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Проведены сравнительные исследования тепловых характеристик монокристаллов германия с дислока-

циями и бездислокационного в динамическом режиме прохождения температурной волны через образец.

Показано, что образцы бездислокационного германия имеют большее значение коэффициента теплопровод-

ности (на 18% в кристаллографическом направлении 〈100〉 и на 9% в направлении 〈111〉) по сравнению

с образцами германия с дислокациями. В то же время значения коэффициентов температуропроводности

образцов бездислокационного и германия с дислокациями различаются незначительно.
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Введение

Германий (Ge) — первый и один из наиболее чи-

стых, востребованных и досконально изученных клас-

сических полупроводниковых материалов [1]. Основные
применения кристаллического германия в настоящее

время — это оптика и электроника [1,2]. В окне

прозрачности атмосферы 8.0−14µm германий, благо-

даря лучшим физико-химическим свойствам, является

наиболее востребованным оптическим и эффективным

акустооптическим материалом [2,3]. В последние годы

интерес к германию активизировался в связи с расшире-

нием применения материала для изготовления подложек

фотоэлектрических преобразователей [2,4]. Актуальным
является применение германия в качестве детекторов

излучений высоких энергий [5,6].
Для большинства применений кристаллического гер-

мания выдвигаются требования не только высокой чи-

стоты или определенного уровня легирования, но и

минимальной концентрации дефектов кристаллической

решетки материала. К числу основных типов дефек-

тов, оказывающих наибольшее влияние на оптические

и электрофизические характеристики монокристаллов

германия, относятся, в первую очередь, дислокации

и их производные — малоугловые границы и линии

скольжения.

Дислокации в основном влияют на механические свой-

ства твердых тел (упругость, пластичность, прочность,
внутреннее трение), для которых их присутствие ча-

сто является определяющим. Они изменяют оптические

свойства кристаллов, на чем основан метод наблюдения

изолированных дислокаций в прозрачных материалах.

Дислокации нарушают оптическую однородность кри-

сталлов, что приводит к существенному рассеянию ИК

излучения и носителей электрического заряда [7–9].
Наличие дислокаций в малодислокационных кристаллах,

используемых в фотовольтаике, приводит к несоответ-

ствию параметров кристаллических решеток Ge и соеди-

нений AIIIBV, препятствуя росту высококачественных

фоточувствительных эпитаксиальных слоев на германи-

евой подложке [10–12].
Дислокации косвенно влияют на свойства кристаллов,

зависящие от характера распределения и перемещения

в них точечных дефектов (примесей, вакансий, центров
окраски и др.) [13].
Из вышесказанного следует важность понимания теп-

лофизических свойств германия. В то же время до

недавнего времени считалось, что теплопроводность яв-

ляется константой материала, зависящей от параметров

окружающей среды, прежде всего от температуры, но

никак не от концентрации в материале дефектов струк-

туры. В инженерных расчетах обычно использовалось

справочное значение, полученное при первоначальном

исследовании материала, что в ряде случаев не соот-

ветствовало действительности. Развитие силовой элек-

троники и оптики выявило необходимость получения

материалов с высокой теплопроводностью, и это требует

более тщательного изучения этого параметра с целью

выявления возможностей его увеличения.

Монокристаллы германия активно применяются в по-

лупроводниковой электронике, в инфракрасной оптике,

что обусловливает достаточно хорошую изученность

свойств материала. Кроме того, Ge, благодаря срав-

нительно простой, хорошо изученной кристаллической
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решетке и высокому химическому и структурному со-

вершенству, часто используется для исследования недо-

статочно изученных процессов в твердых телах.

Основной вклад в теплопроводность Ge вносит фонон-

ная составляющая. Фононный спектр заметно зависит

от различных структурных дефектов, хотя это, чаще

всего, проявляется при низких температурах [14]. Из

общих соображений понятно, что дислокации, будучи

заметным дефектом кристаллической решетки, должны

оказывать влияние на фононные процессы, к числу

которых относится теплопроводность.

В работах [15–17] нами была показана зависимость

коэффициентов теплопроводности и тепловой диффу-

зии Ge от концентрации легирующей примеси и от

кристаллографического направления, в котором через

образец проходит температурная волна. Так, увеличение

концентрации легирующей примеси приводит к сни-

жению значений коэффициентов теплопроводности и

тепловой диффузии Ge. Этот эффект более ярко выра-

жен у кристаллов Ge n-типа. Максимальные значения

коэффициентов теплопроводности и тепловой диффузии

монокристаллического Ge n-типа наблюдаются в кри-

сталлографическом направлении 〈111〉, минимальные

значения отвечают поликристаллическому германию.

Кроме того, известно, что природный германий имеет

в составе 5 изотопов в разном процентном соотношении.

Такой изотопический беспорядок вносит искажения в

кристаллическую решетку, что оказывает влияние на

теплопроводность Ge. Авторами [18] показано, что изо-

топически чистый Ge при низких температурах имеет

теплопроводность в 8.5 раз выше Ge природного со-

става. Изотопически чистые монокристаллы германия

отличаются от природных кристаллов по таким характе-

ристикам, как температура фазового перехода, парамет-

ры элементарной ячейки, коэффициенты поглощения и

отражения излучения; также наблюдается существенное

отличие в распространении звуковых волн [19,20].
Таким образом, на настоящий момент является акту-

альным проведение сравнительных исследований про-

хождения температурных волн (т. е. значений коэф-

фициентов теплопроводности и температуропроводно-

сти) через монокристаллы с совершенной кристалличе-

ской структурой — бездислокационные монокристаллы

(БДГ) и через монокристаллы с наличием дислокаций

(ДГ), которые обычно возникают при выращивании

монокристаллов германия из расплава, если не исполь-

зуются специальные меры технологического характера

для снижения количества дислокаций.

1. Методика эксперимента

В настоящей работе исследовались монокристалли-

ческие и поликристаллические образцы германия элек-

тронного типа проводимости (примесь — сурьма), ко-
торые отличались по величине удельного электросо-

противления (концентрации легирующей примеси), по
кристаллографическому направлению и по наличию и

отсутствию дислокаций в монокристаллах. Кристаллы

выращивались из расплава методом Чохральского в

Тверском государственном университете (поликристал-
лы и дислокационный германий) и на предприятии АО

”
Германий“ (г. Красноярск). Удельное электросопротив-

ление определялось четырехзондовым методом. Плот-

ность дислокаций исследуемых образцов измерялась по

подсчету ямок химического травления согласно ГОСТ

16153-80. Характеристики образцов приведены в разд. 2.

Методика определения коэффициента тепловой диф-

фузии (температуропроводности), в основе которой ле-

жит периодический нагрев одной поверхности образца,

была впервые предложена А.Дж. Ангстремом в 1863 г.,

как описано в работе [21]. С. Лэнг [22] модифицировал
метод, предложив верхнюю поверхность исследуемого

материала, расположенного на пироэлектрическом де-

текторе, освещать синусоидально модулированным теп-

ловым потоком. Температурная волна, проходя через

исследуемый образец, распространяется в детекторе. Из-

менение температуры в пироэлектрическом кристалле

детектора вызывает изменение поляризации, что при-

водит к протеканию пироэлектрического тока во внеш-

ней цепи. С помощью синхронного усилителя (Lock-In
amplifier) регистрируется амплитуда пироэлектрическо-

го тока, идущего с детектора, и разность фаз между

падающим на исследуемый образец тепловым потоком и

пиротоком. С использованием методов математического

моделирования производится расчет частотной зависи-

мости пиротока и разности фаз между падающей на

образец синусоидально-модулированной тепловой вол-

ной и пирооткликом. Коэффициент температуропровод-

ности исследуемого образца подбирают таким образом,

чтобы рассчитанная кривая частотной зависимости раз-

ности фаз совпадала с экспериментальной [22]. Авто-
рами [23,24] было предложено использовать для опре-

деления коэффициента температуропроводности метод

прямоугольной тепловой волны (TSW-метод — Thermal

Square Wave Method at Single Frequency), когда поверх-

ность образца нагревается прямоугольно модулирован-

ным тепловым потоком. Использование прямоугольной

модуляции теплового потока, как подробно показано в

работе [24], существенно упрощает математический ап-

парат. TSW-метод позволяет проводить оценку коэффи-

циентов температуропроводности и теплопроводности

несегнетоэлектрических материалов, расположенных на

сегнетоэлектрическом кристалле, независимо от соот-

ношения: толщина несегнетолектрического материала–
толщина сегнетоэлектрика [15,23].
В основе TSW-метода лежит измерение пироэлек-

трического тока, индуцированного в сегнетоэлектриче-

ском кристалле, на который помещен несегнетоэлек-

трический материал (в нашем случае — образец Ge),
с помощью прямоугольно модулированного теплового

потока (т. е. при периодическом изменении температуры

образца) (рис. 1). В эксперименте в качестве сегнето-

электрического кристалла использован кристалл танта-

лата лития (TL). Данный выбор обусловлен тем, что TL

Журнал технической физики, 2025, том 95, вып. 11
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Ge

TL

Рис. 1. Схема регистрации пироотклика при измерении коэф-

фициентов теплопроводности и температуропроводности TSM-

методом.
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Рис. 2. Пироотклик кристалла TL, наблюдаемый при непо-

средственном воздействии модулированной тепловой волны на

образец (кривая 1) и при прохождении температурной волны

через образец кристалла Ge: с дислокациями (кривая 2) и

бездислокацонного (кривая 3), помещенных на кристалл TL.

имеет стабильную, однородную по толщине спонтанную

поляризацию, которую практически невозможно изме-

нить воздействием внешнего поля или температурного

градиента.

Как показано авторами [24], при использовании в

пироэлектрических исследованиях прямоугольно моду-

лированного теплового потока пироотклик однородно

поляризованного сегнетоактивного материала повторяет

его форму, если глубина проникновения температурной

волны в образец (l) меньше одной трети толщины образ-

ца (h), в противном случае наблюдается так называемый

”
пленочный“ отклик. В качестве примера последнего на

рис. 2 (кривая 1) представлен пироотклик кристалла TL

толщиной 1mm, наблюдаемый при модуляции теплового

потока частотой 0.15Hz.

При помещении на TL несегнетоэлектрического ма-

териала (в наших исследованиях это образцы Ge) в на-

чале импульса пироотклика появляется
”
завал“ (рис. 2,

кривые 2 и 3), величина которого определяется тол-

щиной несегнетоэлектрического образца и значениями

коэффициентов теплопроводности и температуропровод-

ности исследуемого материала. В результате расчета

градиента температуры по толщине образца при изме-

нении температуры в динамическом режиме (с учетом

используемых в эксперименте параметров — толщины

образца Ge и мощности теплового потока) получено

значение градиента 0.001K/mm. Время действия гради-

ента при частоте модуляции теплового потока 0.15Hz

не превышает 3.5 s, а эксперименты проводились при

комнатной температуре (∼ 25 ◦C). Таким образом, гра-

диент температуры, имеющий место в представленных

в статье экспериментах, не может вызвать движение

дислокаций, поскольку, согласно [25], при выдержива-

нии образца с дислокациями в условии температурного

градиента 0.08K/mm (температура варьировалась от 910
до 915 ◦C) в течение 50 h скорость движения дислокаций

составила всего 0.10−0.25µm/s.

В этом случае для расчета пироотклика сегнетоэлек-

трика используется формула, вывод которой осуществ-

лен при условии, что глубина проникновения темпера-

турной волны в сегнетоэлектрический материал меньше

1/3 его толщины [24]:

ITL =
Sβ0W0γ

ρc(d + h)
Re

{

∞
∑

n=1

{

sin(nωτ /2)

nωτ /2
exp(inωt)

× sh[ϕ2h]
[

ch(ϕ1d) + H
ϕ1

sh(ϕ1d)
]

× sh(ϕ2h)+

[

k1H1

k2ϕ2
ch(ϕ1d) + k1ϕ1

k2ϕ2
sh(ϕ1d)

]

× ch(ϕ2h)

}

}

. (1)

Здесь h — толщина сегнетоэлектрика, d — толщина

несегнетоэлектрического материала, ITL — пироэлек-

трический ток сегнетоэлектрика, S — площадь осве-

щаемой поверхности, [m2], W0 — плотность мощно-

сти теплового потока, [W/m2], γ — пироэлектриче-

ский коэффициент сегнетоэлектрика, [C/m2K], ρ —

его плотность, [kg/m3], c — удельная теплоемкость,

[J/(kg·K)], τ — длительность светового промежутка

импульса, [s], τ = T/2 = 1/(2 f ), f — частота мо-

дуляции теплового потока, k1 и k2 — коэффици-

енты теплопроводности несегнетоэлектрического ма-

териала и сегнетоэлектрической подложки соответ-

ственно, [W/(m·K)], H1 = 4β0σT 3)0/k1 — характеризу-

ет потери на излучение, σ — постоянная Стефана-

Больцмана (5.6704 · 10−8 W/(m2K4)), T0 — темпера-

тура окружающей среды, [K], ϕm = (1 + i)
√

nω/2αm,

ω = 2π f , m = 1, 2; α1 и α2 — коэффициенты темпера-

туропроводности несегнетоэлектрического материала и

сегнетоэлектрика соответственно, [m2/s].
Нами ранее было показано [15], что использование

формулы (1) позволяет варьировать при расчете два

параметра: значения коэффициентов теплопроводности

и температуропроводности. Это обусловлено тем, что

рассчитанное по данной формуле значение пироотклика

(при прочих равных условиях) тем больше, чем меньше
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Рис. 3. Пироотклик TL, наблюдаемый в эксперименте (кривые 1) и рассчитанный (кривые 2) при прохождении температурной

волны через образцы ДГ (a) и БДГ (b) в кристаллографическом направлении 〈100〉, и образец ГП (c).

значение коэффициента теплопроводности, и тем мень-

ше, чем меньше значение коэффициента температуро-

проводности. В то же время если изменение значения

коэффициента теплопроводности изменяет только вели-

чину пироотклика, то уменьшение коэффициента темпе-

ратуропроводности ведет и к изменению его формы —

увеличивается
”
завал“, наблюдаемый в начале отклика.

Таким образом, сравнение экспериментальных форм

пироотклика, с рассчитанными по формуле (1), позво-
ляет оценить величину коэффициента температуропро-

водности и теплопроводности материала, через который

проходит температурная волна.

Необходимое условие эксперимента — площадь несе-

гнетоэлектрического материала не должна превышать

площадь сегнетоэлектрика. Нами в настоящей работе ис-

пользовались кристаллы TL и Ge площадью 10× 10mm.

Толщина кристалла TL составляла 1mm, Ge — 5mm.

2. Анализ и обсуждение
экспериментальных результатов

Для сравнительных исследований тепловых харак-

теристик были выбраны образцы Ge n-типа с удель-

ным сопротивлением 22± 2�·cm; кристаллографиче-

ского направления 〈100〉 монокристаллов ДГ и БДГ;

а также германий поликристаллический (ГП). Концен-
трация n легирующей примеси (сурьма) в этих об-

разцах составляла ∼ 1014 cm−3. Также исследовались

ДГ и БДГ монокристаллы с удельным сопротивлением

0.75�·cm (n ∼ 2.5 · 1015 cm−3) кристаллографического

направления 〈111〉. Плотность дислокаций во всех мо-

нокристаллах с дислокациями находилась в диапазоне

∼ (0.5−1.0) · 104 cm−2. Плотность дислокаций в БДГ,

согласно ГОСТ, составляет менее 10 cm−2, в исследу-

емых образцах она составляла менее 5 cm−2.

Модуляция теплового потока, падающего на образец

германия, осуществлялась импульсами прямоугольной

формы частотой f = 0.15Hz. В качестве источника

теплового излучения использовался непрерывный полу-

проводниковый ИК лазер, излучающий на длине вол-

ны 920 nm. Излучение модулировалось прямоугольны-

ми импульсами с помощью преобразователя мощности.

Для обеспечения 100% поглощения тепла поверхность

образцов зачернялась мелкодисперсным графитовым по-

рошком.

При прохождении температурной волны через образ-

цы ДГ и БДГ (рис. 2, кривые 2 и 3) имело место
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Рис. 4. Пироотклик TL, наблюдаемый в эксперименте (кривые 1) и рассчитанный (кривые 2) при прохождении температурной

волны через образцы ДГ (a) и БДГ (b) в кристаллографическом направлении 〈111〉.

различие в форме пироотклика TL, что означает разли-

чие значений коэффициентов температуропроводности и

теплопроводности этих образцов (т. е. влияние структу-

ры материала на их тепловые характеристики).
Значения коэффициентов теплопроводности (k) и

температуропроводности (α) исследуемых образцов Ge

определялись путем сравнения рассчитанной по фор-

муле (1) и экспериментальной форм пироотклика

(рис. 3, 4). При расчете значения k и α варьировались

в качестве параметра.

Значения теплофизических характеристик Ge, при

которых расчетные формы пироотклика совпали с экспе-

риментально наблюдаемыми, приведены в табл. 1 и 2 для

образцов Ge c удельным сопротивлением (22 ± 2)�·cm
и 0.75�·cm соответственно. Погрешность при расчете

тепловых характеристик, указанная в таблицах, оце-

нивалась по методике, подробно описанной нами в

работе [17].
Как можно видеть из представленных результатов

(табл. 1 и 2), если значения коэффициента темпера-

туропроводности исследуемых материалов различаются

незначительно, то значение коэффициента теплопровод-

ности образца БДГ в кристаллографическом направ-

лении 〈111〉 превосходит аналогичное значение для

образца ДГ на 9%, а в направлении 〈100〉 — на 18%.

Обращают на себя внимание одинаковые значения

теплофизических характеристик разных образцов БДГ.

Здесь следует иметь в виду, что, во-первых, исследуемые

образцы имели различную концентрацию примеси, а, во-

вторых, исследования тепловых характеристик проводи-

лись в различных кристаллографических направлениях

(〈100〉 и 〈111〉). Следовательно, отсутствие увеличения

значения k в кристаллографическом направлении 〈111〉
по сравнению с кристаллографическим направлением

〈100〉 (которое должно было наблюдаться, согласно

результатом нашей работы [15])
”
скомпенсировано“ его

уменьшением, обусловленным зависимостью значений

коэффициентов теплопроводности и температуропровод-

ности Ge n-типа от концентрации примеси [16].

Таблица 1. Значения коэффициентов теплопроводности (k)
и температуропроводности (α) образцов БДГ, ДГ и ГП

с удельным сопротивлением (22± 2)�·cm (n ∼ 1014 cm−3).
Кристаллографическое направление 〈100〉

Образец k, W/(m·K) α, 10−6 m2/s

БДГ 87± 5 7± 0.5

ДГ 72± 5 6± 0.5

ГП 75± 5 7± 0.5

Таблица 2. Значения коэффициентов теплопроводности (k) и

температуропроводности (α) образцов БДГ и ДГ с удельным

сопротивлением 0.75�·cm (n ∼ 2.5 · 1015 cm−3). Кристалло-

графическое направление 〈111〉

Образец k, W/(m·K) α, 10−6 m2/s

БДГ 87± 5 7.5± 0.5

ДГ 80± 5 8± 0.5

Интересно отметить, что у образцов Ge c удельным

сопротивлением (22± 2)�·cm (табл. 1), для которых

также проведено измерение теплофизических характери-

стик ГП, значения коэффициента температуропроводно-

сти образцов БДГ и ГП совпадают, тогда как для образца

ДГ оно меньше.

Заключение

Проведенный сравнительный анализ значений коэф-

фициентов теплопроводности и температуропроводно-

сти образцов кристаллического германия показал увели-

чение коэффициента теплопроводности в динамическом

режиме прохождения температурной волны через обра-

зец БДГ по сравнению с образцом ДГ. Большее значение

k у БДГ обусловлено более совершенной кристалличе-
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ской решеткой. Увеличение величины теплопроводности

имеет место как в кристаллографическом направлении

〈111〉, так и в направлении 〈100〉, но во втором случае

оно значительно больше.

Разница в значениях коэффициента температуропро-

водности менее существенна. Для образцов с малым

удельным сопротивлением (0.75�·cm), измерения для

которых проводились при прохождении температурной

волны в кристаллографическом направлении 〈100〉, они
различаются в пределах погрешности.

У образцов с высоким удельным сопротивлением

((22± 2)�·cm) при измерении в кристаллографиче-

ском направлении 〈111〉 разница значений коэффициента

температуропроводности образцов БДГ и ДГ составля-

ет 8%. Совпадение значений коэффициента температу-

ропроводности образцов БДГ и ГП, по всей видимости,

можно объяснить присутствием в бездислокационных

монокристаллах германия микропор, которые возника-

ют, как предполагается, из-за кластеризации вакансий в

процессе роста кристаллов [26].
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K. Irmscher, J. Janicskó-Csáthy, U. Juda, S. Kayser, W. Miller,

M. Pietsch, F.M. Kießling. J. Crystal Growth, 532, 125396

(2019). DOI: 10.1016/j.jcrysgro.2019.125396
[6] K. Wada, L.C. Kimerling. Photonics and Electronics with

Germanium (John Wiley & Sons, 2015)
[7] B. Depuydt, A. Theuwis, I. Romandic. Mater. Sci. Semicond.

Processing, 9 (4−5), 437 (2006).
DOI: 10.1016/j.mssp.2006.08.002

[8] K. Seref, I. Romandicb, A. Theuwisb. Mater. Sci. Semicond.

Processing, 9, 753 (2006). DOI: 10.1016/j.mssp.2006.08.035

[9] I.A. Kaplunov, A.I. Kolesnikov, S.L. Shaiovich. J. Оptical

Тechnol., 721 (3), 271 (2005). DOI: 10.1364/JOT.72.000271
[10] F. Dimroth, S. Kurtz. MRS Bulletin, 32 (3), 230 (2007).

DOI: 10.1557/mrs2007.27

[11] A. Luque, S. Hegedus. Handbook of Photovoltaic Science

and Engineering. 1st ed. (John Wiley & Sons Ltd. Chichester,

2003)
[12] C.L. Claeys, E. Simoen. Germanium-Based Technologies:

from Materials to Devices (Elsevier, Amsterdam, 2007)
[13] В.А. Закревский, А.В. Шульдинер. ФТТ, 42 (2), 263 (2000).
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