06

Дефектная структура, оптические и фоторефрактивные свойства монокристаллов LiNbO₃: B: Gd

© И.В. Бирюкова,¹ Р.А. Титов,¹ И.Н. Ефремов,¹ В.В. Ефремов,^{1,2} Л.А. Бобрева,¹ Н.А. Теплякова,¹ О.В. Палатникова,¹ Н.В. Сидоров,¹ М.Н. Палатников¹

184209 Апатиты, Мурманская обл., Россия

184209 Апатиты, Мурманская обл., Россия

e-mail: r.titov@ksc.ru

Поступило в Редакцию 14 марта 2025 г. В окончательной редакции 7 мая 2025 г. Принято к публикации 20 июня 2025 г.

Исследованы технологические подходы к получению нелинейно-оптических монокристаллов двойного легирования LiNbO₃: B: Gd. Показано, что одновременное легирование бором и гадолинием позволяет направленно воздействовать на дефектную структуру и практические свойства кристаллов ниобата лития. Методом твердофазного синтеза-грануляции получена исходная монофазная шихта ниобата лития с концентрацией B_2O_3 0.03 mol.% и Gd_2O_3 0.62 mol.%, соответствующая составу конгруэнтного плавления. Обнаружено уменьшение концентрации бора в расплаве после выращивания кристаллов LiNbO₃: В: Gd приблизительно в три раза по сравнению с его концентрацией в исходной шихте. Методом Чохральского из расплава выращены два монокристалла $LiNbO_3: (0.58 \cdot 10^{-3} \ B_2O_3): (0.51 \, mol.\% \ Gd_2O_3)$ и $LiNbO_3: (0.32 \cdot 10^{-3} \ B_2O_3)$ B₂O₃): (0.53 mol.% Gd₂O₃), близкие по составу, характеризующиеся низким эффектом фоторефракции, высокой композиционной и оптической однородностью. Оба кристалла LiNbO3: B: Gd характеризуются высоким значением температуры Кюри ($1210\,^{\circ}\mathrm{C}$ и $1213\,^{\circ}\mathrm{C}$). Методом ИК-спектроскопии поглощения в области валентных колебаний ОН-групп показано, что увеличение концентрации гидроксильных групп в кристаллах LiNbO₃: B: Gd обусловлено физико-химическими и технологическими факторами. Методом лазерной коноскопии показано, что кристалл $LiNbO_3: (0.32 \cdot 10^{-3} \ B_2O_3): (0.53 \ mol.\% \ Gd_2O_3)$ обладает более высокой оптической однородностью по сравнению с кристаллом LiNbO $_3$: $(0.58 \cdot 10^{-3} \text{ B}_2\text{O}_3)$: (0.51 mol.% Gd_2O_3).

Ключевые слова: ниобат лития, гадолиний, бор, двойное легирование, лазерная коноскопия, фотоиндуцированное рассеяние света, ИК-спектроскопия поглощения, оптическая микроскопия.

DOI: 10.61011/JTF.2025.11.61603.36-25

Введение

Возрастающие потребности в оптических материалах для преобразования лазерного излучения определяют необходимость разработки новых и модифицирования уже используемых технологических подходов, направленных на улучшение свойств нелинейно-оптических монокристаллов. Одними из наиболее значимых современных оптических материалов, во многом определяющих развитие таких направлений, как оптоэлектроника, лазерная техника, интегральная и нелинейная оптика, являются материалы на основе нелинейно-оптического монокристалла ниобата лития (LiNbO₃) разного состава, обладающего уникальным сочетанием физических характеристик [1,2]. Физические характеристики можно изменять в достаточно широких пределах путем варьирования состава расплава и кристалла, а также состояния дефектности кристалла путем легирования и изменения стехиометрии. Материалы на основе монокристаллов ниобата лития разного состава перспективны также для голографической записи информации, для генерации лазерного и терагерцового излучения, для оптического манипулирования микро- и наночастицами и др. [3–8].

В этой связи актуальны комплексные исследования, направленные на изучение технологических особенностей выращивания как номинально чистых, так и легированных монокристаллов LiNbO₃ во взаимосвязи с особенностями их структуры, такими, как фазы переменного состава, и физическими характеристиками. Такие комплексные исследования создают предпосылки для усовершенствования и масштабирования технологии монокристаллов LiNbO₃, создания более совершенных вариантов ростового оборудования и технологических приемов выращивания с целью получения композиционнооднородных оптически совершенных крупногабаритных монокристаллов ниобата лития с заданными свойствами путем легирования различными комбинациями легирующих элементов различной химической природы.

38 2193

¹ Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — Федерального исследовательского центра "Кольский научный центр РАН",

² Институт проблем промышленной экологии Севера — Федерального исследовательского центра "Кольский научный центр РАН",

Согласно фазовой диаграмме [4,9,10],является нестехиометрической кислороднооктаэдрической фазой переменного состава с широкой областью гомогенности (от ~ 44.5 до $\sim 50.5\, {\rm mol.\%}$ Li₂O при 1460 K) и образует непрерывный ряд твердых растворов. Конгруэнтный состав кристалла (LiNbO_{3cong}), при котором его состав максимально приближен к составу расплава, характеризуется недостатком содержания лития (R = [Li]/[Nb] = 0.946). Благодаря особенностям кислородно-полиэдрической структуры, состоящей из кислородно-октаэдрических кластеров MeO₆ (Me — Li, Nb, примесный элемент, вакансия — V), соединенных гранями и ребрами, а также малых по объему кислородных тетраэдров, играющих роль своеобразного "буфера" [11], ниобат лития легко поддается легированию металлами [10,12–18]. При этом легирующий металл локализуется только в кислородно-октаэдрических кластерах МеО₆-структуры, нарушая существующий в номинально чистом кристалле LiNbO₃ порядок чередования катионов и вакансий вдоль полярной оси. При легировании изменяется форма, длины межатомных связей и заселенность металлами кислородно-октаэдрических кластеров МеО₆, что существенно влияет на сегнетоэлектрические и нелинейно-оптические свойства кристалла LiNbO₃ и состояние его дефектной структуры [4]. Причем концентрационные изменения состояния дефектности кристалла имеют пороговый характер (концентрационные пороги — КП). В области КП изменяется механизм вхождения легирующего элемента и основных (Li, Nb) элементов в структуру кристалла [4,13,14]. Наличие КП не приводит к фазовому переходу и к изменению пространственной группы симметрии, характеризующей ячейку кристалла, но параметры элементарную элементарной ячейки кристалла изменяются вследствие изменений длин межатомных связей. Регулирование физических характеристик кристаллов LiNbO₃ путем изменения состояния его дефектной структуры в настоящее время является одним из основных подходов к созданию новых функциональных материалов с заданными физическими характеристиками.

Для кристалла ниобата лития характерны эффект фоторефракции ("optical damage"), при котором происходит деструкция лазерного луча в кристалле, и сопутствующее ему фотоиндуцированное рассеяние света (ФИРС) [4,14], которые ограничивает его применение в качестве функциональных элементов оптических устройств для преобразования, модуляции и генерации лазерного излучения. Повысить оптическую стойкость монокристалла LiNbO₃ к повреждению лазерным излучением, т.е. свести к минимуму локальное фотоиндуцированное изменение показателей преломления и многочисленные фотоиндуцированные дефекты, можно путем введения в структуру кристалла LiNbO₃ катионов нефоторефрактивных металлов (Zn^{2+} , Mg^{2+} , In^{3+} , Gd^{3+} и др.), не изменяющих свое зарядовое состояние под воздействием света, причем, как правило, максимально эффект фоторефракции подавляется, когда концентрации легирующих нефоторефрактивных металлов превышают "пороговые" значения (более $\sim 5\,\mathrm{mol.}\%$ MgO и порядка \sim 7 mol.% ZnO [13]) [4,14,19–21]. При этом происходит полное вытеснение из структуры легирующими ионами точечных дефектов Nb_{Li}. Однако при высоких концентрациях легирующей примеси кристалл, как правило, становится композиционно неоднородным и отличается повышенной концентрацией макро- и микродефектов различного рода, а также наличием примесных фаз [22]. В то же время заметное подавление фоторефрактивного эффекта в кристаллах LiNbO₃ наблюдается уже при малой концентрации легирующих металлов. В частности для кристалла LiNbO₃:Gd — при $\sim 0.05 \, \text{mol.}\%$ Gd₂O₃ [16]. Необходимо отметить, что при малых концентрациях двух- и трехвалентные катионы нефоторефрактивных металлов (Zn^{2+} , Mg^{2+} , Gd^{3+} и др.) локализуются в литиевых октаэдрах идеальной структуры кристалла. При этом они могут упорядочивать катионную подрешетку кристалла, повышая его оптическое качество [4,23].

Введение в структуру кристалла LiNbO₃ редкоземельных элементов (P3Э), помимо снижения эффекта фоторефракции, реализует также возможность осуществления фотолюминесценции и в некоторых случаях лазерной генерации. Эмиссионные свойства кристаллов LiNbO₃: P3Э определяются типом и концентрацией P3Э, механизмом их вхождения в структуру, а также особенностями дефектной структуры, сформировавшейся при выращивании кристаллов [17]. В обзоре [17] подробно обсуждается влияние различных легирующих элементов в том числе P3Э на свойства кристаллов LiNbO₃.

Важной характеристикой сегнетоэлектрического кристалла является температура Кюри (T_C) , в известной степени отражающая его структурное совершенство. Чем более совершенна структура кристалла, тем выше температура Кюри. T_C для монокристалла LiNbO $_{3cong}$ составляет $\sim 1145\,^{\circ}\mathrm{C}$ [24], в то время как T_C для монокристаллов LiNbO₃: Gd снижается до ~ 1135 °C при увеличении в расплаве концентрации Gd от $\sim 0.05\,\mathrm{mol.\%}$ до 0.5 mol.% Gd₂O₃ [23]. Основным фактором, влияющим на вид концентрационных зависимостей T_C в легированных металлическими примесями кристаллах ниобата лития, являются позиции основных (Li и Nb) и примесных катионов в структуре и их валентность, определяющие количество вакансий и соответственно совершенство катионной подрешетки [23]. Таким образом, снижение T_C свидетельствует о снижении структурного совершенства катионной подрешетки кристаллов ниобата лития в том числе вследствие возможности локализации катионов ниобия и катионов легирующей металлической примеси в вакантных октаэдрах структуры ниобата лития [25]. Наоборот, увеличение T_C свидетельствует о повышении структурного совершенства [23] в том числе вследствие уменьшения концентрации точечных дефектов Nb_{Li}, продуцирующих четыре литиевые вакансии VLi, являющихся ловушками электронов, ответственными за эффект фоторефракции в кристалле ниобата лития. Необходимо также отметить, что при введении в кристалл нескольких металлических примесей (двойное или тройное легирование) или локализации одной и той же примеси в различных позициях катионной подрешетки возможна взаимная компенсация упорядочивающего и разупорядочивающего механизмов воздействия примеси [4]. Таким образом, по отношению к T_C может наблюдаться аддитивность воздействия легирующих компонентов [26].

Принципиально иной механизм опосредованного воздействия на состояние дефектной структуры кристалла ниобата лития оказывает введение в расплав химически активного неметаллического элемента — бора, который является своеобразным "модератором" расплава. Он изменяет физико-химические свойства и структуру расплава и, таким образом, изменяет дефектную структуру растущего монокристалла ниобата лития. В этом смысле бор является уникальной легирующей добавкой: он практически не входит в кристалл, но, как активный комплексообразователь, изменяя структуру и свойства расплава, меняет состояние дефектности структуры и свойства кристалла LiNbO₃. Однако для кристаллов LiNbO₃: В с повышением концентрации бора в расплаве характерны дефекты типа "каналы", представляющие собой полые каналы в объеме кристалла [24]. В связи с этим выявление оптимальной концентрации бора в исходном расплаве при выращивании кристаллов ниобата лития методом Чохральского с целью определения оптимальных границ допустимой концентрации бора, позволяющей избежать формирования данного типа дефектов, является актуальной технологической задачей. Необходимо отметить, что влияние бора на структуру расплава и состояние дефектной структуры монокристаллов ниобата лития исследованы к настоящему времени явно недостаточно. Обзор немногочисленных исследований, посвященных этой теме, представлен в работе [24], где показано, что малые концентрации бора в расплаве уменьшают дефектность кристалла ниобата лития. В то же время другие неметаллические элементы с повышением концентрации оказывают скорее негативное влияние на структурное совершенство кристалла ниобата лития. Так, воздействие на свойства кристалла ниобата лития фосфора или кремния приводит к образованию трещин и протяженных областей оптической неоднородности [27].

Бор, как сильный комплексообразователь, влияет на состав и структуру сложных ионных комплексов в расплаве: ионные комплексы в расплаве при введении в него бора укрупняются, а количество типов комплексов снижается. Это способствует получению монокристаллов ниобата лития более высокой степени оптической однородности [24]. Наряду с этим, бор связывает в прочные ниобийсодержащие комплексы избыточный в расплаве конгруэнтного состава ниобий, что способствует приближению состава кристалла к стехиометрическому $(R = [\text{Li}]/[\text{Nb}] \approx 1)$ [24]. Таким образом, выращенные из боросодержащего расплава конгруэнтного состава кристаллы $\text{LiNbO}_3: \mathbf{B}$ характеризуются пониженной, по сравнению с кристаллами $\text{LiNbO}_{3\text{cong}}$, концентрацией

точечных дефектов Nb_{Li}. Следовательно, состав кристаллов LiNbO₃:В приближается к стехиометрическому, а также заметно повышается их структурная, композиционная, оптическая однородность и стойкость к лазерному повреждению [24]. Ранее уже было показано, что T_C кристаллов LiNbO $_3$:В значительно выше, чем у кристалла LiNbO_{3cong} ([24]), что свидетельствует об уменьшении количества литиевых вакансий и соответственно повышении степени структурного совершенства катионной подрешетки боросодержащих кристаллов [24]. Следует также отметить, что добавление в расплав сильного комплексообразователя — бора может привести к снижению величины КП металлической примеси [28]. Следовательно, можно существенно понизить концентрацию легирующего металла, при которой происходит сильное повышение стойкости кристаллов к повреждению лазерным излучением. Это позволяет также существенно повысить оптическую однородность легированных кристаллов ниобата лития.

последние годы внимание исследователей привлекают кристаллы LiNbO₃ двойного легирования [4,16,28–33]. В частности, для разработки оптических материалов для преобразования лазерного излучения представляют интерес кристаллы двойного легирования LiNbO₃: B: Gd. В кристаллах LiNbO₃: B: Gd нефоторефрактивная металлическая примесь Gd³⁺ понижает эффект фоторефракции, неметаллическая примесь ${\bf B}^{3+}$ также понижает эффект фоторефракции, но при этом элемент B^{3+} повышает оптическую и композиционную однородность кристалла ниобата лития. Кроме того, двойное легирование одновременно двумя "нефоторефрактивными" катионами (Gd^{3+} и B^{3+}) позволяет более тонко регулировать упорядочение структурных единиц катионной подрешетки и поляризуемость кислороднооктаэдрических кластеров МеО₆, определяющих величину спонтанной поляризации и нелинейно-оптические свойства кристалла LiNbO₃. Такое двойное легирование позволяет также тонко регулировать тип и количество точечных и комплексных дефектов с локализованными на них электронами, определяющих величину эффекта фоторефракции. Таким образом, двойное легирование открывает потенциальную возможность более тонкого и направленного воздействия на особенности дефектной структуры и практически значимые свойства кристаллов ниобата лития.

Двойное легирование кристалла LiNbO $_3$ металлическим элементом Gd^{3+} и неметаллическим элементом B^{3+} является новым подходом к созданию функциональных материалов высокой композиционной и оптической однородности. При этом металлические примеси локализуются в структуре кристалла LiNbO $_3$ только в октаэдрических позициях, в то время как неметаллический элемент бор не способен локализоваться в кислороднооктаэдрических кластерах MeO_6 -структуры [24]. Элемент бор локализуется в структуре кристалла LiNbO $_3$ в следовых количествах ($\sim 10^{-4}$ wt.%) в малых по

размеру тетраэдрических пустотах структуры [24]. Необходимо отметить, что в литературе есть немногочисленные исследования кристаллов ниобата лития двойного легирования, когда в качестве легирующих примесей выступают металл и неметалл [28]. В связи с этим задача получения оптически высокосовершенных кристаллов двойного легирования LiNbO₃: B: Gd является актуальной и востребованной как с фундаментальной, так и с прикладной точек зрения. Такие кристаллы могут быть перспективны в качестве оптических материалов для преобразования лазерного излучения.

настоящей работе на основании литературных данных выполнен анализ особенностей расплава системы Li₂CO₃: Nb₂O₅: Gd₂O₃: H₃BO₃, необходимый для получения нефоторефрактивных монокристаллов LiNbO₃:B:Gd высокой композиционной однородности с оптимальными концентрациями легирующих элементов, и приведены результаты комплексных исследований особенностей дефектной макро- и микроструктуры и фоторефрактивных свойств методами оптической микроскопии, ИК-спектроскопии поглощения в области валентных колебаний атомов водорода ОНгрупп, дифференциально-термического анализа (ДТА), лазерной коноскопии и фотоиндуцированного рассеяния света (ФИРС) монокристаллов двойного легирования LiNbO $_3$: $(0.58 \cdot 10^{-3} \ B_2O_3)$: $(0.51 \ mol.\% \ Gd_2O_3)$ и $LiNbO_3: (0.32 \cdot 10^{-3} B_2O_3): (0.53 mol.\% Gd_2O_3).$ Данные монокристаллы получены нами впервые и в литературе ранее не исследовались.

1. Методика эксперимента

Особенности использования боросодержащих расплавов ниобата лития требуют реализации принципиально иных подходов в сравнении с условиями получения чистого или легированного металлическими примесями ниобата лития. Это касается как выбора способа синтеза исходной шихты, так и оптимизации процессов выращивания монокристаллов методом Чохральского [24]. Гранулированная шихта ниобата лития конгруэнтного состава, легированная бором и гадолинием, была получена методом твердофазного синтеза-грануляции из смеси особо чистых Li₂CO3: Nb₂O₅: Gd2O3: H₃BO3. Основные компоненты смеси подвергались предварительной термообработке: карбонат лития Li₂CO3 отжигали при температуре 250°C в течение 3 h, пентаоксид ниобия Nb_2O_5 — 5 h при температуре 1100 °C. Расчет необходимого количества карбоната лития, обеспечивающего конгруэнтное соотношение основных компонентов, проводили с учетом содержания в исходной смеси Gd₂O₃ и без учета количества борной кислоты ввиду ее малого содержания в шихте. После механоактивации реагентов в течение 24 h во фторопластовом смесителе "пьяная бочка" смесь помещали в платиновый тигель и слегка подпрессовывали. Термообработку проводили в отжиговой печи ПВК-1.4-25. Температуру грануляции и продолжительность выдержки смеси подбирали экспериментально и с учетом исследований, представленных в [24].

Рентгенофазовый анализ (РФА) шихты LiNbO₃: B: Gd проводили с помощью метода порошковой дифракции на приборе XRD-6000 (Shimadzu, Япония) с использованием базы данных порошковых дифрактограмм PDF-4 2021 (ICDD, США). Монокристаллы ниобата лития LiNbO₃: $(0.58 \cdot 10^{-3} \text{ B}_2\text{O}_3)$: $(0.51 \text{ mol.}\% \text{ Gd}_2\text{O}_3)$ и $LiNbO_3: (0.32 \cdot 10^{-3} B_2O_3): (0.53 mol.\% Gd_2O_3)$ выращивали в направлении (001) методом Чохральского из платиновых тиглей диаметром 80 mm в воздушной атмосфере на ростовой установке индукционного типа "Кристалл 2" оснащенной системой автоматического контроля диаметра кристалла. Конструкция теплового узла обеспечивала сочетание осевого температурного градиента над расплавом ~ 1 deg/mm и протяженную изотермическую область в зоне послеростового отжига кристалла. Формирование плоского фронта кристаллизации обеспечивали скорость перемещения 0.8 mm/hour и скорость вращения 8 грт. Полная загрузка тигля составляла ~ 1510 g. При этом на выращивание каждого кристалла расходовалось не более ~ 17 % расплава.

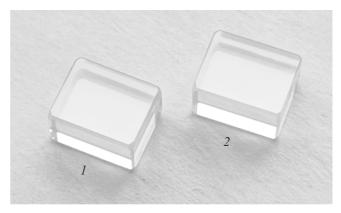
С целью снятия термоупругих напряжений выращенные монокристаллы $LiNbO_3:B:Gd$ подвергались термическому отжигу при $T=1235\,^{\circ}C$ в течение 15 h в высокотемпературной отжиговой печи ПВК-1.4-25. Скорость нагрева и охлаждения составляла 50 deg/hour.

С целью определения концентрации примесей В и Gd в кристаллах LiNbO $_3$: B: Gd с верхней (конусной) и нижней (торцевой) частей кристаллической були срезали пластины толщиной 0.8 mm для приготовления порошковых проб. Определение концентрации легирующих примесей в шихте, кристаллах LiNbO $_3$: B: Gd и плаве, оставшемся после выращивания кристаллов, было выполнено методом масс-спектрометрии с индуктивно связанной плазмой с использованием квадрупольного масс-спектрометра ELAN 9000 DRC-е с точностью измерения до $1\cdot 10^{-7}$.

Исследования макро- и микродефектной структуры кристаллов ниобата лития, легированных бором и гадолинием, проводили на пластинах толщиной 1 mm Z-среза методом оптической микроскопии с помощью системы анализа изображений "Thixomet", включающей оптический микроскоп Axio Observer.D1m фирмы "Carl Zeiss", состыкованный через цифровую видеокамеру PixeLink PL-B774U с компьютером, оснащенным программой "ThixometPRO", в режимах светового поля и методом дифференциально-интерференционного контраста. Для сравнения исследовался ранее выращенный в сходных условиях кристалл LiNbO3: Gd с близкой концентрацией гадолиния — 0.42 mol.% в кристалле. Пластины срезали с кристаллов LiNbO₃: B: Gd и LiNbO₃: Gd после термической обработки буль, шлифовали, полировали и подвергали химическому травлению при комнатной температуре в течение 20 h в смеси минеральных кислот $HF:HNO_3=1:3$.

Монодоменизация кристаллов LiNbO $_3$: В: Gd проводилась посредством высокотемпературного электродиффузионного отжига (ВТЭДО) в печи "Лантан" при охлаждении образцов со скоростью 20 deg/hour в температурном интервале от 1235 °C до 735 °C под постоянным электрическим полем.

Контроль степени униполярности монокристаллов $LiNbO_3: B: Gd$ осуществляли методом исследования статического пьезоэлектрического эффекта. Методика определения пьезомодуля (d_{333}) представлена в [24].


Оптическую чистоту материала оценивали по количеству центров рассеяния в единице объема монокристаллической були согласно методике, представленной в [24].

Спектры оптического пропускания в видимой области регистрировались с использованием спектрофотометра UVI-256 производства LOMO (St. Petersburg, Russian Federation). Для исследования также использовались тщательно полированные кристаллические пластины LiNbO $_3$: Gd и LiNbO $_3$: Gd(0.42 mol.% Gd $_2$ O $_3$) Z-ориентации толщиной ~ 1 mm.

Синхронный термический анализ образцов проводился с использованием оборудования HQT-4 (Beijing Henven Experimental Equipment Co., Ltd., Китай, 2022) в платиновых тиглях при скорости нагревания 20 deg/min. В качестве продувочного газа был использован аргон (скорость потока $100 \, \text{ml/min}$). Для сравнения использовался пустой тигель. Нагрев пробы производился в температурном интервале \sim от $30\,^{\circ}\text{C}$ до $1400\,^{\circ}\text{C}$. Масса навески составляла $\sim 20 \, \text{mg}$. Навеска взвешивалась на аналитических весах CAS CAUW 120D Ver. NO 2.3.3 (CAS Corporation, Южная Корея, 2022) с точностью до $0.01 \, \text{mg}$.

Для идентификации и количественного анализа дефектов в виде гидроксильных ОН-групп в кристаллах LiNbO₃:B:Gd использовалась ИК-спектроскопия поглощения в области валентных колебаний ОН-групп. В качестве объекта сравнения был выбран кристалл LiNbO_{3cong}. Спектры ИК-поглощения были зарегистрированы с помощью фурье-спектрометра Nicolet 6700 (Thermo Fisher Scientific Inc., Hillsboro, OR, USA, 2010). Измерения выполнены неполяризованным инфракрасным излучением при комнатной температуре. Область регистрируемых длин волн составляла $4000-400 \,\mathrm{cm}^{-1}$. Определение объемной концентрации ОН-групп в исследованных кристаллах проводилось по методу Клавира [34]. Для обработки экспериментальных данных и определения основных параметров спектральных линий по ИК-спектрам исследуемых образцов (параллелепипедов размерами $8 \times 6 \times 10\,\mathrm{mm}$, ребра которых совпадали по направлению с кристаллографическими осями $X \times Y \times Z$, а грани тщательно полировались, (рис. 1)) были использованы программы LabSpec 5.5 и Origin 8.1.

Для получения коноскопических картин методом лазерной коноскопии и в экспериментах по фотоиндуцированному рассеянию света (ФИРС) использовался лазер Nd:YAG (MLL-100, Changchun New Industries

Рис. 1. Образцы монокристаллов LiNbO3 : $(0.58 \cdot 10^{-3} \text{ B}_2\text{O}_3)$: $(0.51 \text{ mol.}\% \text{ Gd}_2\text{O}_3)$ — (1) и LiNbO₃ : $(0.32 \cdot 10^{-3} \text{ B}_2\text{O}_3)$: $(0.53 \text{ mol.}\% \text{ Gd}_2\text{O}_3)$ — (2).

Орtoelectronics Tech. Co. Ltd, Changchun, China) с длиной волны 532.0 nm и мощностью 1 и 90 mW (для лазерной коноскопии) и мощностью 160 mW (ФИРС, с плотностью мощности лазерного излучения 6.3 W/cm²). Подробная методика приведена в работе [35]. Для получения коноскопических картин методом лазерной коноскопии кристаллов LiNbO₃:B:Gd использовались пластины толщиной 3 mm, для получения картин ФИРС — параллелепипеды (рис. 1).

2. Результаты и обсуждение

Была получена партия гранулированной шихты весом $2.000\,\mathrm{g}$ с насыпным весом $2.8\,\mathrm{g/cm^3}$. Температуру грануляции и продолжительность выдержки смеси подбирали экспериментально: смесь нагревали со скоростью $350\,\mathrm{deg/hour}$ до $1150\,^\circ\mathrm{C}$, далее со скоростью $90\,\mathrm{deg/hour}$ до $1239\,^\circ\mathrm{C}$ с последующей выдержкой при данной температуре в течение $5\,\mathrm{h}$. Содержание легирующих примесей составило: $0.03\,\mathrm{mol.\%}$ B_2O_3 $(24\cdot10^{-4}\,\mathrm{wt.\%})$; $0.62\,\mathrm{mol.\%}$ Gd_2O_3 $(0.65\,\mathrm{wt.\%})$. По данным РФА шихта $1.00\,\mathrm{mol.\%}$ $1.00\,\mathrm{mol.\%}$ 1

Особенностью данной шихты является сочетание легкого неметаллического элемента В ($M_r=10.811\,\mathrm{g/mol}$), выступающего одновременно в качестве легирующего компонента и флюса, и тяжелого редкоземельного элемента Gd ($M_r=157.25\,\mathrm{g/mol}$). В связи с разной химической природой легирующих элементов гомогенизация расплава производилась путем его существенного перегрева (на $200\,^{\circ}\mathrm{C}$) выше температуры плавления ниобата лития, экспозиции в течение $8\,\mathrm{h}$ и последующего быстрого охлаждения до температуры затравливания. Подобный подход способствует разрушению ассоциативных связей в расплаве ниобата лития [24], освобождению от газовых включений и стабилизации свойств расплава.

При одинаковых тепловых условиях и технологических режимах были выращены два кристал-

Кристаллы	Концентрация Gd, mol.%				
$LiNbO_3:B:Gd$	[Gd] _L	[Gd] _s в конусе	[Gd] _s в торце	$\Delta C_{\rm Gd} = C_c - C_f$	$K_{ m DGd}$
Nº 1	0.62	0.51	0.52	-0.01	0.82
Nº 2	0.64	0.53	0.55	-0.02	0.83

Таблица 1. Концентрация Gd в исходном расплаве ([Gd]_L), конусной и торцевой частях выращенных монокристаллов LiNbO₃: B: Gd ([Gd]s), изменение концентрации гадолиния по длине були (Δ C_{Gd}) и коэффициент распределения гадолиния (KDGd).

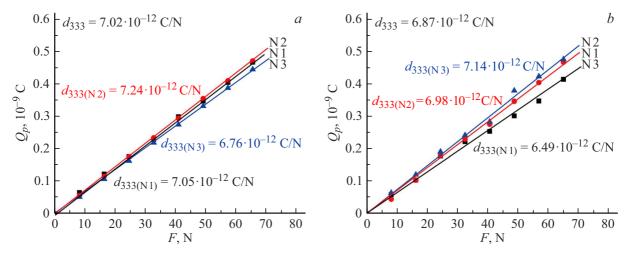
ла: LiNbO $_3$: (0.58 · 10 $^{-3}$ B $_2$ O $_3$): (0.51 mol.% Gd $_2$ O $_3$) и LiNbO $_3$: (0.32 · 10 $^{-3}$ B $_2$ O $_3$): (0.53 mol.% Gd $_2$ O $_3$) (далее — кристаллы LiNbO $_3$: B: Gd(1) и LiNbO $_3$: B: Gd(2) соответственно) диаметром \sim 35 mm и длиной цилиндрической части \sim 55 и \sim 45 mm, весом \sim 247 и 208 g соответственно. После выращивания первого кристалла в тигель загружали легированную шихту LiNbO $_3$: B: Gd в количестве, равном весу выращенного монокристалла.

Результаты анализа методом масс-спектрометрии с индуктивно связанной плазмой содержания легирующих компонентов в конусной (C_c) и торцевой (C_f) частях монокристаллов LiNbO $_3$: B: Gd(1 и 2) приведены в табл. 1,2. Расчет исходной концентрации гадолиния в расплаве при выращивании второго монокристалла и коэффициента распределения (K_D) производился по методике, представленной в [13].

Концентрация гадолиния на поверхности и в объеме плава после выращивания монокристалла $LiNbO_3:B:Gd(2)$ составила 0.76 mol.% и 0.73 mol.% Gd_2O_3 соответственно, что характерно для распределения примеси в случае $K_{0\rm eff}$ меньше единицы [36]. Однако кристаллы $LiNbO_3:B:Gd(1$ и 2) обладают высокой степенью химической однородности: изменение концентрации гадолиния по длине були для кристалла $LiNbO_3:B:Gd(1)$ составляет -0.01 mol.% Gd_2O_3 , для кристалла $LiNbO_3:B:Gd(2)$ — -0.02 mol.% Gd_2O_3 (табл. 1), что в большей степени соответствует характеру распределения примеси при $K_{0\rm eff}=1$.

Концентрация бора на поверхности и в объеме плава после выращивания монокристалла $LiNbO_3:B:Gd(2)$ составила 0.01 mol.% и 0.007 mol.% B_2O_3 соответственно, что приблизительно в три раза меньше исходной концентрации бора в шихте $(0.03 \text{ mol.}\% \ B_2O_3)$. Одновременно с этим содержание бора в кристалле $LiNbO_3:B:Gd(2)$ приблизительно в два раза меньше, чем в кристалле $LiNbO_3:B:Gd(1)$ (табл. 2).

Распределение бора вдоль оси роста кристалла $LiNbO_3:B:Gd(1)$ достаточно равномерное: разница концентраций составляет 0.00001 mol.% B_2O_3 . Для кристалла $LiNbO_3:B:Gd(2)$, выращенного в аналогичных условиях, содержание бора в конусной части були меньше, чем в кристалле $LiNbO_3:B:Gd(1)$, и снижается к ее торцу (табл. 2). В целом, учитывая незначительную концентрацию бора, входящего в структуру кристалла, можно утверждать, что подобранные тепловые


Таблица 2. Концентрация бора в конусной и торцевой частях монокристаллов ($[B]_s$, mol.%), выращенных из шихты, содержащей 0.03 mol.% B_2O_3 и 0.62 mol.% Gd_2O_3 , и изменение концентрации бора по длине були (ΔC_B)

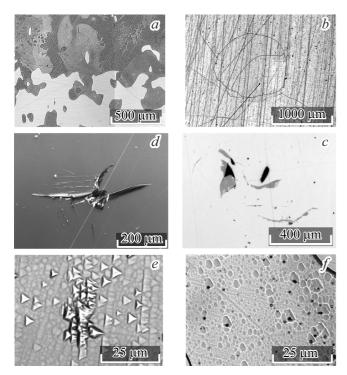
Кристаллы	Концентрация В, mol.%				
LiNbO ₃ :B:Gd	[В] _в в конусе	$[B]_s$ в торце	$\Delta C_{\rm B} = C_c - C_f$		
Nº 1	0.00058	0.00057	0.00001		
Nº 2	0.00032	0.00024	0.00008		

условия и технологические режимы роста кристаллов $LiNbO_3:B:Gd(1\ u\ 2)$ корректны.

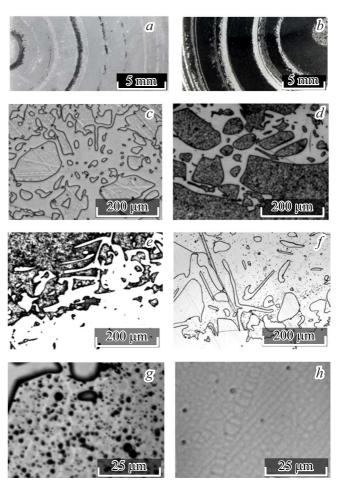
Согласно фазовой диаграмме системы Li_2O - Nb_2O_5 - B_2O_3 , бор не должен входить в структуру кристалла ниобата лития, поскольку фаза $LiNbO_3$ не имеет области растворимости бора в твердом состоянии [37]. Бор входит в структуру кристаллов $LiNbO_3$: В на уровне следовых количеств [24]. Причиной снижения концентрации бора в кристалле $LiNbO_3$: В: Gd(2) может быть длительный, но необходимый перегрев расплава перед выращиванием монокристалла, который в сочетании изначально малой концентрацией бора в шихте (0.03 mol.% B_2O_3) приводит интенсивному испарению неметалла в процессе выращивания монокристаллов. Это подтверждается уменьшением содержания бора в объеме плава.

Была проведена оценка оптического качества кристаллов LiNbO₃:B:Gd(1 и 2) по количеству центров рассеяния в объеме кристалла. Наличие центров рассеяния в кристаллах обусловлено микродефектами структуры, которые выглядят в лазерном луче как отдельные светящиеся точки или их скопления. К появлению центров рассеяния может приводить в том числе наличие остаточной доменной структуры в кристаллах после проведения процедуры монодоменизации. В монокристалле LiNbO₃:B:Gd(1) точечные и протяженные дефекты в виде центров рассеяния практически полностью отсутствуют. В монокристалле LiNbO₃: B: Gd(2) средняя плотность микродефектов в виде центров рассеяния составляет $\sim 7.22\,\mathrm{cm}^{-3}$. Таким образом, оба кристалла соответствуют требованиям, предъявляемым к кристаллам оптического качества (средняя плотность центров рассеяния менее $10 \,\mathrm{cm}^{-3}$).

Рис. 2. Зависимость $Q_p(F)$ для кристаллов: LiNbO₃:B:Gd(1) — a; LiNbO₃:B:Gd(2) — b.


Выращенный полидоменный монокристалл ниобата лития в исходном состоянии (до прохождения процедуры монодоменизации), как правило, не обладает пьезоэффектом. В этом случае макроскопическая характеристика пьезоэлектрических свойств — величина компонент пьезоэлектрического тензора в том числе величина пьезомодуля, $d_{333} \approx 0$. ВТЭДО приводит к появлению отчетливого пьезоэлектрического отклика в кристаллах ниобата лития. На рис. 2 в качестве примера представлена зависимость поляризационного заряда Q_p от прилагаемой в направлении полярной оси кристалла силы F после проведения ВТЭДО для кристаллов LiNbO₃: B: Gd(1 и 2). По результатам трех измерений величина пьезомодуля d_{333} монокристалла $LiNbO_3:B:Gd(1)$ составила $\sim 7.02\cdot 10^{-12}\,C/N$ (рис. 2, a). Это свидетельствует о сравнительно высокой степени униполярности кристалла $LiNbO_3: B: Gd(1)$. Достичь более высокого значения пьезомодуля возможно путем корректировки температурного диапазона приложения электрического поля и режимов ВТЭДО.

Среднее по результатам трех измерений значение пьезомодуля d_{333} для кристалла LiNbO₃ : B : Gd(2) несколько ниже, чем для кристалла $LiNbO_3:B:Gd(1)$, и составляет $\sim 6.87 \cdot 10^{-12}$ C/N (рис. 2, b). Это может быть связано с незначительным увеличением концентрации гадолиния в кристалле LiNbO $_3$: B: Gd(2) (табл. 1). Причем на графике зависимости $Q_p = f(F)$ кристалла LiNbO₃:B:Gd(2) наблюдаются скачки поляризационного заряда Q_p и некоторое отклонение графиков от линейности, что свидетельствует о влиянии создаваемого нагрузкой электрического поля на остаточные микродомены и неуравновешенные заряды, оставшиеся после прохождения процесса монодоменизации. Исследование микроструктуры данных кристаллов в сравнении с кристаллом $LiNbO_3: Gd(0.42 \, mol.\% \, Gd_2O_3)$, полученным методом прямого легирования, выполнено методом оптической микроскопии и приведено ниже.

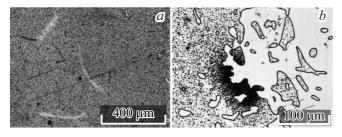

Структурные дефекты в кристаллах LiNbO₃ по стадии их появления в процессе получения кристаллического материала можно разделить на ростовые и технологические. Первый тип дефектов — это дефекты, возникающие непосредственно в процессе выращивания кристаллов ниобата лития, обусловлены термодинамическими свойствами системы расплав-растущий кристалл. Количество и конфигурация подобных дефектов зависит от термодинамических особенностей процесса кристаллизации, и соответственно от типа исходных компонентов, тепловых и кинетических условий выращивания, термической предыстории расплава и его химического состава. С ростовой дефектной структурой непосредственно связана макро- и микродоменная структура кристаллов ниобата лития, возникающая в процессе фазового перехода кристалла из параэлектрического в сегнетоэлектрическое состояние, а также субструктура кристалла. Изменение ростовой дефектной структуры кристаллов LiNbO₃ происходит в результате послеростовой термической и электротермической обработки. Такая обработка, как правило, сопровождается существенной трансформацией ростовой дефектной структуры (точечных и протяженных дефектов, дислокаций, макро- и микродоменов, макро- и микродоменных границ, блочной субструктуры, сегрегации примесей, включений второй фазы и т.п.) вплоть до полного исчезновения некоторых типов дефектов. Так, пьезомодуль d_{333} кристаллов LiNbO₃: B: Gd после монодоменизации увеличился с ~ 0 до $\sim 7 \cdot 10^{-12}$ C/N (рис. 2), что обусловлено исчезновением большей части ростовой доменной макро- и микроструктуры в процессе электротермической обработки. При послеростовой обработке могут возникать новые типы структурных дефектов, количество и конфигурация которых определяется технологическими параметрами процессов термической и электротермической обработки, типом и концентрацией легирующих примесей. Такие дефекты, возникающие в процессе трансформации ростовой дефектной структуры или вновь образующиеся в результате послеростовой термической и электротермической обработки и, как правило, отсутствующие в as-grown кристаллах LiNbO₃, не подвергавшихся послеростовой обработке, можно условно называть технологическими.

Исследование методом оптической микроскопии микроструктуры as-grown кристаллов $LiNbO_3:B:Gd(1$ и 2) в сравнении с кристаллом $LiNbO_3$: Gd(0.42 mol.%) Gd_2O_3 до перевода монодоменное состояние позволило оценить влияние присутствия бора в расплаве на конфигурацию ростовой макро- и микродефектной структуры кристаллов LiNbO₃: B: Gd. В случае, когда коэффициенты распределения легирующих добавок заметно меньше единицы и радикально отличаются по величине (табл. 1, 2), крайне важна дополнительная информация о механизмах роста кристаллов в зависимости от типа и концентрации легирующих добавок. Более того, вид макро- и микродефектной структуры кристаллов позволяет получить дополнительную информацию о физико-химических характеристиках системы кристалл-расплав и механизмах кристаллизации. На рис. 3 приведена макро- и микроструктура кристалла LiNbO₃ : $Gd(0.42 \text{ mol.}\% \text{ Gd}_2\text{O}_3)$.

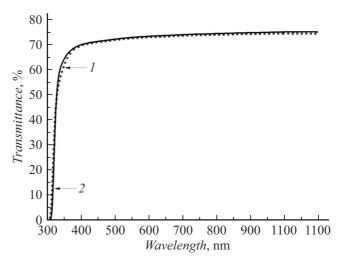
Доме́нная структура кристаллов LiNbO $_3$: Gd X-среза подобна доме́нной структуре кристаллов ниобата лития, легированных любыми другими редкоземельными примесями. Так, макроструктура кристалла LiNbO $_3$: Gd(0.42 mol.% Gd $_2$ O $_3$) X-среза образована полосами роста со сложными изрезанными доме́нными границами. Фрагмент такой полосы роста показан на

Рис. 3. Макро- и микроструктура кристалла LiNbO₃: Gd(0.42 mol.% Gd₂O₃) X (*a*) и Z-срезов (*b*–*f*).

Рис. 4. Макро- (a-f) и микроструктура (g, h) кристаллов LiNbO $_3$: B: Gd(1) (левый столбец) и LiNbO $_3$: B: Gd(2) (правый столбец) до процедуры ВТЭДО.


рис. 3,a. Кристалл LiNbO₃: $Gd(0.42 \text{ mol.}\% \ Gd_2O_3)$ отличается высокой склонностью к трещинообразованию. Так, на Z-срезе кристалла наблюдаются значительные области, занимаемые сетками напряжений (рис. 3,b), сколами, трещинами и лакунами (рис. 3,c,d), скоплениями треугольных доменов на фоне выделения второй фазы (рис. 3,e). Ячейки субструктуры кристалла LiNbO₃: $Gd(0.42 \text{ mol.}\% \ Gd_2O_3)$ сильно различаются по размерам и форме, а на их фоне отчетливо фиксируются микродомены противоположного знака (рис. 3,f). Все это свидетельствует о сильно напряженном состоянии кристалла LiNbO₃: $Gd(0.42 \text{ mol.}\% \ Gd_2O_3)$.

В отличие от кристаллов LiNbO $_3$: В [24] исследования кристаллов LiNbO $_3$: В: Gd(1 и 2) не выявили оптических девиаций и эффектов двойникования (рис. 4). При исследовании пластин полярного Z-среза взаимно противоположное кристаллографическое направление доменов разного знака позволяет при травлении получить достаточно четкую картину сегнетоэлектрической макродоменной структуры (рис. 4, a, b). Для кристаллов LiNbO $_3$: В: Gd на пластинах, вырезанных перпен-


дикулярно оси роста, расположение непериодических концентрических макродоменов разного знака (полос роста) с размытыми доменными границами типично для кристаллов ниобата лития, легированных редкоземельными элементами (P3Э) (рис. 4, a, b). По-видимому, как и для кристаллов ниобата лития, легированных любыми другими P3Э, макродоменная структура Z-среза кристаллов LiNbO $_3$:B:Gd повторяет форму изотермы на границе раздела фаз, а конкретное расположение макродоменов (концентрических полос роста) определяется конвекционными процессами в расплаве. Макроструктура центральной части пластин схожа у обоих образцов кристаллов LiNbO $_3$:B:Gd и состоит из смешанной доменной структуры с некоторыми признаками процессов самоорганизации (рис. 4, c-f).

Микроструктура образцов кристаллов LiNbO₃: B: Gd(1 и 2) имеет существенные различия. Так, в кристалле LiNbO₃: B: Gd(1) не обнаружена выраженная ячеистая субструктура кристалла (рис. 4, g). В то же время в кристалле $LiNbO_3:B:Gd(2)$ субструктура кристалла отчетливо просматривается с возможностью подсчета среднего размера ячеек (около $3.4 \, \mu \text{m}$, рис. 4, h). На микроуровне структура кристалла $LiNbO_3:B:Gd(2)$ (рис. 4, h) более однородная и равновесная по сравнению с кристаллами $LiNbO_3:B:Gd(1)$ (рис. 4, g) и LiNbO₃: Gd(0.42 mol.% Gd₂O₃) (рис. 3, e, f) — не содержит скоплений треугольных микродоменов, наблюдаемых на микроуровне. Ячейки структуры в кристалле $LiNbO_3: B: Gd(2)$ (рис. 4, h) в среднем достаточно упорядоченные. Количество, распределение и размер "борных" микропор (менее $1 \mu m$), обнаруженных после травления образцов, демонстрирует более сбалансированное состояние для кристалла $LiNbO_3:B:Gd(2)$ (рис. 4, h), чем для кристалла $LiNbO_3 : B : Gd(1)$ (рис. 4, *g*).

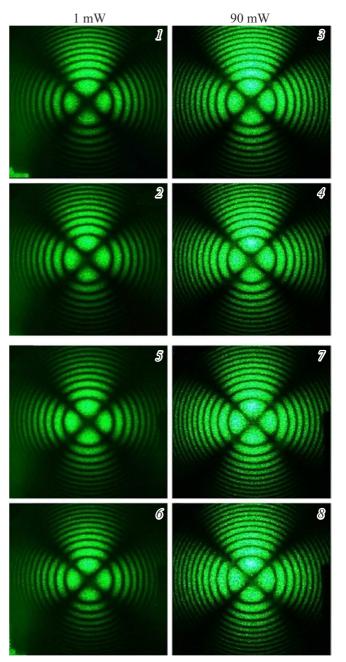
В то же время кристалл LiNbO₃:B:Gd(2) содержит дефекты мезоуровня, проявляющиеся в локальном формировании неоднородностей с некогерентными или полукогерентными границами (рис. 5). Были обнаружены дефекты двух типов: мезообласти микронеоднородностей (рис. 5, a) и выраженные "пятнистые" неоднородности (рис. 5, b). Подобные типы мезодефектов свидетельствуют обычно о возможности формирования в этой области кристалла второй фазы. В кристалле LiNbO₃:B:Gd(1) подобные дефекты мезоуровня обнаружены не были.

Рис. 5. Дефекты мезоуровня в кристалле LiNbO $_3$: B: Gd(2) до процедуры ВТЭДО.

Рис. 6. Спектры пропускания кристаллов LiNbO $_3$: Gd(0.42 mol.% Gd $_2$ O $_3$) (*I*) и LiNbO $_3$: B: Gd(1) (*2*). Толщина образцов \sim 1 mm.

Таким образом, по макроструктуре образцы кристаллов $LiNbO_3:B:Gd(1$ и 2) весьма сходны. В то же время на микро- и мезоуровнях присутствуют существенные отличия. Микроструктура кристалла $LiNbO_3:B:Gd(2)$ более равновесная, чем у кристалла $LiNbO_3:B:Gd(1)$. В то же время на мезоуровне кристалла LiNbO₃:B:Gd(2) наблюдаются отчетливо выраженные неоднородности, которые отсутствуют в кристалле LiNbO₃:B:Gd(1). Введение бора в шихту улучшило макросостояние кристаллов LiNbO3: B: Gd, снизив уровень напряжений по сравнению с кристаллом $LiNbO_3$: $Gd(0.42 \, mol.\% \, Gd_2O_3)$, но суммарное влияние двух примесей создало условия для формирования второй фазы с полукогерентными границами, т. е. появление химической неоднородности может трансформироваться в структурную неоднородность, создавая вторую фазу.

На рис. 6 приведены спектры пропускания кристаллов $LiNbO_3: Gd(0.42 mol.\% Gd_2O_3)$ и $LiNbO_3: B: Gd(1)$. Сравнение приведенных спектров показывает слабое влияние примеси бора на коэффициент пропускания, форму и положение спектров. Это дополнительно подтверждают И рассчитанные значения поглощения кристаллов LiNbO₃: $Gd(0.42 \text{ mol.}\% Gd_2O_3)$ $LiNbO_3: B: Gd(1)$. Край поглощения кристалла LiNbO₃: Gd(0.42 mol.% Gd₂O₃) составляет ~ 310.0 nm, а кристалла LiNbO₃:B:Gd(1) — \sim 311.3 nm. Спектр пропускания кристалла LiNbO₃:B:Gd(2) очень близок к спектру пропускания кристалла $LiNbO_3:B:Gd(1)$ и на рис. 6 не приведен.


Анализ макро- и микроструктуры кристаллов $LiNbO_3:B:Gd$ и их спектров пропускания позволяет сделать вывод, что совместное легирование P3O (Gd) и неметаллическим элементом (B) позволяет получить монокристалл с параметрами оптического пропускания, сходными с кристаллом $LiNbO_3:Gd$, и

при этом свободным от механических и структурных напряжений. Можно закономерно предположить, что некоторое снижение концентрации гадолиния улучшит микроструктуру кристалла $LiNbO_3:B:Gd$, избавив от предвыделений второй фазы (кристалл $LiNbO_3:B:Gd(2)$ (рис. 5).

Контроль оптической однородности кристаллов LiNbO₃: B: Gd(1 и 2) осуществлялся методом лазерной коноскопии. Коноскопический контроль оптических свойств кристаллов ниобата лития является наглядным и доступным методом исследования, что обусловлено связью вида, структуры и свойств коноскопической картины со строением, оптическими свойствами, ориентацией кристалла, а также наличием в нем механических напряжений и различного рода точечных и протяженных дефектов [38,39]. Коноскопические картины, полученные при малой мощности лазерного излучения ($\sim 1\,\mathrm{mW}$), отражают состояние дефектности кристалла в отсутствие эффекта фоторефракции, в то время как коноскопические картины, зарегистрированные при большой мощности лазерного излучения ($\sim 90\,\mathrm{mW}$), отражают как собственную, так и наведенную лазерным излучением дефектность кристалла. На рис. 7 представлены коноскопические картины кристаллов LiNbO₃:B:Gd (1 и 2) после процедуры ВТЭДО, полученные при исследовании пластин толщиной 3 mm.

Результаты лазерного сканирования по плоскости входной исследованных грани кристаллов $LiNbO_3:B:Gd(1 \ u \ 2)$ показали, что оба кристалла являются оптически однородными. На рис. 7 представлены коноскопические картины двух видов — соответствующие как одноосным кристаллам (1, 3, 5-8), так и кристаллам, обладающим незначительными признаками аномальной двуосности (2, 4). Коноскопические картины (1, 3, 5-8) имеют круговую симметрию, при которой черный "мальтийский крест" сохраняет целостность в центре поля зрения, а изохромы представляют собой концентрические окружности с центром в точке выхода оптической оси. Именно такой вид коноскопических картин свидетельствует о сравнительно высокой оптической однородности образцов и хорошем оптическом качестве кристалла. Коноскопические картины (2, 4) содержат незначительные признаки аномальной оптической двуосности, при которой появляется небольшая деформация в центре черного "мальтийского креста" в виде смещения (без разрыва) от центра фрагментов креста в вертикальном направлении, соответствующем направлению деформации оптической индикатрисы кристалла. Изохромы приобретают очень слабую эллиптичность, сохраняя правильную геометрическую форму (рис. 7 (2, 4)).

Коноскопические картины исследованных кристаллов $LiNbO_3:B:Gd(1$ и 2) (рис. 7) схожи с коноскопическими картинами беспримесного кристалла $LiNbO_{3cong}$ и гораздо менее дефектны, чем коноскопические картины кристалла стехиометрического состава ($LiNbO_{3stoich}$, R=[Li]/[Nb]=1) [35]. Коноскопические картины кристалла $LiNbO_{3stoich}$ как при мощности 1 mW, так и при

90 mW значительно размыты, имеются значительные признаки аномальной оптической двуосности, деформации всех ветвей "мальтийского креста", причем дефекты коноскопических картин значительно усиливаются при увеличении мощности лазерного излучения, что связано с наличием фоторефрактивного отклика кристалла $LiNbO_{3stoich}$ [35]. Таким образом, по оптической однородности кристаллы $LiNbO_3:B:Gd(1\ u\ 2)$ близки к кри-

Рис. 8. Кривые DSC кристаллов: a — LiNbO₃:B:Gd(1), b — LiNbO₃:B:Gd(2).

сталлу $LiNbO_{3cong}$ и значительно превосходят кристалл $LiNbO_{3stoich}.$

Из рис. 7 следует, что коноскопические картины кристалла $LiNbO_3:B:Gd(2)$ более совершенны по сравнению с коноскопическими картинами кристалла $LiNbO_3:B:Gd(1)$. Это свидетельствует о более высокой степени оптической однородности кристалла двойного легирования $LiNbO_3:B:Gd(2)$.

Появление областей аномальной оптической двуосности на коноскопических картинах обычно связано с существованием локальных областей оптической неоднородности в кристалле, обладающем двулучепреломлением. Для легированных кристаллов ниобата лития это может быть связано с сегрегацией примеси в кристалле, особенно при значительных концентрациях легирующих катионов. В соответствии с результатами оптической микроскопии (рис. 4, 5), полученными на образцах кристаллов LiNbO₃:B:Gd до процедуры ВТЭДО, было ожидаемо, что коноскопический анализ покажет более высокую степень оптической однородности кристалла $LiNbO_3:B:Gd(1)$, поскольку в кристалле LiNbO₃:B:Gd(2) содержатся дефекты мезоуровня, проявляющиеся в формировании неоднородностей с некогерентными или полукогерентными границами. Подобные типы мезодефектов предполагают возможность формирования в этой области кристалла второй фазы, что приводит к изменению упругих характеристик кристалла и появлению механических напряжений, локально искажающих оптическую индикатрису оптически одноосного кристалла [35]. Однако метод лазерной коноскопии показал, что кристалл LiNbO₃ : B : Gd(2) обладает более высокой степенью оптической однородности. Это может быть следствием перераспределения дефектов в результате проведения ВТЭДО.

Структурные перестройки и фазовые переходы в кристаллах можно выявить с использованием термического анализа. На рис. 8 представлены кривые дифференциальной сканирующей калориметрии (DSC) кристаллов $LiNbO_3:B:Gd(1\ u\ 2)$. На кривых нагрева обна-

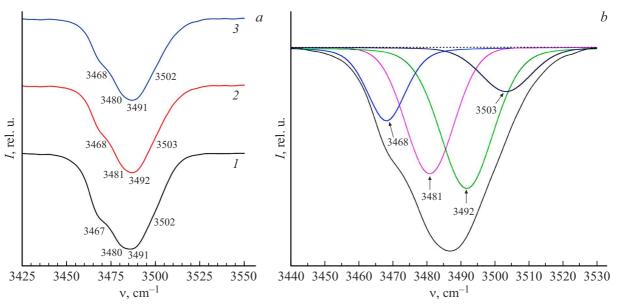
руживается тепловой эффект в области температур $T = 720\,^{\circ}\text{C} - 760\,^{\circ}\text{C}$, температура которого зависит от концентрации легирующей примеси. Вид данного теплового эффекта схож с процессом стеклования. Подобный эффект может объясняться наличием легирующей примеси бора, которая является стеклообразующим компонентом и сильным комплексообразователем. Это подтверждается работой [40], в которой проводили исследование стекол на основе кристалла ниобата лития и оксида бора, а также литий-ниобий-борного стекла. В данной работе метод DSC выявил подобный тепловой эффект в близкой температурной области [40]. Наше исследование показало, что уменьшение содержания бора в кристалле LiNbO₃: B: Gd(2) (табл. 2) приводит к снижению температуры стеклования с $T_g = 760\,^{\circ}\mathrm{C}$ в кристалле LiNbO₃: B: Gd(1) до $T_g = 728$ °C (рис. 8).

В области температур $T=1210\,^{\circ}\mathrm{C}-1213\,^{\circ}\mathrm{C}$ обнаруживается перегиб, обусловленный сегнетоэлектрическим фазовым переходом (СЭФП) второго рода в кристаллах LiNbO $_3$:В:Gd(1 и 2) (рис. 8). Способ определения температуры Кюри в кристаллах ниобата лития по кривым термического анализа представлен в работе [26]. Для кристаллов LiNbO $_3$:В СЭФП наблюдается при меньшей температуре и, соответственно, T_C составляет $\sim 1189\,^{\circ}\mathrm{C}-1190\,^{\circ}\mathrm{C}$ [24], что заметно меньше, чем для кристаллов LiNbO $_3$:В:Gd(1 и 2) (рис. 8).

Как известно, T_C может изменяться с изменением стехиометрии кристалла ниобата лития, а также типа и концентрации легирующей примеси [9,23,26]. Таким образом, T_C кристаллов двойного легирования LiNbO₃:B:Gd(1 и 2) составляет $\sim 1210\,^{\circ}\text{C}-1213\,^{\circ}\text{C}$ (рис. 8), в то время как для кристаллов одинарного легирования LiNbO₃:B $T_C \sim 1189\,^{\circ}\text{C}-1190\,^{\circ}\text{C}$ [24], а для кристалла LiNbO₃:Gd $T_C \sim 1135\,^{\circ}\text{C}$ [23]. В то же время T_C кристалла LiNbO₃cong составляет $\sim 1145\,^{\circ}\text{C}$ [24]. Таким образом, здесь мы не наблюдаем аддитивного влияния примеси на T_C , подобно аддитивному влиянию примесей тантала и магния на T_C кристаллов LiNbO₃:Ta:Mg [26]. Несмотря на то что трехвалентные

примеси, подобные Gd³⁺, преимущественно встраиваются в литиевые октаэдры О6 идеальной структуры кристалла LiNbO₃ [41], снижая содержание точечных дефектов Nb_{Li}, примесь гадолиния, как и примеси других РЗЭ, уменьшает температуру Кюри [23]. В свою очередь, присутствие бора в расплаве позволяет радикально снизить в кристаллах LiNbO₃ содержание дефектов Nb_{Li} и приблизить состав кристалла к стехиометрическому (R = 1) путем связывания избыточного ниобия в расплаве конгруэнтного состава в прочные комплексы, которые не участвуют в процессе кристаллизации [24]. Таким образом, выбранное в настоящей работе сочетание типа и концентрации легирующих примесей (В и Gd) привело к формированию таких ионных комплексов в расплаве конгруэнтного состава, которые в большей степени, чем при использовании расплава, содержащего только бор, приблизили состав кристалла ниобата лития к стехиометрическому, т. е. в данном случае наблюдается синергетический эффект влияния примесей, что открывает новые возможности в разработке технологий синтеза функциональных материалов на основе ниобата лития с заданными характеристиками.

Эндотермический эффект высокой интенсивности связан плавлением c $LiNbO_3: B: Gd(1 \text{ и } 2)$ и обнаруживается при температуре $T_m = 1244\,^{\circ}\text{C} - 1246\,^{\circ}\text{C}$. Разница в концентрации легирующей добавки (табл. 1, 2) практически не влияет на температуру плавления кристаллов LiNbO₃:B:Gd(1 и 2) (рис. 8). При этом температура плавления кристаллов LiNbO₃:В составляет $\sim 1262\,^{\circ}\text{C} - 1264\,^{\circ}\text{C}$, а кристалла LiNbO3cong — $\sim 1257\,^{\circ}\mathrm{C}$ [24]. Снижение температуры плавления кристаллов LiNbO₃:B:Gd(1 и 2), вероятно, обусловлено существенным изменением химических характеристик расплава системы Li₂O- Nb_2O_5 - Gd_2O_3 - B_2O_3 при образовании содержащих бор и гадолиний ионных комплексов.


Кристалл LiNbO₃, как нестехиометрическая фаза переменного состава, обладает достаточно высокой степенью дефектности [4,14,24]. Собственные и примесные дефекты оказывают заметную роль в формировании физических свойств кристалла ниобата лития [42]. В связи с этим исследование свойств кристаллов LiNbO₃ необходимо проводить в тесной взаимосвязи с особенностями их дефектной структуры. В процессе выращивания кристалла LiNbO_{3cong}, обладающего дефицитом Li, катионы ниобия частично внедряются в больший по объему литиевый октаэдр O_6 , в результате чего в структуре кристалла формируются глубокие ловушки электронов — точечные дефекты $Nb_{1,i}^{4+}$. Для сохранения электронейтральности в кристалле образуются вакансии в литиевых позициях (V_{Li}^-) . Согласно сплитмодели Li-вакансий, катионная подрешетка кристалла $LiNbO_{3cong}$ содержит ~ 1 mol.% точечных дефектов Nb_{1i}^{4+} и $\sim 4\, \text{mol.}\%$ точечных дефектов V_{Li}^- [43,44]. Отрицательно заряженная литиевая вакансия притягивает положительно заряженный ион водорода, связанный в структуре кристалла с ионом кислорода водородной

связью [45,46]. В результате в структуре кристалла образуется комплексный дефект (V_{Li} -OH). Аналогичным образом в структуре кристалла LiNbO₃ образуются комплексные дефекты Nb_{Li}-OH, Gd_{Li}-OH и др., влияющие на преобразование и генерацию кристаллом лазерного излучения, термическую фиксацию голограмм, фотолюминесценцию, эффект фоторефракции и проводимость кристалла [4,45,46].

Концентрацию гидроксильных групп в кристалле ниобата лития, связанных с различными дефектами структуры кристалла, можно определить с помощью ИКспектроскопии поглощения в области валентных колебаний ОН-групп. Комплексному дефекту (V_{Li} -OH) на спектрах ИК-поглощения соответствуют полосы с частотами 3467, 3480 и 3489 cm $^{-1}$ и полушириной около $\sim 30~{\rm cm}^{-1}$. Число собственных дефектов Nb $_{Li}$ в кристаллах LiNbO $_3$ уменьшается при увеличении величины R, которую можно увеличивать, в том числе путем введения в структуру кристалла легирующих добавок [24]. Причем присутствие в конгруэнтном расплаве легирующей примеси бора позволяет заметно уменьшить число точечных дефектов Nb $_{Li}^{4+}$ [24].

На рис. 9 приведены ИК-спектры поглощения в области валентных колебаний ОН-групп кристаллов двойного легирования LiNbO₃: B: Gd(1 и 2), а также кристалла LiNbO_{3cong}, выбранного в настоящей работе в качестве объекта сравнения. Основные параметры спектральных линий, а также концентрация гидроксильных групп в исследованных кристаллах, представлены в табл. 3. Количество линий поглощения в ИКспектрах одинаково, что свидетельствует о равном числе неэквивалентных позиций атомов водорода в структуре исследуемых кристаллов ниобата лития (табл. 3). Из рис. 9 и табл. 3 видно, что в ИК-спектрах поглощения кристаллов LiNbO₃: B: Gd(1 и 2) наблюдаются некоторые отличия по сравнению с ИК-спектром кристалла LiNbO_{3cong}, — изменение интенсивности и полуширины компонент линий поглощения. Полученные данные свидетельствуют об изменении состояния дефектной структуры кристаллов LiNbO₃: B: Gd(1 и 2), обусловленной присутствием гидроксильных групп ОН, синергетическим эффектом совместного легирования конгруэнтного расплава ниобата лития бором и гадолинием. В частности, величина R кристалла двойного легирования близка к единице.

Легирование кристалла LiNbO $_3$ катионами Gd $^{3+}$, в свою очередь, приводит к изменению длин связей <Gd-O>, <O-O> и к искажению кислороднооктаэдрических кластеров MeO $_6$ (Me-Li, Nb, примесный металл), ответственных за нелинейно-оптические и сегнетоэлектрические свойства кристалла [45,46]. Эти эффекты приводят к разупорядочению структуры кристалла и проявляются в увеличении полуширины некоторых линий поглощения в ИК-спектрах кристаллов LiNbO $_3$:B:Gd относительно спектра кристалла LiNbO $_{3\text{cong}}$ (рис. 9, табл. 3).

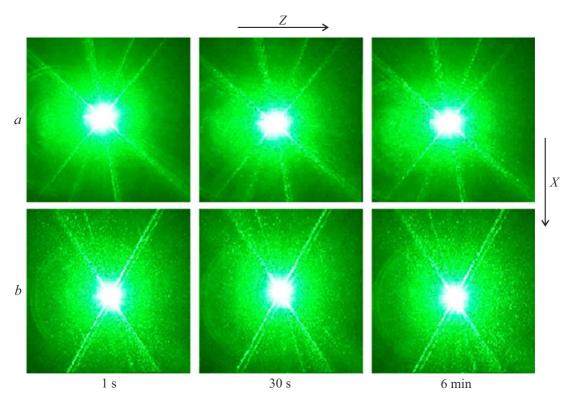


Рис. 9. Спектры ИК-поглощения в области валентных колебаний OH-групп (a) кристаллов LiNbO $_{3\text{cong}} - 1$, LiNbO $_{3}$: B:Gd(1) - 2, LiNbO $_{3}$: B:Gd(2) - 3 и разложение полосы (b) ИК-спектра поглощения кристалла LiNbO $_{3}$: B:Gd(1) на компоненты.

На основе ИК-спектров поглощения нами была рассчитана объемная концентрация ОН-групп в исследованных кристаллах разного состава по методу Клавира [34]. В кристаллах двойного легирования LiNbO₃: B: Gd(1 и 2) концентрация ОН-групп существенно больше, чем в кристалле LiNbO_{3cong} (табл. 3). Потенциально катионы Gd³⁺ могут занимать одну из трех возможных позиций в структуре кристалла LiNbO₃: основные октаэдрические позиции лития, ниобия, либо внедряться в вакантные октаэдры [47]. Расположение в относительно малоразмерном свободном октаэдре катиона Gd³⁺ маловероятно по причине его большего ионного радиуса $\sim 0.94 \,\text{Å}$ [48]. В то же время известно, что легирующие катионы металлов при сравнительно невысоких концентрациях предпочтительно внедряются в основные октаэдрические позиции лития по причине того, что литиевый октаэдр имеет больший размер, чем ниобиевый [4,49]. Однако незначительное количество легирующих РЗЭ в определенном диапазоне концентраций может локализоваться и в ниобиевом октаэдре структуры кристалла [50]. При вытеснении точечного дефекта Nb_{Li} ионом Gd^{3+} избыток положительного заряда Gd_{Li}²⁺ компенсируется двумя отрицательными точечными дефектами V_{Li}^- . Для сохранения электронейтральности в кристалле LiNbO_{3cong} каждый структурный дефект $\mathrm{Nb}_{\mathrm{Li}}^{4+}$ компенсируется четырьмя точечными дефектами ${
m V}_{{
m Li}}^{-}$ [4]. Таким образом, количество дефектных центров ${
m V}_{
m Li}^-$, которые могут притягивать атом водорода и сформировать комплексный дефект (V_{Li}-OH), в кристаллах LiNbO₃:B:Gd должно быть меньше, чем в кристалле LiNbO_{3cong} (табл. 3). В работе [24] было установлено, что концентрация гидроксильных групп ОН в кристаллах LiNbO₃:В разного состава зависит от концентра-

ции оксида бора в шихте, из которой были выращены боросодержащие кристаллы, и варьируется от $3.4 \cdot 10^{17}$ до $6.4 \cdot 10^{17} \, \text{cm}^{-3}$, т.е. она или близка или почти в два раза превышает концентрацию гидроксильных групп в кристалле LiNbO3cong. При этом кристаллы LiNbO3: В имеют величину $R \approx 1$ и существенно более низкую концентрацию точечных структурных дефектов Nb_{Li} и V_{Li} по сравнению с кристаллом LiNbO3cong [24]. Таким образом, увеличение концентрации гидроксильных групп в кристаллах LiNbO₃: B: Gd(1 и 2) обусловлено, по-видимому, не структурными, а физико-химическими и технологическими факторами. Действительно, твердофазный синтез шихты для выращивания кристаллов LiNbO₃: B: Gd происходит из смеси оксидов и борной кислоты: Nb_2O_5 - Li_2O - Gd_2O_3 - H_3BO_3 , т.е. при синтезе шихты применяется водородсодержащий компонент, что определяет повышение концентрации ОН-групп в кристалле (табл. 3).

Стойкость кристаллов LiNbO $_3$:B:Gd(1 и 2) к повреждению лазерным излучением была исследована методом ФИРС. На рис. 10 представлены временные зависимости картин ФИРС кристаллов LiNbO $_3$:B:Gd(1 и 2). Из рис. 10 видно, что для исследованных кристаллов, даже после облучения в течение 6 min лазерным излучением ($p=6.3\,\mathrm{W/cm^2}$), наблюдается только круговое рассеяние на статических структурных дефектах, при этом спекл-структура индикатрисы ФИРС не раскрывается. Схожая картина ФИРС наблюдается и в кристалле LiNbO $_{3\mathrm{cong}}$ [35]. Поскольку раскрытие спекл-структуры ФИРС является следствием эффекта фоторефракции, можно заключить, что в кристаллах LiNbO $_3$:B:Gd(1 и 2) отсутствует эффект фоторефракции при использованной нами интенсивности

Рис. 10. Картины ФИРС кристаллов: LiNbO₃:B:Gd(1) — a, LiNbO₃:B:Gd(2) — b. $\lambda = 532$ nm. P = 6.3 W/cm².

Таблица 3. Значения частот (ν , cm $^{-1}$), ширин (S, cm $^{-1}$) и интенсивностей (I, rel.u.) линий в ИК-спектрах поглощения, концентрации ОН-групп ($C(OH)/cm^3$) в кристалла LiNbO $_3$ cong и кристаллах двойного легирования LiNbO $_3$: B: Gd(1 и 2) при $t=25\,^{\circ}$ C

			1	,
Кристаллы	ν	I	S	C(OH)/cm ³
	3467	12.18	14.00	
$LiNbO_{3cong}$	3480	16.54	16.95	$3.26 \cdot 10^{17}$
	3491	17.75	17.94	
	3502	5.96	14.40	
	3468	8.33	13.42	
$LiNbO_3:B:Gd(1)$	3481	14.21	16.80	$4.36 \cdot 10^{17}$
	3492	15.80	18.44	
	3503	4.96	17.69	
	3468	7.94	13.22	
$LiNbO_3:B:Gd(2)$	3480	13.44	15.93	$4.05 \cdot 10^{17}$
	3491	14.64	16.92	
	3502	6.56	17.72	

лазерного излучения. Для сравнения ФИРС кристалла $LiNbO_{3stoich}$ [35] значительно отличается от ФИРС кристаллов $LiNbO_{3cong}$ [35] и $LiNbO_{3}$: B: Gd(1 и 2), рис. 10:

в течение первых 30 s картина рассеяния кристалла LiNbO_{3stoich} [35] из округлой формы трансформируется в овал, вытянутый вдоль полярной оси кристалла, через 240 s в стационарном состоянии форма спеклструктуры ФИРС кристалла LiNbO_{3stoich} приобретает вид асимметричной восьмерки относительно нормали к главному сечению кристалла, вследствие изменения показателя преломления, угол рассеяния составляет 56°. Кристалл LiNbO_{3stoich} отличается высокоупорядоченной катионной подрешеткой, однако обладает неоднородным показателем преломления вдоль полярной оси, высокой концентрацией дефектов с локализованными на них электронами и гораздо большим эффектом фоторефракции и ФИРС, чем кристаллы LiNbO_{3cong} [35] и LiNbO₃:B:Gd(1 и 2) (рис. 10), что может существенно снизить эффективность нелинейно-оптических преобразований. Таким образом, сочетание двух нефоторефрактивных примесей различной химической природы при предложенном соотношении их концентраций и использованных технологических параметров роста приводят к получению нелинейно-оптических кристаллов LiNbO₃: B: Gd с высокой оптической однородностью и стойкостью к оптическому повреждению.

Заключение

 M_3 смеси особо чистых компонентов $Li_2CO3:Nb_2O_5:Gd2O3:H_3BO3$ синтезирована гранулированная монофазная шихта ниобата лития

LiNbO₃:B:Gd. Методом Чохральского из расплава получены кристаллы двойного легирования

LiNbO₃ : $(0.58 \cdot 10^{-3} \text{ B}_2\text{O}_3)$: $(0.51 \text{ mol.}\% \text{ Gd}_2\text{O}_3)$ и LiNbO₃ : $(0.32 \cdot 10^{-3} \text{ B}_2\text{O}_3)$: $(0.53 \text{ mol.}\% \text{ Gd}_2\text{O}_3)$ – LiNbO₃ : B : Gd(1) и LiNbO₃ : B : Gd(2),

характеризующиеся высокой композиционной однородностью вдоль оси роста и высоким оптическим качеством. Установлено уменьшение концентрации бора в расплаве в процессе получения монокристаллов LiNbO $_3$: B: Gd(1 и 2) при исходной концентрации бора в шихте 0.03 mol.% B_2O_3 практически в три раза, что связано с испарением бора в процессе подготовки расплава и выращивания кристаллов.

Методом оптической микроскопии исследована макро- и микроструктура кристаллов LiNbO₃:B:Gd(1 и 2) до ВТЭДО и проведено ее сравнение с макро- и микроструктурой кристалла LiNbO $_3$: Gd(0.42 mol.% Gd $_2$ O $_3$). Это позволило оценить влияние химического состава кристаллов на конфигурацию ростовой дефектной структуры кристаллов LiNbO₃:B:Gd(1 и 2). По макроструктуре образцы кристаллов LiNbO₃:B:Gd(1 и 2) весьма сходны. В то же время на микро- и мезоуровнях присутствуют некоторые отличия. Так, в кристалле $LiNbO_3:B:Gd(1)$ почти не сформирована ячеистая субструктура в отличие от кристалла $LiNbO_3:B:Gd(2)$. Для кристалла LiNbO₃:B:Gd(2) количество, распределение и размер "борных" микропор демонстрирует более сбалансированное состояние, чем для кристалла $LiNbO_3:B:Gd(1)$. В кристалле $LiNbO_3:B:Gd(2)$ присутствуют отчетливо выраженные неоднородности мезоуровня, которых нет в кристалле $LiNbO_3:B:Gd(1)$. Закономерности формирования макро- и микродоменной структуры as-grown кристаллов LiNbO3: B: Gd дают существенную дополнительную информацию о физикохимических характеристиках системы кристалл-расплав и механизмах кристаллизации.

Сравнение спектров пропускания кристаллов $LiNbO_3$: Gd(0.42 mol.%) $LiNbO_3:B:Gd(1)$ Gd_2O_3), $LiNbO_3:B:Gd(2)$ показало влияние примеси бора на коэффициент пропускания и вид спектров в целом. Анализ макро- и микроструктуры кристаллов $LiNbO_3: B: Gd(1)$, $LiNbO_3: B: Gd(2)$ $LiNbO_3$: $Gd(0.42 \, mol.\% \, Gd_2O_3)$, а также их спектров пропускания, свидетельствует о том, что совместное легирование РЗЭ (Gd) и неметаллическим элементом (B) позволяет получить монокристаллы LiNbO₃:B:Gd с параметрами оптического пропускания, сходными с кристаллом LiNbO3: Gd, но при этом свободными от механических и структурных напряжений.

Примененные технологические режимы ВТЭДО требуют корректировки вследствие недостаточно высокой степени монодоменности кристаллов $LiNbO_3:B:Gd(1\ u\ 2)$. Результаты исследования пластин кристаллов $LiNbO_3:B:Gd(1\ u\ 2)$ после ВТЭДО методом лазерной коноскопии показало их высокую оптическую однородность. При этом кристалл $LiNbO_3:B:Gd(2)$ обладает более высокой оптической однородностью, что

может быть следствием перераспределения дефектов в результате проведения ВТЭДО.

Кристаллы $LiNbO_3: B: Gd(1 \text{ и } 2)$ имеют очень высокое значение температуры Кюри ($T_C \sim 1210\,^{\circ}\text{C} - 1213\,^{\circ}\text{C}$) кристаллами LiNbO_{3cong} сравнению c $(T_C \sim 1142\,^{\circ}\text{C})$, LiNbO₃: Gd $(T_C \sim 1135\,^{\circ}\text{C})$ и LiNbO₃: B $(T_C \sim 1189\,^{\circ}\text{C} - 1190\,^{\circ}\text{C})$. Установлено, что сочетание типа и концентрации легирующих примесей (В и Gd) привело к формированию таких ионных комплексов в расплаве конгруэнтного состава, которые в большей степени, чем при использовании расплава, содержащего только один бор, приблизили состав кристалла ниобата лития к стехиометрическому. При этом происходит увеличение T_C , что свидетельствует об упорядочении структуры кристалла. То есть обнаружен синергетический эффект влияния примесей, что открывает новые возможности в разработке технологий синтеза функциональных материалов с заданными характеристиками на основе кристаллов ниобата лития. Некоторое снижение температуры плавления кристаллов LiNbO₃: B: Gd(1 и 2) по сравнению с кристаллами LiNbO₃:В и LiNbO_{3cong}, вероятно, обусловлено существенным изменением физико-химических характеристик расплава системы $\text{Li}_2\text{O-Nb}_2\text{O}_5\text{-Gd}_2\text{O}_3\text{-B}_2\text{O}_3$ при образовании ионных комплексов, содержащих бор и гадолиний.

Методом ИК-спектроскопии поглощения в кристаллах $LiNbO_3:B:Gd(1\ u\ 2)$ не обнаружено уменьшения количества полос поглощения, соответствующих валентным колебаниям атомов водорода гидроксильных групп. Наблюдается изменение параметра интенсивности и полуширины компонент полос поглощения кристаллов $LiNbO_3:B:Gd(1\ u\ 2)$ по сравнению с $LiNbO_{3cong}$, что свидетельствует об изменении состояния дефектной структуры кристаллов двойного легирования. Показано, что увеличение концентрации гидроксильных групп в кристаллах $LiNbO_3:B:Gd(1\ u\ 2)$ обусловлено физикохимическим и технологическими факторами.

Согласно данным ФИРС, кристаллы LiNbO $_3$: B: Gd(1 и 2) обладают высокой стойкостью к оптическому повреждению. На картинах ФИРС наблюдается только круговое рассеяние лазерного луча на статических структурных дефектах, при этом спеклструктура индикатрисы ФИРС при задействованной плотности мощности лазерного излучения (6.3 W/cm 2) в течение всего эксперимента не раскрывается. То есть в кристаллах LiNbO $_3$: B: Gd(1 и 2) при плотности мощности лазерного излучения ≤ 6.3 W/cm 2 эффект фоторефракции отсутствует.

Таким образом, предложенное в работе двойное легирование конгруэнтного монокристалла ниобата лития нефоторефрактивными примесями (B и Gd) различной химической природы и правильно подобранные технологические параметры выращивания монокристаллов позволили получить оптически высокосовершенные и композиционно однородные монокристаллы $LiNbO_3:(0.58\cdot 10^{-3}\ B_2O_3):(0.51\ mol.\%\ Gd_2O_3)$ и

 $LiNbO_3: (0.32 \cdot 10^{-3} \ B_2O_3): (0.53 \ mol.\% \ Gd_2O_3),$ которые могут быть перспективны для разработки функциональных элементов для преобразования лазерного излучения.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, регистрационный номер научной темы FMEZ-2025-0055.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C. Guanyu, L. Nanxi, D.N. Jun, L. Hong-Lin, Z. Yanyan, H.F. Yuan, Y.T.L. Lennon, Y. Yu, L. Ai-Qun, J.D. Aaron. Adv. Photonics, 4 (3), 034003 (2022).
 DOI: 10.1117/1.AP.4.3.034003
- [2] R.S. Weis, T.K. Gaylord. Appl. Phys. A, 37, 191 (1985). DOI: 10.1007/BF00614817
- [3] Y. Guo, L. Liu, D. Liu, S. Deng, Y. Zhi. Appl. Opt., 44 (33), 7106 (2005). DOI: 10.1364/ao.44.007106
- [4] Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны (Наука, М., 2003)
- [5] Y. Wang, R. Wang, J. Yuan, Y. Wang. J. Lumin., 147, 242 (2014). DOI: 10.1016/j.jlumin.2013.11.032
- [6] M. Carrascosa, A. García-Cabañes, M. Jubera, J.B. Ramiro,
 F. Agulló-López. Appl. Phys. Rev., 2 (4), 040605 (2015).
 DOI: 10.1063/1.4929374
- [7] К.М. Мамбетова, С.М. Шандаров, А.И. Татьянников, С.В. Смирнов. Известия вузов. Физика, **62** (4), 89 (2019). DOI: 10.17223/00213411/62/4/89 [K.M. Mambetova, S.M. Shandarov, A.I. Tatyannikov, S.V. Smirnov. Russ. Phys. J., **62** (4), 658 (2019). DOI: 10.1007/s11182-019-01760-6]
- [8] K. Chen, Y. Zhu, Z. Liu, D. Xue. Molecules, **26** (22), 7044 (2021). DOI: 10.3390/molecules26227044
- [9] H.M. O'Bryan, P.K. Gallagher, C.D. Brandle. J. Am. Ceram. Soc., 68 (9), 493 (1985).
 DOI: 10.1111/J.1151-2916.1985.TB15816.X
- [10] Ю.С. Кузьминов. Электрооптический и нелинейнооптический кристалл ниобата лития (Наука, М., 1987)
- [11] D. Xue, K. Kitamura, J. Wang. Opt. Mater., 23, 399 (2003). DOI: 10.1016/S0925-3467(02)00326-9
- [12] H.D. Megaw. Acta Cryst., 7 (2), 187 (1954). DOI: 10.1107/s0365110x54000527
- [13] M.N. Palatnikov, N.V. Sidorov, O.V. Makarova, D.V. Manukovskaya, L.A. Aleshina, A.V. Kadetova. J. Am. Ceram. Soc., 100 (8), 3703 (2017). DOI: 10.1111/jace.14851
- [14] T. Volk, M. Wohlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)
- [15] A. Kling, J.G. Marques. Crystals., 11 (5), 501 (2021).DOI: 10.3390/cryst11050501
- [16] M.N. Palatnikov, N.V. Sidorov, A.Yu. Pyatyshev, P.P. Sverbil, N.A. Teplyakova, O.V. Makarova. Opt. Mater., 135, 113241 (2023). DOI: 10.1016/j.optmat.2022.113241

- [17] O. Sánchez-Dena, S.D. Villalobos-Mendoza, R. Farías,
 C.D. Fierro-Ruiz. Crystals., 10 (11), 990 (2020).
 DOI: 10.3390/cryst10110990
- [18] C. Cochard, M. Guennou, T. Spielmann, N.V. Hoof, A. Halpin,
 T.J. Granzow. Appl. Phys., 123 (15), 154105 (2018).
 DOI: 10.1063/1.5021758
- [19] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Adv. Mater., 32 (3), 1806452 (2019). DOI: 10.1002/adma.201806452
- [20] Т.С. Черная, Т.Р. Волк, И.А. Верин, В.И. Симонов. Кристаллография, **53** (4), 612 (2008). [T.S. Chernaya, T.R. Volk, I.A. Verin, V.I. Simonov. Crystallogr. Rep., **53** (4), 573 (2008). DOI: 10.1134/S106377450804007X]
- [21] Т.С. Черная, Б.А. Максимов, Т.Р. Волк, Н.М. Рубинина, В.И. Симонов. Письма в ЖЭТФ, 73 (2), 110 (2001).
 [T.S. Chernaya, B.A. Maksimov, T.R. Volk, N.M. Rubinina, V.I. Simonov. JETPL, 73 (2), 103 (2001).
 DOI: 10.1134/1.1358430]
- [22] М.Н. Палатников, О.В. Макарова, Н.В. Сидоров. *Ростовые и технологические дефекты кристаллов ниобата лития различного химического состава* (Изд-во ФИЦ КНЦ РАН, Апатиты, 2018)
- [23] M.N. Palatnikov, I.V. Biryukova, N.V. Sidorov, A.V. Denisov, V.T. Kalinnikov, P.G.R. Smith, V.Ya. Shur. J. Cryst. Growth., 291 (2), 390 (2006). DOI: 10.1016/J.JCRYSGRO.2006.03.022
- [24] Н.В. Сидоров, М.Н. Палатников, Н.А. Теплякова, И.В. Бирюкова, Р.А. Титов, О.В. Макарова, С.М. Маслобоева. Монокристаллы ниобата и танталата лития разного состава и генезиса (Изд-во РАН, М., 2022)
- [25] M. Palatnikov, N. Sidorov, A. Kadetova. O. Makarova. Opt. Mater., 122 (A), 111755 (2021).
 DOI: 10.1016/j.optmat.2021.111755
- [26] М.Н. Палатников, Н.В. Сидоров, В.И. Скиба, Д.В. Макаров, И.В. Бирюкова, Ю.А. Серебряков, О.Э. Кравченко, Ю.И. Балабанов, В.Т. Калинников. Неорг. матер., **36** (5), 593 (2000). [М.N. Palatnikov, N.V. Sidorov, V.I. Skiba, D.V. Makarov, I.V. Biryukova, Y.A. Serebryakov, О.Е. Kravchenko, Y.I. Balabanov, V.T. Kalinnikov. Inorg. Mater., **36** (5), 489 (2000). DOI: 10.1007/BF02758054]
- [27] K. Raksanyc, A. Peter, Z. Szaller, I. Forizs, S. Erdei. Acta Phys. Hung., 61 (2), 213 (1987). DOI: 10.1007/BF03155894
- [28] M. Palatnikov, O. Makarova, A. Kadetova, N. Sidorov, N. Teplyakova, I. Biryukova, O. Tokko. Materials, 16 (13), 4541 (2023). DOI: 10.3390/ma16134541
- [29] X.H. Zhen, H.T. Li, Z.J. Sun, S.J. Ye, L.C. Zhao, Y.H. Xu. Mater. Lett., 58 (6), 1000 (2004). DOI: 10.1016/j.matlet.2003.08.005
- [30] T. Bodziony, S.M. Kaczmarek, J. Hanuza. J. Alloys Compd., **451** (1–2), 240 (2008). DOI: 10.1016/j.jallcom.2007.04.189
- [31] G. Xu, J. Zhu, B. Xiao, X. Yang, X. Wang. Cryst. Res. Technol., 31 (2), K20 (1996). DOI: 10.1002/crat.2170310226
- [32] X. Yang, G. Xu, H. Li, J. Zhu, X. Wang. Cryst. Res. Technol., 31 (4), 521 (1996). DOI: 10.1002/crat.2170310418
- [33] K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, T. Volk. J. Appl. Phys., 84 (9), 5191 (1998). DOI: 10.1063/1.368769
- [34] S. Klauer, M. Whlecke, S. Kapphan. Phys. Rev. B., 45 (6), 2786 (1992). DOI: 10.1103/PhysRevB.45.2786

- [35] Н.В. Сидоров, О.Ю. Пикуль, Н.А. Теплякова, М.Н. Палатников. Лазерная коноскопия и фотоиндуцированное рассеяние света в исследованиях свойств нелинейно-оптического кристалла ниобата лития (Изд-во РАН, М., 2019)
- [36] Ю.М. Таиров, В.П. Цветков. Технология полупроводниковых и диэлектрических материалов (Высшая школа, М., 1983)
- [37] H. Can, W. Shichao, Y. Ning. J. Alloys Compd., 502 (1), 211 (2010). DOI: 10.1016/JJALLCOM.2010.04.146
- [38] К.А. Рудой, Б.В. Набатов, В.И. Строганов, А.Ф. Константинова, Л.В. Алексеева, Е.А. Евдищенко, Б.И. Кидяров. Кристаллография, **48** (2), 334 (2003). [К.А. Rudoĭ, V.I. Stroganov, L.V. Alekseeva, B.V. Nabatov, А.F. Konstantinova, Е.А. Evdishchenko, В.І. Kidyarov. Crystallogr. Rep., **48** (2), 300 (2003). DOI: 10.1134/1.1564211]
- [39] O.Y. Pikoul. J. Appl. Crystallogr., 43 (5/1), 955 (2010).DOI: 10.1107/S0021889810022375
- [40] E. Muzi, M. Cavillon, M. Lancry, F. Brisset, R. Que, D. Pugliese, D. Janner, B. Poumellec. Crystals, 11 (3), 290 (2021). DOI: 10.3390/cryst11030290
- [41] C. Koyama, J. Nozawa, K. Maeda, K. Fujiwara, S. Uda. J. Appl. Phys., 117 (1), 014102 (2015). DOI: 10.1063/1.4905286
- [42] C.-T. Chia, C.-C. Lee, P.-J. Chang, M.-L. Hu, L.J. Hu. Appl. Phys. Lett., 86 (18), 182901 (2005). DOI: 10.1063/1.1922083
- [43] N. Lyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura. J. Solid State Chem., 101 (2), 340 (1992). DOI: 10.1016/0022-4596(92)90189-3
- [44] P. Lerner, C. Legras, J.P. Dumas. J. Cryst. Growth., 3–4, 231 (1968). DOI: 10.1016/0022-0248(68)90139-5
- [45] J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller,
 E. Dieguez. Adv. Phys., 45 (5), 349 (1996).
 DOI: 10.1080/00018739600101517
- [46] K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Z. Szaller, K. Polgar. Appl. Phys. Rev., 2 (4), 040601 (2015). DOI: 10.1063/1.4929917
- [47] L. Kovács, L. Rebouta, J.C. Soarest, M.D. Silva, M. Hage-ali, J. Stoquert, P. Siffert, J.A. Sanz-Garcia, G. Corradi, Z. Szaller, K. Polgár. J. Phys.: Condens. Matter., 5, 781 (1993). DOI: 10.1088/0953-8984/5/7/006
- [48] R.D. Shannon. Acta Crystallographica, A 32, 751 (1976). DOI: 10.1107/s0567739476001551
- [49] L. Kovács, Z. Szaller, K. Lengyel, G. Corradi. Opt. Mater., 37, 55 (2014). DOI: 10.1016/j.optmat.2014.04.043
- [50] L. Kovács, L. Kocsor, Z. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, G. Corradi. Crystals, 7 (8), 230 (2017). DOI: 10.3390/cryst7080230