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Исследовано влияние температуры отжига в атмосфере Ar и времени роста пленок оксида галлия

на электрические и фотоэлектрические характеристики структур Pt/Ga2O3. Пленки оксида галлия были

получены методом ВЧ-магнетронного распыления на сапфировых подложках с базовой ориентацией (0001).
Пленки Ga2O3 характеризуются высокой прозрачностью в длинноволновом УФ (UVA) и видимом (VIS)
диапазонах T > 80%. Максимальная фоточувствительность характерна для отожженных структур при

900 ◦C с толщиной активной области d = 190 nm. Значения токовой монохроматической чувствительности

и отношения сигнал/шум составили 134mA/W и 5.2 · 105 a. u. соответственно при напряжении 100V.

Структуры характеризуются высоким быстродействием, наименьшие времена отклика и восстановления при

напряжении 10V составили 2.1 и 0.6ms соответственно.
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Введение

Оксид галлия (Ga2O3) относится к классу уль-

траширокозонных полупроводников n-типа проводи-

мости с шириной запрещенной зоны в диапазоне

Eg = 4.4−5.3 eV. Ga2O3 обладает уникальными физико-

химическими свойствами, соответствующими требова-

ниям современной микро- и оптоэлектроники [1,2]. Дан-
ный материал демонстрирует полиморфизм и может

существовать в пяти кристаллических модификациях: α,

β, γ , δ и ε(κ). Наиболее подробно изученной является

β-фаза, характеризующаяся моноклинной кристалличе-

ской решеткой, высокой химической инертностью и

термической стабильностью, что делает ее перспектив-

ной для применения в приборах, функционирующих в

экстремальных условиях [3].
Благодаря своим уникальным свойствам Ga2O3 ши-

роко используется в различных технологических обла-

стях, включая силовую электронику, газовые сенсоры,

прозрачные электроды и детекторы ультрафиолетового

излучения [4]. Особый интерес представляет разработка

УФ-фотодетекторов, основанных на Ga2O3, что обуслов-

лено высокой шириной его запрещенной зоны, селек-

тивностью и эффектом внутреннего усиления [5]. Среди
известных конструктивных решений наибольшее рас-

пространение получили планарные структуры металл-

полупроводник-металл (MSM), которые характеризуют-

ся высокой чувствительностью и технологической про-

стотой [6].

Электрические и фотоэлектрические характеристики

таких детекторов во многом определяются методами

роста и последующей обработки структур на основе

Ga2O3 [7]. В настоящее время формирование пленок

оксида галлия осуществляется различными технологи-

ческими методами, включая импульсное лазерное оса-

ждение (PLD), молекулярно-лучевую эпитаксию (MBE),
осаждение металлоорганических соединений из газовой

фазы (MOCVD), химическое газофазное осаждение при

пониженном давлении (LPCVD), хлоридную газофазную

эпитаксию (HVPE), атомно-слоевое осаждение (ALD) и

ВЧ-магнетронное распыление (RFMS) [3,8]. Последний

метод привлекает внимание благодаря высокой скорости

роста пленок и экономичности производства, при этом

сформированные структуры обладают высокой чувстви-

тельностью к УФ-излучению.

Оптические и фотоэлектрические характеристики

структур напрямую зависят от технологии получения

пленок оксида галлия, а также последующих операций.

В связи с этим настоящая работа направлена на исследо-

вание влияния времени роста и температурных условий

отжига пленок Ga2O3 на оптические, электрические и

фотоэлектрические свойства структур Pt/Ga2O3.

1. Методика исследования

Пленки Ga2O3 были получены методом RFMS мише-

ни Ga2O3 (99.999%) на гладкие сапфировые подложки
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Рис. 1. Схематическое изображение структуры Pt/Ga2O3 .

на установке AUTO-500 (Edwards) в газовой смеси

Ar/O2. Напыление пленок происходило в течение tg = 30

и 60min. Концентрация кислорода в смеси поддержива-

лась равной (56.1 ± 0.5) vol.%. Расстояние между мише-

нью и подложкой составляло 70mm. Давление в камере

во время напыления поддерживалось равным 7 · 10−6 bar.

Преднамеренного легирования пленок в процессе роста

не проводилось. На следующем этапе подложка дели-

лась на несколько частей, которые затем отжигались

в потоке аргона при температуре Tan = 700 ◦C, 800 ◦C

и 900 ◦C в течение 30min. Далее на поверхности

пленок Ga2O3 формировались Pt-контакты со встречно-

штыревой топологией с межэлектродным расстоянием

l = 200µm. Сапфировые пластины с пленкой Ga2O3 и

Pt-контактами были разрезаны на отдельные образцы

размером 0.3× 0.3 cm. В результате было получено

шесть серий образцов с разным временем роста и

температурой отжига. Схематичное изображение MSM-

структур Pt/Ga2O3 представлено на рис. 1.

Для определения фазового состава пленок был

использован метод рентгенодифракционного анализа

(РДА). Измерения проводились с помощью дифракто-

метра X’PERT PRO производства PANalytical с излуче-

нием CuKα (λ = 1.5406�A) при напряжении 40 kV и силе

тока 30mA.

В качестве источника излучения для измерения спек-

тров пропускания использовалась дейтериевая лампа

D-2000 Micropack, обеспечивающая стабильное излуче-

ние в диапазоне λ = 190 − 400 nm. Прошедшее излуче-

ние попадало на вход спектрометра Ocean Optics Flame

с рабочим диапазоном λ = 200 − 850 nm. Измерение λ

проводилось с оптическим разрешением 1 nm. Управ-

ление измерениями осуществлялось с использованием

программного обеспечения OceanView.

Измерения вольт-амперных характеристик (ВАХ) в

темновых условиях и при освещении проводились при

помощи микрозондовой установки фирмы Nextron и

источника-измерителя Keithley 2636A. В качестве ис-

точника монохроматического (λ = 254 nm) излучения

была использована криптон-фторовая лампа с плотность

потока излучения P = 780µW/cm2 .

Отношение фототока I ph к темновому току ID

(PDCR), токовая монохроматическая чувствительность

Rλ , удельная обнаружительная способность D∗ и кван-

товая эффективность η были рассчитаны при помощи

следующих выражений [5]:

PDCR = I ph/ID, (1)

Rλ = I ph/(P · Seff), (2)

D∗ = Rλ · (Seff/(2 · e · ID))1/2, (3)

η = Rλ · h · c/(e · λ), (4)

где Seff — эффективная площадь облучаемой поверх-

ности фотоприемника; e — заряд электрона; h —

постоянная Планка; c — скорость света в вакууме.

Импульсные характеристики детекторов измерялись с

помощью цифрового осциллографа Tektronix 104XS с

полосой пропускания 1GHz и УФ-светодиода с макси-

мумом интенсивности на λ = 255 nm.

Время нарастания фототока tr определяется как вре-

мя, в течение которого ток увеличивается от 10%

до 90% максимального значения под воздействием об-

лучения. Время спада фототока t f определяется как

время, в течение которого ток спадает от 90% до 10%

максимального значения после воздействия излучения.

2. Результаты и обсуждение

На дифрактограммах пленок Ga2O3 (рис. 2) наблю-

дается множество пиков, отвечающих отражениям от

плоскостей (−110), (−311), (−603), (−221) и (603),
которые относятся к β-Ga2O3. Положение пиков и их

интенсивность практически не зависят от температуры
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Рис. 2. Спектры РДА пленок Ga2O3 на сапфировых подлож-

ках, отожженных при разных температурах.
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(αhν)2 от энергии фотона.
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Рис. 4. ВАХ структур Pt/β-Ga2O3 в темновых условиях и при воздействии УФ-излучения.

отжига. На всех дифрактограммах присутствуют пи-

ки от сапфировой подложки, соответствующие семей-

ству плоскостей (0001). РДА показал, что все пленки

Ga2O3 являются поликристаллическими и соответству-

ют β-фазе.

На рис. 3 представлены спектры оптического про-

пускания пленок Ga2O3 до отжига и после отжига в

атмосфере Ar для разных Tan. Для определения толщины

пленок d использовалось выражение для коэффициента

пропускания T , учитывающего многократное отражение

внутри образца и интерференцию лучей, выходящих из

образца [9]. Толщина пленок Ga2O3 составила 190 и

390 nm для tg = 30 и 60min соответственно. Значения T

уменьшаются с увеличением tg почти в два раза, что

соответствует изменению d . Кроме того, выполняется

соотношение αd ≈ 1, где α — коэффициент поглощения,

что указывает на отсутствие сильного поглощения.

Для определения значения оптической ширины запре-

щенной зоны E
opt
g была исследована зависимость α от

энергии фотона hν . Более точно данная зависимость

аппроксимируется в координатах (αhν)2 от hν , что

свидетельствует о прямых оптических переходах, а зна-

чения E
opt
g для пленок Ga2O3 составили 4.82− 4.92 eV,

что соответствует литературным данным [4]. Значения
E

opt
g изменяются в пределах погрешности (±0.05 eV).

На рис. 4 представлены ВАХ структур Pt/Ga2O3. Зави-

симость ID от U является линейной (ID ∝ Um, где m ≈ 1

(табл. 1)) и симметричной относительно полярности

приложенного напряжения. Небольшие отклонения от

линейности значений ID вызваны их малой величиной,

которые находятся в нижнем пределе измерительного

оборудования. Значения ID для структур Pt/Ga2O3 не

превышают 100 pA при U = 100V, а проводимость опре-

деляется законом Ома в рассмотренных электрических

полях. Воздействие УФ-излучения с λ = 254 nm приво-

дит к росту тока на 4−5 порядков. Наиболее заметно

изменение фоточувствительности проявляется для более

тонких пленок, значения полного тока при освещении IL
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Таблица 1. Значения показателя степени m для тонких пленок Ga2O3

tg , min 30 60

Tan,
◦C 700 800 900 700 800 900

m
ID 0.96± 0.06 1.16± 0.01 1.39± 0.02 0.69± 0.03 0.58± 0.03 0.96± 0.05

IL 1.06± 0.01 1.05± 0.01 1.09± 0.01 1.03± 0.01 1.03± 0.01 1.05± 0.01

Таблица 2. Значения фотоэлектрических характеристик структур Pt/Ga2O3 при U = 100V

tg , min 30 60

Tan,
◦C 700 800 900 700 800 900

ID , pA 54 106 92 4.4 5.4 3.3

PDCR, a.u. 8.6 · 103 1.1 · 104 1.7 · 104 2.4 · 105 2.8 · 105 5.2 · 105

Rλ, mA/W 36 88 124 86 124 134

η, % 17.5 42.8 60.8 42.2 60.4 65.6

D∗, cm·Hz0.5/W 1.5 · 1011 2.7 · 1011 4.2 · 1011 7.5 · 1011 1.7 · 1012 2.5 · 1012
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Рис. 5. Осциллограммы структур Pt/β-Ga2O3 при импульсном воздействии УФ-светоизлучающего диода с λ = 255 nm.

увеличиваются с 9 до 780 nA в диапазоне напряжений

от 0 до 100V. Для фотоприемников с пленками Ga2O3

толщиной 390 nm значения IL растут со 120 до 850 nA

в аналогичном интервале напряжений. При этом наи-

большая фоточувствительность характерна для структур

на основе более толстых пленок, что связано с более

высоким поглощением УФ-излучения. Стоить отметить

отсутствие классического [7,8] для Ga2O3 насыщения

фотопроводимости, которое ограничивает работу в ши-

роком интервале напряжений.

Из анализа ВАХ были рассчитаны основные фото-

электрические характеристики, которые сопоставлены

для всех серий образцов в табл. 2. Значения Rλ увеличи-

ваются с ростом tg и Tan. Наибольшее влияние толщины

пленки на Rλ наблюдается при меньших значениях

Tan, при Tan = 900 ◦C значения Rλ почти совпадают, но

значения PDCR и D∗ изменяются более чем на порядок,

что связано с изменением ID .

Быстродействие фотодетекторов на основе структур

Pt/Ga2O3 при U = 10V было определено с помощью

осциллограмм, представленных на рис. 5. Значения tr и

t f сопоставлены в табл. 3. Из представленных данных

Таблица 3. Значения постоянных времени tr и t f для структур

Pt/Ga2O3 при U = 10V

tg , min 30 60

Tan,
◦C 700 800 900 700 800 900

tr , ms 2.1 5.0 7.2 5.9 5.5 6.1

t f , ms 0.6 3.8 5.9 1.6 1.4 2.7

Журнал технической физики, 2025, том 95, вып. 11
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Таблица 4. Фотоэлектрические характеристики MSM-фотоприемников на основе пленок Ga2O3, полученных методом RFMS

Структура Au/Pt/Ti/Ga2O3 Au/Ti/Ga2O3 Al/Ga2O3 Al/Ga2O3

λ, nm 254

ID , nA − 82 · 10−6 7 · 10−3 4 0.1 66.2 · 10−3 3 · 103

I ph, µA 57 3 · 10−2 6.5 21 0.1 27.7 · 10−3 1.5

PDCR, a. u. − 3.6 · 105 9.4 · 105 5.3 · 103 1 · 103 419 0.5

Rλ, A/W 48.9 1.9 8.6 46.3 − 0.8 · 10−3 20

η, % 2.4 · 104 927.2 4.2 · 103 2.2 · 104 − 0.4 1 · 104

D∗, cm·Hz0.5/W 1.4 · 1014 6.5 · 1013 1.6 · 1012 1.8 · 1013 − − −

tr , ms 118 − 390 2820 1830 38680 15200

t f , ms 31 − 124 320 960 3980 53500

Источник [12] [13] [14] [15] [16] [17] [18]

видно, что существует связь между фоточувствитель-

ностью и быстродействием [10]. Структуры Pt/Ga2O3

характеризуются высокой стабильностью и повторяемо-

стью характеристик в импульсном режиме, отсутствует

выраженная остаточная фотопроводимость, как было

показано ранее [10,11]. Под быстродействием следу-

ет понимать сумму tr и t f , которая не превышает

10ms и определяет максимальную частоту приема им-

пульсов фотоприемником без учета вспомогательной

электроники.

Результаты исследования фотоэлектрических харак-

теристик структур Pt/Ga2O3, полученные в настоящей

работе, могут быть сопоставлены с ранее опубликован-

ными данными [12–18] (табл. 4). В нескольких работах

наблюдаются высокие значения ID , что приводит к

низкому PDCR [15,16,18].

Увеличение Tan пленок Ga2O3 приводит к росту

квантовой эффективности структур Pt/Ga2O3, что обу-

словлено фоторезистивным механизмом усиления, суть

которого заключается в возрастании времени жизни ос-

новных носителей. Объясняется это тем, что повышение

температуры отжига Ga2O3 способствует повышению

качества пленки, тем самым приводя к снижению кон-

центрации исходных дефектов в объеме пленки оксида

галлия, которые отвечали за рекомбинацию основных

носителей заряда. Помимо этого, с высокой темпера-

турой отжига происходит появление новых дефектов,

способных давать вклад в фотопроводимость, таких, как

вакансии кислорода, которые образуются в процессе

отжига в инертной среде [19]. Вероятно, вакансии кисло-

рода дают больший вклад в проводимость более тонких

пленок, что проявляется в более высоких значениях

ID [20–22]. Увеличение толщины пленки Ga2O3 приводит

к росту токовой монохроматической чувствительности

за счет более высокого поглощения в активной области

структуры.

Условие низких ID и высоких PDCR является од-

ним из ключевых в реальных условиях работы фото-

детектора. Значения Rλ и η характеризуют фоточув-

ствительность фотоприемника и зачастую значительно

превышают теоретический максимум для Ga2O3, что

связано с внутренним усилением в данном материале.

В большинстве случаев фоточувствительность определя-

ется межэлектродным расстоянием, типом и топологией

металлического контакта, что позволяет контролировать

ее в широком диапазоне. Наиболее часто металлические

контакты располагаются на расстоянии единиц и десят-

ков µm [6,7]. Настоящая работа была посвящена быст-

родействию фотоприемников на основе пленок Ga2O3,

поэтому были использованы структуры с относительно

большим межэлектродным расстоянием, что позволило

значительно повысить быстродействие и общее качество

фотоприемников, избегая при этом раннего насыщения

фотопроводимости по напряжению.

Заключение

В работе были исследованы фотоэлектрические ха-

рактеристики фотоприемников на основе структур

Pt/Ga2O3, полученных методом ВЧ-магнетронного рас-

пыления. Проведен анализ влияния времени роста пле-

нок и температуры их отжига на оптические и электри-

ческие свойства структур. Установлено, что увеличение

толщины пленок Ga2O3 приводит к росту фоточувстви-

тельности, что связано с увеличением коэффициента

поглощения в УФ-диапазоне. Анализ ВАХ показал,

что структуры Pt/Ga2O3 демонстрируют линейную за-

висимость тока от напряжения и значительный рост

тока при воздействии УФ-излучением. Фотодетекторы

обладают высокой стабильностью и повторяемостью

характеристик при импульсной засветке излучающим

светодиодом, что делает их перспективными для исполь-
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зования в быстродействующих системах детектирования.

Сравнение полученных данных с литературными источ-

никами показало, что изученные структуры обладают

конкурентоспособными характеристиками, включая вы-

сокую чувствительность и быстродействие. Выявленная

возможность управления фотоэлектрическими парамет-

рами за счет толщины пленки и температуры отжига от-

крывает перспективы дальнейшей оптимизации структур

для практического применения в УФ-детекторах нового

поколения.
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