06

Параметры порового пространства и характеристики керамических мембранных SiC-материалов

© Р.Д. Капустин, А.О. Кириллов, В.Э. Лорян

Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН, 142432 Черноголовка, Московская обл., Россия e-mail: kapustin-roman@mail.ru

Поступило в Редакцию 12 марта 2025 г. В окончательной редакции 15 мая 2025 г. Принято к публикации 19 мая 2025 г.

Исследован низкотемпературный синтез пористых проницаемых керамических материалов на основе мелкодисперсного SiC со спекающими оксидокремниевыми и магнезиальными связками. Особое внимание уделено влиянию формы и морфологии частиц исходных порошковых компонентов на структурные параметры и характеристики пористых керамических материалов. Мембраны на основе карбида кремния, спеченные при максимальных температурах от $1000\,^{\circ}$ С до $1300\,^{\circ}$ С обладали средними размерами пор от 0.5 до $1\,\mu$ m, открытой пористостью до $50\,\%$, прочностью на изгиб до $48.5\,$ MPa и высокой водопроницаемостью до $7890\,l\cdot m^{-2}\cdot h^{-1}\cdot bar^{-1}$. Установленная эффективность фильтрации составила $\sim 99\,\%$ при сохранении стабильной проницаемости и физико-механических характеристик после многократных циклов фильтрации-регенерации.

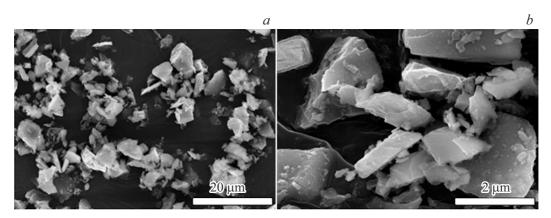
Ключевые слова: пористая керамика, размер пор, пористость, проницаемость.

DOI: 10.61011/JTF.2025.11.61602.34-25

Введение

В процессах разработки высокоэффективных ультра- и нанопористых керамических материалов важным вопросом, который необходимо решать, является определение роли структурно-размерного фактора и его влияния на параметры порового пространства и эксплуатационные свойства материалов и изделий из них. Установление взаимосвязи между структурными (морфология материала, пористость, размер пор и др.) и эксплуатационными свойствами (прочность, проницаемость, каталитические свойства) высокопористой керамики позволяет успешно решать задачи создания керамических фильтров и проницаемых каталитических конвертеров под предварительно заданные эксплуатационные требования и характеристики.

В свою очередь, очевидно, что как макро-, так и микроструктура материала объективным образом зависит от свойств исходных компонентов (твердых и жидких), а также от технологических параметров их получения: соотношения заполнителя и связки, давления прессования, эволюции фазового состава в процессе синтеза при воздействии температур.


Таким образом, подбор исходных компонентов с необходимой морфологией поверхности частиц, создание порошковых смесей оптимального гранулометрического состава для синтеза и подбор рецептур спекающих добавок являются одними из определяющих факторов получения пористых керамических материалов с требуемыми параметрами порового пространства и эксплуатационными свойствами. Сопутствующим направлением является поиск способов и методов, позволяющих значительно снизить температуры спекания и повысить энергоэффективность процесса получения материала.

Ранее [1] мы сообщали об успешном синтезе керамических мембран на основе Al2O₃ с применением связующих SiC, SiO₂ и MgO для снижения температуры спекания до 1300 °C с достижением приемлемой механической прочности и проницаемости материала. Было показано, что в процессе спекания при окислении SiC образуется активный SiO₂, который растворяет присутствующий MgO с образованием жидкой фазы клиноэнстатитового состава, упрочняя структуру материала. Изучалось, прежде всего, влияние размерных характеристик исходных компонентов на морфологию и характеристики синтезируемых материалов.

В настоящей работе акцент направления исследований смещен на изучение возможностей управления структурной частью структурно-размерного фактора.

Целью исследований являлось изучение и оценка значимости влияния морфологии исходных порошков на свойства и характеристики пористой проницаемой керамики для возможности корректного прогнозирования и обеспечения заданных структурно-размерных и физикомеханических параметров материалов.

Требуемые параметры зависят главным образом от области применения материалов и изделий на их основе. Для микрофильтрации жидкостей требуются материалы с эффективной гидравлической проницаемостью и средним размером пор менее микрометра. Для обеспечения эффективности каталитических процессов парогазовых смесей востребованы материалы с высокоразвитой поверхностью порового пространства.

Рис. 1. Микроструктура порошка-заполнителя SiC_P.

Таким образом, для достижения поставленной цели, необходимо оценить взаимосвязь между размером и морфологией исходных порошковых компонентов со структурными параметрами (пористость, размер пор, развитость поверхности порового пространства) материала, а также с возможностью достижения заданных эксплуатационных свойств: газопроницаемостью, прочностью, гидравлическими характеристиками и др.

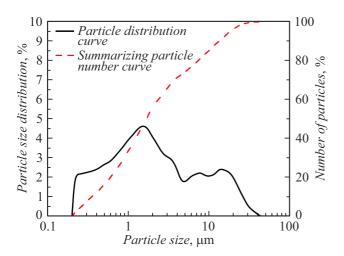
1. Материалы и методы исследований

Для синтеза пористой керамики в настоящей работе использовалась (рис. 1) многокомпонентная смесь на основе заполнителя SiC_P (D50:3 μ m, OOO "Платина", ГОСТ 26327-84), полученного спеканием кремнезема с углеродом в графитовой электропечи Ачесона при высокой температуре около 2000 °C: $SiO_2+3C \rightarrow SiC+2CO$.

Согласно результатам РФА, порошок SiC_P состоит из модификации α -SiC (PDF 2 № 010-72-4531, sp. gr. P6₃mc). Удельная поверхность $\sim 1.2\,\text{m}^2/\text{g}$.

По результатам анализа микроструктуры (рис. 1) было установлено, что частицы данного порошка обладают осколочной структурой с неправильной геометрической формой (определен коэффициент сферичности 0.5). Некоторое отличие заключается также в размерном диапазоне частиц порошка, который имеет бимодальное распределение. Средний размер частиц для одной моды составляет $1.38\,\mu\text{m}$, а для другой — $9.54\,\mu\text{m}$.

В целом в рамках исследований порошок обладал идентичным характерным размером частиц с СВС (SHS)-порошком SiC_{SHS} из работы [2] для корректного сравнения синтезируемых пористых материалов на их основе. При этом удельная поверхность применяемого заполнителя SiC_P более чем на порядок меньше SiC_{SHS} , что позволяет производить сравнительную оценку влияния на морфологию и характеристики материалов, прежде всего структурных параметров исходных порошков заполнителей.


В качестве спекающих и упрочняющих связующих применялся MgO (D_{50} :3 μ m, AO "ЛенРеактив",

ГОСТ 4526-75) и SiO_2 (D_{50} :5 μ m, AO "ЛенРеактив", ГОСТ 9428-73). Массовое соотношение порошказаполнителя к спекающим добавкам (SiC:MgO:SiO₂) соответствовало 94:3:3. Данное соотношение было подобрано опытным путем на основе результатов предыдущих исследований [1,2].

Исходные порошковые компоненты общей массой 200 g помещались в барабан диаметром 15 cm и высотой 20 cm с шарами из нержавеющей стали (диаметром 6 mm и общей массой 800 g) и подвергались смешению в течение 2 h при скорости вращения 30 грт. В полученную шихту вводились жидкие связующие (2 % поливиниловый спирт и жидкое стекло), после чего ее подвергали одноосному прессованию при давлении 10 MPa. Полученные дискообразные экспериментальные образцы обладали размерами Ø40 mm × 10 mm. Экспериментальные образцы подвергались термообработке в лабораторной камерной электропечи при максимальных температурах от 800 °C до 1300 °C в течение 1 h в воздушной атмосфере с последующим охлаждением до комнатной температуры в течение 5 h.

Структура синтезированного материала исследовалась методом РФА с монохроматором на вторичном пучке. Пошаговое сканирование проводилось в диапазоне $2\theta = 15 - 80^{\circ}$ (шаг сканирования 0.05° ; время задержки 6 s). Записанные рентгенограммы анализировались с использованием базы данных карт ICCD PDF-2. Полнопрофильный анализ дифрактограмм проводился в JANA2006 с использованием метода Ритвельда [3]. Анализ микроструктуры излома образцов производился методом СЭМ (Zeiss Ultra +, Carl Zeiss) для оценки размерностей и формфакторов структурных составляющих пористой керамики. Размер полученных пор также определялся методом точки пузырька согласно GOST 26849-86. Открытая пористость SiC_P определялась с помощью метода гидростатического взвешивания по уравнению

$$\varepsilon = \frac{m_2 - m_1}{m_2 - m_3} \cdot 100\%,\tag{1}$$

Рис. 2. Гранулометрический состав порошка SiC_P : распределение частиц по размерам.

где m_1 — масса сухой мембраны, [g], m_2 — масса насыщенной мембраны в воздухе, [g], и m_3 — масса насыщенной мембраны в воде [g].

Для анализа распределения частиц в исходных порошках и пермеате использовался гранулометрический анализатор Microsizer 301 (рис. 2).

Для определения прочности образцов использовался метод трехточечного изгиба на испытательной электромеханической машине РЭМ-20 (Метротест) по ГОСТ 25282-93. Скорость нагружения составляла 0.5 mm/min. Расчет прочности производился по следующей формуле:

$$\sigma = \frac{3 \cdot P \cdot L}{2 \cdot h^2 \cdot b},\tag{2}$$

где P — приложенная нагрузка, [N], L — расстояние между опорами, [mm], h — высота образца, [mm], b — ширина образца, [mm]. Для измерений прочности были подготовлены образцы с размерами $5\times5\times35$ mm.

Размер полученных пор, открытая пористость и другие параметры порового пространства материала определялись с помощью ртутного порозиметра Autopore IV 9500.

Дополнительно производилась оценка газопроницаемости пористой керамики посредством самодельной установки по определению проницаемости при комнатной температуре с использованием сжатого воздуха. Методика испытаний предусматривала герметизацию образцов резиновой прокладкой, при этом измерялась разница между давлением на входе и выходе. В случае ламинарного потока сжимаемой вязкой жидкости через пористый материал газовая проницаемость может быть найдена из закона Хагена-Пуазейля:

$$k = \frac{\eta Q h}{S(P_1 - P_2)} \frac{2P_2}{(P_1 + P_2)},\tag{3}$$

где k — проницаемость, динамическая вязкость η воздуха, используемая для расчета, равна $1.822 \cdot 10^{-5} \, \mathrm{Pa} \cdot \mathrm{s}$,

Q — скорость потока, h — толщина образца, S — площадь поперечного сечения образца, P_1 и P_2 — давления на входе и выходе соответственно. P_1 , P_2 и Q были измерены с помощью установки с каскадной системой ротаметров с различным пределом измерения. Для каждого образца измерение проницаемости проводилось при нескольких давлениях. Избыточное давление на входе увеличивалось от 0.02 до 0.2 MPa с шагом 0.01 MPa.

На основании результатов газопроницаемости образцов производился расчет среднегидравлических размеров пор синтезированных материалов по методике [4]:

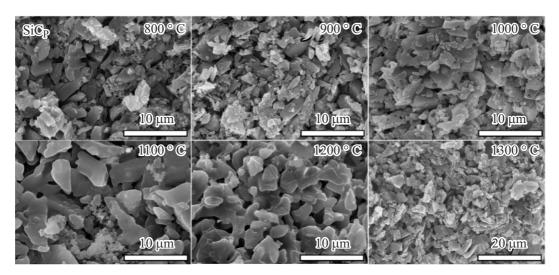
$$R = 28.3 \cdot \sqrt{\frac{k}{P_0}},\tag{4}$$

где k — проницаемость образца, $[\mu \text{m}^2]$, P_0 — открытая пористость, [%].

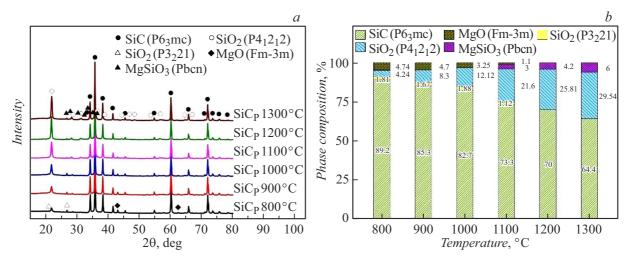
Среднегидравлический размер пор используют для приблизительной характеристики строения керамических материалов. Неточность оценки связана с тем, что расчет ведется при допущении, что все поровые каналы параллельны друг другу, имеют цилиндрическую форму, постоянное сечение, расположены перпендикулярно поверхности и не извилисты.

Эффективность разделения твердой и жидкой фаз синтезированной SiC_P-мембраны оценивалась с помощью суспензии с использованием модельного порошка SiC в качестве твердой фазы и дистиллированной воды в качестве жидкой фазы соответственно. Модельный порошок вводился в суспензию в количестве 2 mass% и обладал размером частиц $D_{50}=0.5\,\mu\text{m}$. Эксперименты по разделению проводились в перекрестно-поточном фильтрационном устройстве при температуре окружающей среды. При этом измерялась проницаемость $(J, l\cdot \text{m}^{-2}\cdot \text{h}^{-1}\cdot \text{bar}^{-1})$ мембраны, которая рассчитывалась по формуле (5):

$$J = \frac{V}{S \cdot \Delta P \cdot t} \cdot 100 \%,\tag{5}$$


где $V,\ [l]$ — проницаемость чистой воды через керамические образцы; $S,\ [m^2]$ — эффективная площадь мембраны; $t,\ [h]$ — продолжительность фильтрации, а ΔP — рабочее давление. Было проведено три измерения для образцов, приготовленных в одинаковых условиях, и записаны средние значения. Твердый остаток $(R,\ \%)$ рассчитывался по формуле

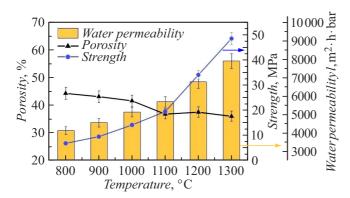
$$R = \frac{C_p}{C_f} \cdot 100\%, \tag{6}$$


где C_f и C_p — содержание твердых частиц в исходной смеси и пермеате.

2. Обсуждение результатов

В результате синтеза в лабораторной камерной электропечи при температурах $800\,^{\circ}\text{C}-1300\,^{\circ}\text{C}$ были получены пористые керамические материалы на основе SiC_P.

Рис. 3. Микроструктура пористых керамических SiC-материалов.


Рис. 4. Дифрактограмма (a) и гистограмма количественного анализа (b) пористых керамических SiC-материалов.

Структурные исследования синтезированных пористых керамических материалов на основе порошковзаполнителей SiC_P показали, что полученный керамический материал имеет развитую неоднородную пористую структуру (рис. 3). При температурах спекания $800\,^{\circ}\text{C} - 1000\,^{\circ}\text{C}$ частицы SiC_{P} сохраняли острые грани, а соединения между ними были малочисленными и тонкими. С повышением температуры спекания до 1100 °C-1300 °C интенсифицировалось образование прочных межчастичных соединений, что приводило к увеличению размера пор при одновременном уменьшении открытой пористости. Хорошо видно, что после спекания до температуры 1100 °C и выше зерна SiC_P обладают небольшими краевыми эффектами оплавления, а между ними просматриваются обволакивающие их литые структуры, образовавшиеся в процессе спекания в жидкой фазе с участием связующих добавок MgO и SiO_2 .

На рис. 4, a показаны дифрактограммы серии образцов в зависимости от температуры спекания. Фазовый состав полученных пористых материалов схож с SiC_{SHS} из работы [2] и может быть описан как совокупность двух основных фаз, SiC и SiO₂, в различных кристаллических модификациях.

При температуре 800 °С основной фазой продукта является исходный SiC (α -SiC). Также зарегистрированы слабые рефлексы, соответствующие фазам: кристобалита (PDF-2 № 010-77-8621, sp. gr. P4₁2₁2), α — кварца (PDF-2 № 010-77-1317, sp. gr. P3₂21) и MgO (PDF-2 № 010-75-1525, sp. gr. Fm $\overline{3}$ m). При дальнейшем повышении температуры до 1300 °С наблюдается рост рефлексов кристобалита и клиноэнстатита с соответствующим уменьшением интенсивности отражений фазы SiC.

На рис. 4, b представлены результаты количественного фазового анализа для серии образцов SiC_P. Показано, что в процессе спекания ($T_{\rm max}=800\,^{\circ}{\rm C}{-}1300\,^{\circ}{\rm C}$) доля

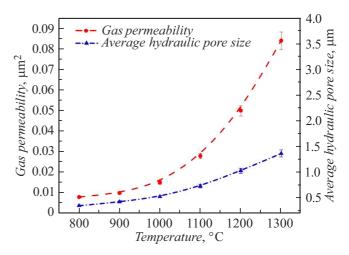
Рис. 5. Открытая пористость, прочность на изгиб и проницаемость синтезированных материалов.

 SiO_2 в результате окисления SiC увеличивается тем значительнее, чем выше температура и исходная удельная поверхность (она достигла максимума в 29.5 mass% при $1300\,^{\circ}C$ для SiC_P).

С ростом температуры окисление образцов SiC_P постепенно увеличивается. Меньшая степень окисления SiC_P по сравнению с SiC_{SHS} [2] связана с существенным различием удельной поверхности частиц порошка заполнителя, поскольку реакционная способность прямо пропорциональна удельной площади поверхности порошка заполнителя.

Таким образом, на основе результатов исследований и данных работ [2,5] выявлен принцип, лежащий в основе механизма спекания порошковых смесей подобного состава. На начальной стадии спекания формируются первичные связи между частицами исходной порошковой смеси и растет число контактов между ними. Затем зоны контакта между частицами, возникшие на начальной стадии, увеличиваются в размере за счет поверхностной диффузии. При температурах выше 800°C происходит ускорение окисления карбида кремния с образованием активного SiO₂. При температурах спекания от 1100 °C он начинает растворять присутствующий в виде добавки MgO с образованием жидкой фазы клиноэнстатитового состава [6], которая смачивает поверхность зерен заполнителя. При охлаждении происходит кристаллизация клиноэнстатита MgSiO₃, образуя прочный каркас структуры пористого материала, что подтверждается значительным увеличением прочности.

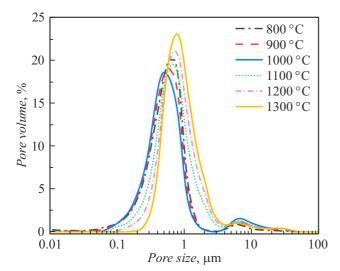
При увеличении температуры спекания от $800\,^{\circ}$ С до $1300\,^{\circ}$ С прочность на изгиб SiC_P мембран увеличилась с 7.05 до $48.54\,\mathrm{MPa}$, что в среднем вдвое превышает прочность образцов на основе SiC_{SHS} , синтезированных при идентичных температурах. Открытая пористость снижалась с $44.28\,\%$ до $36.17\,\%$ (рис. 5). При этом водопроницаемость для мембран на основе SiC_P увеличивается с 4125 до $7890\,l\cdot\mathrm{m}^{-2}\cdot\mathrm{h}^{-1}\cdot\mathrm{bar}^{-1}$, что в среднем на $20\,\%$ выше водопроницаемости мембран на основе SiC_{SHS} из работы [2].

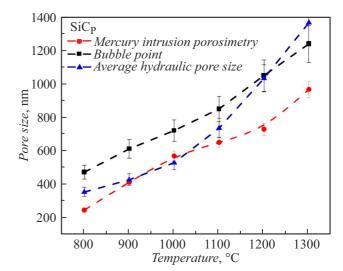

Увеличение водопроницаемости связано со значительным увеличением размеров пор при росте температуры спекания, несмотря на падение открытой пористости, поскольку именно размеры пор значительнее влияют на скорость потока через мембрану, чем ее пористость.

Измеренное линейное термическое расширение образцов из материалов на основе SiC_P не превышало 2.5 %. Было выявлено также увеличение массы образцов порядка 6.2 mass%, что связано с образованием в материале дополнительного оксида кремния в процессе синтеза. Следует отметить снижение интенсивности увеличения массы образцов по мере возрастания температуры. Это говорит о снижении скорости окисления SiC-мембран с ростом температуры спекания, что объясняется кристаллизацией оксидного слоя и, следовательно, значительным ухудшением проникновения молекулярного кислорода через кристаллизованный кремнезем [7].

Также была рассчитана газовая проницаемость по результатам измерений скоростей расхода воздуха через образцы из пористых керамических материалов (рис. 6). Максимальная газопроницаемость составила $0.084\,\mu\text{m}^2$ у образцов, спеченных при температуре $1300\,^{\circ}\text{C}$, а минимальная — $0.008\,\mu\text{m}^2$ у образцов, спеченных при температуре $800\,^{\circ}\text{C}$. Наблюдаемый рост проницаемости симбатен росту проницаемости по воде, поскольку очевидна корреляция с размером пор. Выявленная разница между жидкостной и газовой проницаемостью связана с меньшей вязкостью и большей сжимаемостью пропускаемого потока вещества.

Синтезированные материалы были исследованы методами ртутной порометрии и точки пузырька. Дополнительно производилась оценка размеров пор по результатам измерений газопроницаемости, основные результаты представлены в табл. 1.


Методом ртутной порометрии было выявлено, что синтезированные образцы обладают унимодальным распределением пор по размерам (рис. 7). Было установлено, что заполнитель SiC_P с низкой удельной по-


Рис. 6. Газопроницаемость и среднегидравлический размер пор в керамических материалах на основе SiC_P .

Τ,	Общая	Размер пор	Размер пор по	Размер пор		Пористость,	Водопроницаемость,	Извили-
$^{\circ}\mathrm{C}$	поверхность	(ртутная	газопрони-	по точке	MPa	%	$l \cdot \mathrm{m}^{-2} \cdot \mathrm{h}^{-1} \cdot \mathrm{bar}^{-1}$	стость,
	пор, m ² /g	порометрия), nm	цаемости, пт	пузырька, пт				отн. ед.
800	4.7	243 ± 12	350 ± 28	450 ± 42	6.8 ± 0.3	44.2 ± 2.2	4125 ± 206	30
900	4.2	410 ± 21	425 ± 34	620 ± 55	9.5 ± 0.5	43.1 ± 2.2	4551 ± 227	67
1000	2.4	568 ± 28	527 ± 42	720 ± 65	14.1 ± 0.7	41.6 ± 2.1	5123 ± 256	111
1100	1.9	649 ± 32	734 ± 59	850 ± 76	19.5 ± 0.9	36.8 ± 1.8	5684 ± 284	103
1200	1.5	728 ± 37	1030 ± 82	1050 ± 94	34 ± 1.7	37.5 ± 1.9	6765 ± 338	77
1300	1.1	977 ± 48	1367 ± 109	1240 ± 112	48.5 ± 2.5	36.0 ± 1.8	7890 ± 394	57

Таблица 1. Основные характеристики поровой структуры керамики на основе SiC

Рис. 7. Распределение пор по размерам в керамических материалах на основе SiC_P.

Рис. 8. Сравнение результатов определения размера пор в керамических материалах на основе SiC_P различными методами.

верхностью формирует материал, обладающий порами с размерами от 0.2 до $1\,\mu\mathrm{m}$. Наноразмерных пор в материале на основе $\mathrm{SiC_P}$ практически не наблюдается.

Результаты ртутной порометрии симбатны результатам вычислений размеров пор на основе газопроницаемости, а также оценке эквивалентных гидравлических диаметров каналов, измеренных методом точки пузырька согласно ГОСТ 26849-86 (рис. 8).

У мембран на основе SiC_P наблюдаются на 20% большие средние размеры пор при узком их распределении и, как следствие, большая проницаемость, чем у мембран на основе SiC_{SHS} [2]. Кроме того, выявлена двукратная разница прочностных свойств синтезированных материалов на основе морфологически различных заполнителей. Результаты исследований показывают, что применение порошков одинакового размера, но различной морфологии их поверхности, приводит к получению материалов с существенно различающимися свойствами.

В табл. 2 представлены физико-механические характеристики пористых керамических материалов, синтезированных различными методами в результате исследований [8–15]. Данные приведены сравнительно с характеристиками SiC_P -мембран, синтезированных в настоящей работе.

Максимальная температура спекания пористых керамических материалов на основе SiC_P , синтезированных в настоящей работе, составляла $1300\,^{\circ}$ С, что ниже, чем температура спекания керамики, приготовленной из Al_2O_3 [8,9] и других материалов [10,11]. Таким образом, значительно повышается энергоэффективность и снижается стоимость синтеза. При температурах спекания до $1000\,^{\circ}$ С открытая пористость у мембран на основе SiC_P была схожа с другими представленными материалами, а проницаемость для чистой воды была значительно выше, чем у мембран SiC-зола [12] и SiC-угольная зола [13].

В тех случаях, когда размер пор является эквивалентным, проницаемость чистой воды через синте-

Материал	Температура синтеза, °С	Пористость открытая, %	Размер пор, μm	Прочность на изгиб, МРа	Водопроницаемость, $l \cdot m^{-2} \cdot h^{-1} \cdot bar^{-1}$
Al ₂ O ₃ [9]	1500	39	2.42	46.2	45 400
Al ₂ O ₃ [10]	1400	41.4	6.8	32.7	45 000
SiC-Al ₂ O ₃ [11]	1400	38.22	3.70	38.47	4417 – 4755
SiC-MgO [12]	1400	42.11	2.98	41.29	_
SiC-зола [13]	1000	36.40	2.90	38.40	1532
SiC-угольная зола [14]	1000	44.7	3.7	28.6	5261
SiC-глина [15]	1200	54.3	0.95	~ 17.5	7000
Зола [16]	1150	42	0.49	26.6	5616
SiC_P	1000-1300	42-36	0.7-1	14.1-48.5	5100-7890

Таблица 2. Физико-механические характеристики пористых керамических материалов

зированные SiC-мембраны была выше на 10%-15%, а механическая прочность выше от 10% до 50%, чем у [14,15]. Таким образом, синтезированные SiC-мембраны продемонстрировали отличные комплексные характеристики с точки зрения стоимости производства, механических и эксплуатационных свойств, что делает их весьма конкурентоспособными для коммерческого использования в процессах фильтрации.

Для оценки эксплуатационных характеристик синтезированных мембран была определена их эффективность в процессах фильтрации. В качестве фильтрата применялась суспензия, состоящая из дистиллированной воды с содержанием модельных частиц SiC на уровне 2 mass% при размерах частиц $D_{50}=0.5\,\mu\mathrm{m}$.

В ходе исследования было установлено, что полученный пермеат — чистый и прозрачный, а рассчитанный коэффициент отбраковки показал более чем 99% эффективность отбраковки частиц из суспензии. При длительной работе производительность мембраны не падала ниже 50% от изначальной. Дополнительно мембрана многократно полностью регенерировалась посредством ультразвуковой очистки, и при повторном фильтровании проницаемость и производительность восстановились (до 99% от изначальной).

Полученные результаты свидетельствуют о том, что синтезированные SiC-мембраны обладают высокой эффективностью фильтрации при сохранении стабильности фильтрационных характеристик в ходе многократного модельного эксплуатационного исследования. Кроме того, они обладают прочностью, достаточной, чтобы выдерживать многократные циклы механической принудительной регенерации.

Заключение

Энергоэффективным способом с применением низких температур спекания (от $800\,^{\circ}\mathrm{C}$ до $1300\,^{\circ}\mathrm{C}$) были полу-

чены пористые керамические материалы на основе SiC_P . Установлена прямая зависимость количества синтезированного SiO_2 в материалах от максимальной температуры спекания. При температуре $1300\,^{\circ}\mathrm{C}$ совокупная доля SiO_2 для синтезированных материалов составляет порядка $29.5~\mathrm{mass}\%$. Результаты исследований показали, что оптимальная температура спекания исследованной системы со связующими MgO и SiO_2 находится в диапазоне от $1000\,^{\circ}\mathrm{C}$ до $1300\,^{\circ}\mathrm{C}$.

Открытая пористость снижается с 44% до 36% с ростом максимальной температуры спекания. При этом водопроницаемость для мембран на основе SiC_P увеличивается с 4125 до $7890\,l\cdot m^{-2}\cdot h^{-1}\cdot bar^{-1}$, что связано со значительным увеличением размеров пор при росте температуры спекания и доминирующим влиянием данных размеров на проницаемость материалов, несмотря на падение их открытой пористости. Водопроницаемость SiC_P -мембран в среднем на 20% выше водопроницаемости мембран на основе SiC_{SHS} . Также SiC_P -мембраны обладают высокой прочностью на изгиб (до 48 MPa), их прочностные свойства в среднем вдвое превышают прочность образцов на основе SiC_{SHS} , синтезированных при идентичных температурах.

Применение трех различных методов измерения размера пор позволило выявить симбатность их результатов, имеющиеся различия между ними не являются принципиальными. Это связано с тем, что частицы материала заполнителя SiC_P , обладающие осколочной структурой и низкой удельной поверхностью, обеспечивают формирование пористой керамики с мономодальным распределением пор по размерам.

Определенная эффективность фильтрации пористой керамики составила порядка 99 при отбраковке твердых частиц из модельной суспензии с обеспечением чистоты пермеата. Синтезированные SiC_P -мембраны показали стабильность фильтрационных характеристик в ходе многократного модельного эксплуатационного исследо-

вания. Многократные циклы механической принудительной регенерации не привели к ухудшению прочностных и эксплуатационных свойств.

Результаты исследований показывают, что применение порошков одинакового размера, но с различной морфологией их структуры, приводит к получению материалов с существенно различающимися свойствами. Керамические мембраны, синтезированные с использованием печного порошка $\mathrm{SiC}_{\mathrm{P}}$, обладают большей проницаемостью, размером пор $\sim 0.5-1\mu\mathrm{m}$ и их узким распределением. Данная совокупность характеристик подходит для их применения в микрофильтрации жидкостей.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V.I. Uvarov, R.D. Kapustin, A.O. Kirillov, A.S. Fedotov, M.V. Tsodikov. Refract. Ind. Ceram., 61, 355 (2020). DOI: 10.1007/s11148-020-00486-0
- A.O. Kirillov, R.D. Kapustin, V.I. Uvarov, O.D. Boyarchenko.
 Int. J. Self-Propag. High-Temp. Synth., 33 (4), 280 (2024).
 DOI: 10.3103/S1061386224700262
- [3] V. Petrícek, M. Duček, L. Palatinus. Zeitschrift Fur Krist., 229 (5), 345 (2014). DOI: 10.1515/zkri-2014-1737
- [4] Н.Т. Андрианов, В.Л. Балкевич, А.В. Беляков. *Практикум* по химической технологии керамики: учебное пособие для вузов (ООО РИФ "Стройматериалы", М., 2005)
- [5] Z.Y. Luo, W. Han, X.J. Yu, W.Q. Ao, K.Q. Liu. Ceram. Int., **45**, 9007 (2019). DOI: 10.1016/j.ceramint.2019.01.234
- [6] R.D. Kapustin, V.I. Uvarov, A.O. Kirillov. Open Ceram., 16, 100499 (2023). DOI: 10.1016/j.oceram.2023.100499
- J. Rodríguez-Viejo, F. Sibieude, M.T. Clavaguera-Mora,
 C. Monty. Appl. Phys. Lett., 63 (14), 1906 (1993).
 DOI: 10.1063/1.110644
- [8] Y. Cheng, Y. Yu, C. Peng, J. Wu. Ceram. Int., 46 (8), 11297 (2020). DOI: 10.1016/j.ceramint.2020.01.158
- [9] H. Qi, Y. Fan, W. Xing, L. Winnubst. J. Eur. Ceram. Soc., 30 (6), 1317 (2010).DOI: 10.1016/j.jeurceramsoc.2009.12.011
- [10] D. Das, N. Kayal, G.A. Marsola, L.A. Damasceno, M.D. de M. Innocentini. Int. J. Appl. Ceram. Technol., 17, 893 (2020). DOI: 10.1111/ijac.13463
- [11] C.Y. Bai, X.Y. Deng, J.B. Li, Y.N. Jing, W.K. Jiang, Z.M. Liu, Y. Li. Ceram. Int., 40 (4), 6225 (2014).
 DOI: 10.1016/j.ceramint.2013.11.078
- [12] D. Das, K. Nijhuma, A.M. Gabriel, G.P.F. Daniel,
 D. de M.I. Murilo. J. Eur. Ceram., Soc., 40, 2163 (2020).
 DOI: 10.1016/j.jeurceramsoc.2020.01.034
- [13] D. Das, N. Kayal, M.D. de M. Innocentini. Trans. Indian Ceram. Soc., 80 (3), 186 (2021).
 DOI: 10.1080/0371750X.2021.1934122
- [14] S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song. Ceram. Int., **43** (10), 7736 (2017). DOI: 10.1016/j.ceramint.2017.03.079
- [15] D. Liang, J. Huang, Y. Zhang, Z. Zhang, H. Chen, H. Zhang.
 J. Eur. Ceram. Soc., 41 (11), 5696 (2021).
 DOI: 10.1016/j.jeurceramsoc.2021.04.055