $N_{\rm 2}$ 2.5.4.25 МЛ.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Z. Fei, Z. Chen, W. Chen, S. Chen, Z. Wu, X. Lu, G. Wang,
 J. Liang, Y. Pei. J. Alloys Compounds, 925, 166632 (2022).
 DOI: 10.1016/j.jallcom.2022.166632
- [2] J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, M.J. Tadjer. Appl. Phys. Rev., 9, 011315 (2020). DOI: 10.1063/5.0078037
- [3] T. Zhao, H. He, C. Wu, L. Lai, Y. Ma, H. Yang, H. Hu, A. Liu,
 D. Guo, S. Wang. ACS Appl. Nano Mater., 6 (5), 3856 (2023).
 DOI: 10.1021/acsanm.2c05499
- [4] S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro. Appl. Phys. Rev., 5 (1), 011301 (2018). DOI: 10.1063/1.5006941
- [5] D. Kaur, M. Kumar. Adv. Opt. Mater., 9 (9), 2002160 (2021).DOI: 10.1002/adom.202002160
- [6] H. Zhai, Z. Wu, Z. Fang. Ceram. Intern., 48 (17), 24213 (2022). DOI: 10.1016/j.ceramint.2022.06.066
- [7] X. Chen, F. Ren, S. Gu, J. Ye. Photon. Res., 7 (4), 381 (2019).DOI: 10.1364/PRJ.7.000381
- [8] X. Hou, Y. Zou, M. Ding, Y. Qin, Z. Zhang, X. Ma, P. Tan, S. Yu, X. Zhou, X. Zhao, G. Xu, H. Sun, S. Long. J. Phys. D: Appl. Phys., 54 (4), 043001 (2020). DOI: 10.1088/1361-6463/abbb45
- [9] T.S. Moss, G.J. Burrell, B. Ellis. Semiconductor Opto-Electronics (Halsted Press Division, Wiley, 1973), p. 441.
- [10] V.M. Kalygina, A.V. Tsymbalov, P.M. Korusenko, A.V. Koroleva, E.V. Zhizhin. Crystals, 14 (3), 268 (2024). DOI: 10.3390/cryst14030268
- [11] V. Kalygina, A. Tsymbalov, A. Almaev, Ju. Petrova, S. Podzyvalov. Physica Status Solidi B: Basic Res., 259 (2), 2100341 (2021). DOI: 10.1002/pssb.202100341
- [12] X. Gao, T. Xie, J. Wu, J. Fu, X. Gao, M. Xie, H. Zhao, Y. Wang, Z. Shi. Appl. Phys. Lett., 125 (17), 172103 (2024). DOI: 10.1063/5.0227397
- [13] S. Zhou, X. Peng, H. Liu, Z. Zhang, L. Ye, H. Li, Y. Xiong, L. Niu, F. Chen, L. Fang, C. Kong, W. Li, X. Yang, H. Zhang. Opt. Mat. Expr., 12 (1), 327 (2022). DOI: 10.1364/OME.449496

- [14] L. Li, C. Li, S. Wang, Q. Lu, Y. Jia, H. Chen. J. Semiconductors, 44 (6), 062805 (2023). DOI: 10.1088/1674-4926/44/6/062805
- [15] M. He, Q. Zeng, L. Ye. Crystals, 13 (10), 1434 (2023). DOI: 10.3390/cryst13101434
- J. Wang, L. Ye, X. Wang, H. Zhang, L. Li, C. Kong, W. Li.
 J. Alloys Compounds, 803, 9 (2019).
 DOI: 10.1016/j.jallcom.2019.06.224
- [17] C. Wang, W.-H. Fan, Y.-C. Zhang, P.-C. Kang, W.-Y. Wu, D.-S. Wuu, S.-Y. Lien, W.-Z. Zhu. Ceram. Intern., 49 (7), 10634 (2023). DOI: 10.1016/j.ceramint.2022.11.251
- [18] K. Arora, N. Goel, M. Kumar, M. Kumar. ACS Photonics, 5 (6), 2391 (2018). DOI: 10.1021/acsphotonics.8b00174
- [19] A.Y. Polyakov, E.B. Yakimov, I.V. Shchemerov, A.A. Vasilev,
 A.I. Kochkova, V.I. Nikolaev, S.J. Pearton. J. Phys. D: Appl.
 Phys., 58 (6), 063002 (2025).
 DOI: 10.1088/1361-6463/ad8e6e
- [20] S. Cui, Z. Mei, Y. Zhang, H. Liang, X. Du. Adv. Opt. Mat., 5 (19), 1700454 (2017). DOI: 10.1002/adom.201700454
- [21] C. Zhou, K. Liu, X. Chen, J. Feng, J. Yang, Z. Zhang, L. Liu, Y. Xia, D. Shen. J. Alloys Compounds, 840, 155585 (2020). DOI: 10.1016/j.jallcom.2020.155585
- [22] A. Almaev, V. Nikolaev, V. Kopyev, S. Shapenkov, N. Yakovlev, B. Kushnarev, A. Pechnikov, J. Deng, T. Izaak, A. Chikiryaka, M. Scheglov, A. Zarichny. IEEE Sensors J., 23 (17), 19245 (2023). DOI: 10.1109/JSEN.2023.3297127