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Представлены результаты исследования мемристивных свойств структуры Cu/(Co40Fe40B20)x (SiO2)100−x /

LiNbO3/Cr/Cu/Cr/ситалл. Показано, что использование нанокомпозита (Co40Fe40B20)x (SiO2)100−x позволяет

реализовать комплекс практически значимых мемристивных свойств. Так, напряжение переключения из

закрытого в открытое состояние конденсаторной структуры и обратно составляет ±4V, отношение Roff/Ron

достигает сотни единиц, число циклов обратимого резистивного переключения составляет более 104,

реализуется пластичность резистивных состояний. Подтверждено, что для реализации многофиламентного

резистивного переключения в диэлектрической прослойке необходимо присутствие нанокомпозита с концен-

трацией металлической фазы до наступления порога перколяции между верхним и нижним электродом. При

этом основную роль играет структура нанокомпозита, а элементный состав гетерогенной пленки не столь

существенен для реализации комплекса технологически значимых свойств мемристора.
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Введение

Интенсивное развитие искусственного интеллекта в

последнее время выдвигает определенные требования

к разработке новой электронной компонентной базы.

В этой связи одним из перспективных направлений ис-

следования являются мемристивные структуры металл–
диэлектрик–металл (М/Д/М), где обнаружен эффект

обратимого резистивного переключения (РП). Данное

свойство может быть использовано как для создания

элементов энергонезависимой многоуровневой памяти,

так и для эмуляции синапсов при разработке нейроморф-

ных вычислительных систем, которые эффективны при

решении задач искусственного интеллекта: распознава-

ния естественного языка и образов, принятия решений,

обобщения, прогнозирования и др. [1–8].
Обратимое РП может быть, в большинстве случа-

ев, объяснено двумя механизмами изменения процес-

сов электропереноса. В первом случае рассматривается

электромиграция вакансий кислорода в диэлектрической

прослойке под действием высокой напряженности элек-

трического поля [1,7]. Во втором — проникновение

катионов металлов (например, Cu, Ag) в диэлектик из

электродов соответствующего состава [2,8–13]. В ре-

зультате этих процессов в диэлектрическом слое со-

здаются или разрушаются тонкие проводящие каналы

(филаменты), которые и определяют резистивные ха-

рактеристики функционального слоя. Очевидно, что при

малой плотности таких каналов их положение, напря-

жение синтеза и разрушения во многом определяются

дефектами мемристивной структуры. Такой, во многом

случайный, механизм формирования проводящих кана-

лов обусловливает большой разброс характеристик от

элемента к элементу и высокую степень деградации

свойств мемристоров при циклических РП [1,2].

Нами было предложено использование в качестве

одного из электродов мемристивной структуры плен-

ки нанокомпозита (НК) металл–диэлектрик. В НК до

порога перколяции электроперенос осуществляется по

цепочке металлических наногранул. Данные каналы за-

дают пространственное расположение и поверхностную

концентрацию филаментов в диэлектрической прослой-

ке. Выбранный подход был апробирован в мемристивных

структурах М/НК/М, где НК выступала гетерогенная

система (Co40Fe40B20)x (LiNbO3)100−x . В этом случае

была показана возможность реализации биполярного

резистивного переключения с величиной отношения вы-

сокоомного (Roff) к низкоомному (Ron) резистивных со-

стояний Roff/Ron ≈ 100 [14–16]. Кроме того, для данной

структуры выносливость (число циклов РП) превышало

106, а время удержания резистивных состояний —

104 s [15,16]. Также мемристивные элементы показали

возможность плавного изменения резистивного состо-

яния в окне Roff − Ron (пластичность), и это позволи-

ло эмулировать важные свойства биологических синап-

сов [16–19]. Структурные исследования мемристивно-

го элемента М/(Co40Fe40B20)x (LiNbO3)100−x /М показа-
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ли, что на начальной стадии роста нанокомпозита на

нижнем металлическом электроде в результате процес-

са самоорганизации формируется диэлектрическая про-

слойка (LiNbO3) толщиной 10−15 nm [20,21]. В связи

с этим были синтезированы структуры М/НК/Д/М, где

в качестве Д используется прослойка LiNbO3 толщиной

10−15 nm. Полученные структуры обладали свойствами,

подобными представленным выше.

Высказанные выше предположения о формировании

многофиламентного РП в структурах М/НК/Д/М за

счет проводящих каналов НК дают высокую степень

вариативности в оптимизации свойств за счет исполь-

зования НК с различным составом металлической и

диэлектрической фаз. Наиболее исследованным является

нанокомпозит (Co40Fe40B20)x (SiO2)100−x , который, с од-

ной стороны, имеет гомогенную наногранулированную

структуру [22], а с другой — достаточно высокую тер-

мическую стабильность структурных и электрических

свойств [23].
Поэтому основной целью настоящей работы является

выявление влияния диэлектрической фазы нанокомпози-

та (Co40Fe40B20)x (SiO2)100−x на мемристивные свойства

структуры М/(CoFeB)x(SiO2)100−x /LiNbO3/М.

1. Образцы и методика их
исследования

Мемристивные структуры

Cu/(Co40Fe40B20)x (SiO2)100−x /LiNbO3/Cr-Cu-Cr/ситалл

(рис. 1) были получены ионно-лучевым распылением с

использованием теневых масок.

На первом этапе осаждался нижний электрод струк-

туры Cr–Cu–Cr 100/1000/100 nm соответственно. Перед

процессом осаждения металлической пленки использо-

вался процесс ионной очистки поверхности подложки.

Синтез осуществлялся в одном технологическом цикле

путем последовательного распыления мишеней Cr и Cu

при напряжении на аноде 2 kV и токе плазмы 100mA

при давлении Ar 3.9 · 10−4 Torr. Выбор многослойной

конфигурции металлического электрода позволяет, с

одной стороны, защитить пленку Cu от воздействия

естественного процесса окисления в атмосфере, с дру-

гой — создать буферный слой, препятствующий про-

цессам электромиграции ионов Cu в пленку НК, и

Glass-ceramic substrate

Cu
(Co Fe B ) (SiO )40 40 20 x 2 100 –x

LiNbO3

Cr–Cu–Cr

Рис. 1. Топология экспериментальных образцов М/НК/Д/М.

при этом сформировать электрод с низким удельным

электрическим сопротивлением.

Последующее напыление пленок

(Co40Fe40B20)x (SiO2)100−x /LiNbO3

(далее для краткости будем обозначать композит

(Co40Fe40B20)x (SiO2)100−x в данной структуре, как

(CoFeB)x(SiO2)100−x) проводилось через теневые маски

на четыре подложки Cr–Cu–Cr/ситалл, расположенные
в ряд так, что общая площадь рабочей поверхности со-

ставляла 240× 48mm. Теневой экран накрывал подлож-

ки и имел отверстия диаметром 8mm, расположенные

в 24 ряда по 6 отверстий в ряду. Осаждение плен-

ки LiNbO3 осуществлялось следующим образом. Ми-

шень представляла собой пластину монокристалличе-

ского ниобата лития размером 280× 80× 2mm, закреп-

ленную на водоохлаждающем основании. Распыление

проводилось в атмосфере Ar при давлении 3.9 · 10−4 Torr

с добавлением 1.9 · 10−5 Torr O2, что позволяло умень-

шить дефицит кислорода в синтезированной пленке.

Осаждение LiNbO3 на подложку проводилось в режиме

ее прохождения в позиции распыления. Скорость движе-

ния подложки задавалась скоростью вращения карусели

подложкодержателя (один оборот в течение 5min). При

этом за один цикл толщина покрытия составляла поряд-

ка 5 nm. Таких циклов осаждения проводилось три, и

суммарная толщина ниобата лития была порядка 15 nm.

По аналогичной технологии осуществлялось осажде-

ние НК. Составная мишень представляла собой пла-

стину сплава Co40Fe40B20 размером 280× 80 × 10mm,

на поверхности которой крепились 13 навесок моно-

кристаллического кварца размером 80× 10 × 2mm. Рас-

положение навесок было неравномерным вдоль длины

мишени. Это позволило плавно и непрерывно изме-

нять концентрацию металлической фазы композита на

поверхности подложек в зависимости от расположения

подложка–мишень [24,25]. Для более полного окисления

диэлектрической фазы НК в процессе синтеза к инерт-

ному газу (Ar) при давлении 3.9 · 10−4 Torr добавлялось

небольшое количество кислорода порядка 0.9 · 10−5 Torr

парциального давления. Выбранная конфигурация со-

ставной мишени и количество навесок позволило варьи-

ровать концентрацией металлической фазы композита от

18.9 до 42.1 at.% в зависимости от положения образцов в

процессе осаждения. Напыление проводилось в течение

15min при напряжении на аноде 2 kV и токе плаз-

мы 100mA на неподвижную подложку. Это позволило

сформировать пленку НК толщиной ≈ 250 nm. Как и в

случае нанесения нижнего электрода, перед напылением

проводилась ионная очистки поверхности подложки.

Верхние медные контактные площадки наносили

через металлическую маску с размером отверстий

0.5× 0.2mm в течение 30min по технологии, описанной

выше.

Вакуумная установка ионно-лучевого распыления

имеет безмасляную систему откачки, состоящую из

Журнал технической физики, 2025, том 95, вып. 11
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спирального и турбомолекулярного насосов. Перед на-

пылениями создавался вакуум не хуже 1.0 · 10−6 Torr.

Для синтеза использовались особо чистые газы не

хуже 99.999%.

Элементный состав НК определяли с помощью энер-

годисперсионной рентгеновской приставки Oxford INCA

Energy 250 на сканирующем электронном микроскопе

JEOL JSM-6380 LV. Структурный анализ проводился

рентгенографическим методом на дифрактометре рент-

геновский BRUKER D2 PHASER.

Измерение вольт-амперных характеристик (ВАХ)
структур

Cu/(CoFeB)x(SiO2)100−x /LiNbO3/Cr–Cu–Cr/ситалл

и их мемристивных свойств проводили с по-

мощью многофункционального источника-измерителя

KEITHLEY 2450 и аналитической зондовой станции

в режиме ограничения тока. ВАХ структур М/НК/М

измеряли при заземленном нижнем электроде и раз-

вертке напряжения смещения U верхнего электро-

да по линейному закону в последовательности от

0 → +Umax → Umax → 0V с шагом 0.1 V. Скорость изме-

нения напряжения составляла 10V/s.

2. Результаты эксперимента

В ходе исследования было синтезировано 13 ячеек

мемристивной структуры, отличающихся концентрацией

металлической фазы в композите в диапазоне от 18.9

до 42.1 at.%. На рис. 2 и 3 приведены соответственно

дифрактограммы пленок НК (CoFeB)x(SiO2)100−x и ВАХ

мемристивных элементов для промежуточных концен-

траций, нагляднее всего демонстрирующих динамику

мемристивных свойств.

Характеризация структуры НК (CoFeB)x (SiO2)100−x и

Д LiNbO3 была проведена рентгенографическим мето-

дом на пленках толщиной порядка 1µm, осажденных на

поверхность монокристаллического Si (100).
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Рис. 2. Дифрактограммы пленок НК (CoFeB)x (SiO2)100−x .
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Рис. 3. ВАХ мемристивного элемента

Cu/(Co40Fe40B20)x (SiO2)100−x /LiNbO3/Cr/Cu/Cr/ситалл при

различных концентрациях металлической фазы НК: 1 — 18.9,

2 — 35.5, 3 — 41.9 at.%.

Рентгеновская дифракция не выявила кристалличе-

ской структуры НК во всем рассматриваемом диапазоне

концентраций металлической фазы (рис. 2). Удивитель-
ным является наличие малоугловой дифракции рентге-

новского излучения от пленок НК (CoFeB)x(SiO2)100−x .

Данное явление возможно, если предположить наличие

в НК достаточно хорошо упорядоченной структуры

относительного расположения гранул металла. По по-

ложению максимума можно оценить среднее расстояние

между гранулами. Оно составляет порядка 3 nm и уве-

личивается с ростом концентрации металлической фазы

(рис. 2, вставка).

Рентгеновская дифракция от пленки LiNbO3 (рис. 4)
наиболее точно описывается при ее моделировании

средой, где нанокристаллы оксида ниобия внедрены в

аморфную матрицу. Положение пика позволяет пред-

положить, что оксид ниобия ближе к непредельной

форме Nb2O5. Отсутствие малоугловой дифракции мо-

жет свидетельствовать об отсутствие упорядоченного

распределения наночастицы оксида ниобия или об их

большом (> 8 nm) размере (рис. 4, вставка).

Как видно из приведенных на рис. 4 кривых

ВАХ структур Cu/(Co40Fe40B20)x (SiO2)100−x /LiNbO3/

Cr/Cu/Cr/ситалл, во всем исследуемом диапазоне кон-

центраций наблюдается биполярное резистивное пере-

ключение. Величина напряжения переключения из вы-

сокоомного в низкоомное состояние (Roff → Ron) и из

низкоомного в высокоомное состояние (Ron → Roff) су-

щественно различаются в зависимости от концентрации

металлической фазы в НК. Кроме того, изменяется

ток через образец, при котором наблюдаются РП, —

последний возрастает с увеличением значения x . Данные

параметры, а также отношение Roff/Ron в зависимости

от концентрации металлической фазы НК, представлены

на рис. 5. Можно выделить диапазон x , в рамках

которого наблюдаются оптимальные свойства структур.

Журнал технической физики, 2025, том 95, вып. 11



22 января 2026 г. 22:18 1st draft

2172 А.В. Ситников, Ю.Е. Калинин, И.В. Бабкина, А.Е. Никонов, Д.С. Погребной, А.Р. Шакуров

10 20 40 60
0

200

400

600

2Θ, deg

I,
 a

. 
u
.

800

80 9030 50 70

LiNbO3

Si
NbO2

2 4 6

5
10

2Θ, deg
I,

 a
. 
u
.

4
10

2
10

3
10

Рис. 4. Дифрактограмма пленки LiNbO3.
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Рис. 5. Концентрационные зависимости пара-

метров Roff/Ron, Uset и Ureset для структуры

Cu/(Co40Fe40B20)x (SiO2)100−x /LiNbO3/Cr/Cu/Cr/ситалл.

Напряжение переключения в районе ±4V и отношение

Roff/Ron ≈ 50.

Более подробный анализ концентрационных

зависимостей мемристивных свойств для структуры

Cu/(Co40Fe40B20)x (SiO2)100−x /LiNbO3/Cr/Cu/Cr/ситалл

приведен на рис. 5.

3. Анализ полученных результатов

Принимая во внимание механизм многофиламентного

РП в прослойке диэлектрика LiNbO3, которое задается

проводящими каналами в НК, легко объяснить получен-

ные результаты. При возрастании концентрации метал-

лической фазы в НК (Co40Fe40B20)x (SiO2)100−x наблю-

дается как уменьшение сопротивления канала (Rch), так
и возрастание плотности проводящих каналов. Умень-

шение Rch приводит к перераспределению напряжения

в цепочке канал–диэлектрик и, следовательно, увели-

чивается напряжение на прослойке LiNbO3, которое и

вызывает РП. Ток через образец задается плотностью

индуцированных филаментов, которая пропорциональна

плотности проводящих каналов в НК.

Значимым свойством мемристоров является сохра-

нение индуцированых резистивных состояний с те-

чением времени. Данная характеристика в исследу-

емых мемристивных структурах имеет тенденцию к

релаксации (рис. 6). Подобное поведение мы наблю-

дали в структурах, где в качестве НК использовался

(Co40Fe40B20)x (LiNbO3)100−x [26]. В данной работе было

показано, что существенную роль в релаксации индуци-

рованного резистивного состояния играет термическая

активация электронов с нейтральных вакансий в примес-

ную зону и прыжковый перенос в ней зарядов. Так как

выявленные релаксационные процессы в LiNbO3 имеют

различные τ0 и Eact, был разработан алгоритм импульс-

ного РП, при котором не успевают реализовываться про-

цессы, ответственные за релаксацию индуцированного

резистивного состояния [27].
Для изучения вопроса о невысокой временной ста-

бильности индуцированных резистивных состояний бы-

ло проведено измерение квазистатических ВАХ. Шаг по

напряжению составлял 0.1V. При текущем напряжении

в течение 10 s измерялось 10 текущих значений сопро-

тивления (рис. 7). Эти значения обрабатывались путем

расчета относительного изменения величины сопротив-

ления при фиксированном напряжении на структуре

(рис. 8).
В области положительных напряжений, приложенных

к верхнему электроду, необратимые изменения рези-

стивного состояния (уменьшение значений R) наблюда-

ются при весьма незначительных напряжениях и про-

должаются с возрастающей скоростью до ∼ 3.5V. Легко

представить данную зависимость (Ri+1−Ri)/Ri , как су-

перпозицию двух процессов изменения сопротивления

под действием приложенного напряжения, реализуемых

в различном диапазоне приложенного потенциала. При

переходе Ron → Roff в диапазоне от от 0 до −2V

не наблюдается значительных изменений напряжения.

0 2000 4000
t, s

R
, 
Ω

510

30001000

410

Roff

Ron

Рис. 6. Временнáя зависимость индуцированных

резистивных состояний для мемристорных структур

Cu/(Co40Fe40B20)35.5(SiO2)64.5/LiNbO3/Cr/Cu/Cr/ситалл.
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Переключение структуры в высокоомное состояние осу-

ществляется в диапазоне напряжений от −2 до −4V, что

хорошо коррелирует с ходом временных зависимостей

индуцированных резистивных состояний (рис. 7).

Аналогичную картину мы наблюдаем на семействе

кривых R(t), которая демонстрирует пластичность ин-

дуцированных резистивных состояний (возможность ре-

ализовать любое значение сопротивления структуры

между Roff и Ron) (рис. 9) Видно, что при относительно

больших значениях R наблюдается снижение номинала

в течение времени измерения, тогда как при значениях

R, близких к минимальным, R(t) увеличивается. Это

согласуется с кривыми на рис. 6. При этом скорость

уменьшения R(t) выше, чем увеличение R(t).

2000 2500

t, s

R
, 
Ω

5
10

15001000

4
10

Roff

Ron

3
10

2
10

Ron

0 → –U  → 0 → +U  → 0max max

1100 1200 1300

t, s

R
, 
Ω

2
4·10

2
5·10

2
6·10

2050 2100 2150

t, s

R
, 
Ω

2
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Рис. 7. Временнáя зависимость изменения

сопротивления структуры Cu/(Co40Fe40B20)35.5(SiO2)64.5/
LiNbO3/Cr/Cu/Cr/ситалл при изменении прикладываемого

напряжения.
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 R
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Рис. 8. Относительная скорость изменения

сопротивления для структуры Cu/(Co40Fe40B20)35.5(SiO2)64.5/
LiNbO3/Cr/Cu/Cr/ситалл от приложенного напряжения.
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Рис. 9. Временнáя зависимость резистивных состоя-

ний мемристорных структур Cu/(Co40Fe40B20)35.5(SiO2)64.5/
LiNbO3/Cr/Cu/Cr/ситалл, индуцированных при различных то-

ках ограничения.
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I = –0.03 A
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I = –0.07 A

∆t = 0.01 s

Рис. 10. Переключения резистивных состояний в

мемристорных структурах Cu/(Co40Fe40B20)35.5(SiO2)64.5/
LiNbO3/Cr/Cu/Cr/ситалл.

Тем не менее структуры Cu/(Co40Fe40B20)x

(SiO2)100−x /LiNbO3/Cr/Cu/Cr/ситалл демонстрируют

значительную устойчивость обратимых РП (рис. 10).
Параметры переключающих импульсов (напряжение
импульса, ток импульса и время импульса) представлены
на рисунке. Деградация индуцированных состояний не

наблюдается после 104 циклов переключения.

Заключение

Исследования комплекса мемристивных

свойств структуры Cu/(Co40Fe40B20)x (SiO2)100−x /

LiNbO3/Cr/Cu/Cr/ситалл показали, что в диапазоне

концентраций металлической фазы НК от 18

до 43 at.% в ней наблюдаются обратимые биполярные

переключения. Величина напряжений переключения
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из Roff в Ron состояния и, наоборот, уменьшается с

увеличением x и достигает ±4V при x = 37 at.% —

42 at.%. Отношение Roff/Ron достигает сотни

единиц. Число циклов обратимого РП составляет

более 104. Выявлена некоторая релаксация значений

временных зависимостей индуцированных резистивных

состояний, что связано с электрическими свойствами

функциональной прослойки LiNbO3, которая в

исходном состоянии представляет собой сложную

гетерогенную структуру, где нанокристаллы NbO2

внедрены в аморфную матрицу. Проведенное

комплексное исследование подтвердило, что для

реализации многофиламентного РП в диэлектрической

прослойке необходимо присутствие НК с концентрацией

металлической фазы до наступления порога перколяции

между верхним и нижним электродом. При этом

основную роль играет структура НК, а элементный

состав гетерогенной пленки не столь существенен

для реализации комплекса технологически значимых

свойств мемристора.
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