05

Временная зависимость разрушения биополимерных пленок при растяжении

© Ю.В. Петров, А.А. Чеврычкина, В.В. Кодолова-Чухонцева, К.А. Колбе³

1 Санкт-Петербургский государственный университет,

199034 Санкт-Петербург, Россия

² Институт проблем машиноведения РАН,

199178 Санкт-Петербург, Россия

³ Институт высокомолекулярных соединений РАН,

199004 Санкт-Петербург, Россия

e-mail: chaa@ipme.ru

Поступило в Редакцию 11 августа 2025 г. В окончательной редакции 23 сентября 2025 г. Принято к публикации 29 сентября 2025 г.

Исследована временна́я зависимость эффектов необратимого деформирования и разрушения биополимерных пленок из хитозана в диапазоне скоростей деформации $1.6 \cdot 10^{-3} - 440$ 1/s при растяжении. Показано, что временны́е эффекты проявляются при существенном изменении времени, деформации и энергии разрушения, в то время как предел текучести и модуль упругости изменяются мало с изменением скорости деформации. Выявлена и описана с помощью структурно-временного подхода временна́я зависимость энергии и времени разрушения от скорости деформации.

Ключевые слова: прочность, разрушение, временные эффекты, хитозан.

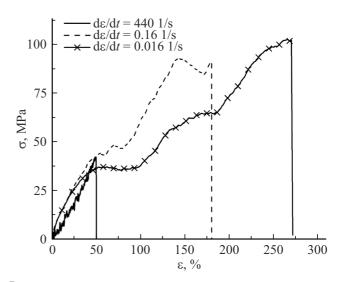
DOI: 10.61011/JTF.2025.11.61596.403-24

Введение

В настоящее время одним из основных направлений новых технологий является разработка и исследование материалов нового поколения с заданными свойствами. В области медицины есть потребность в материалах, предназначенных для длительного контакта с тканями живого организма. В медицине, тканевой инженерии, фармакологии широко применяются материалы на основе хитозана благодаря его биосовместимости, биоразлагаемости и способности усиливать регенеративные процессы при восстановлении поврежденных тканей. Благодаря этим свойствам материалы на основе хитозана хорошо подходят для применения при заживлении ран и изготовлении искусственной кожи [1,2]. Так, в работе [3] приведены клинические исследования заживления ран человека. Показано, что применение повязки из хитозана более эффективно в сравнении со стандартной медицинской повязкой. Гистопатологические исследования показали, что под повязкой из хитозана стимулируется восстановление слоев клеток кожи и архитектуры ткани. В работе [4] представлены клинические результаты применения растворимых гидрогелевых повязок из чистого хитозана у крыс. Исследования показали значительно лучшее заживление ран и меньшее образование рубцовой ткани при использовании гидрогелевых повязок по сравнению с марлевыми

Во время воспалительной фазы заживления ран механическое напряжение является одним из основных триггеров повышенного дезорганизованного отложения

коллагена. Постоянное натяжение утолщающегося рубца может вызвать аномальную реконструкцию внеклеточного матрикса, приводящую к образованию гипертрофического рубца. Терапевтические подходы, такие как использование биоактивных раневых покрытий, тейпирующих лент, биомедицинских устройств, позволяют предотвратить или уменьшить гипертрофию рубцовой ткани, поэтому биоактивные полимеры и композиты могут являться идеальной экспериментальной платформой для разработки матриц, передающих изменяющиеся пространственно-временные сигналы клеткам.


Для разработки новых материалов необходимо исследовать их физико-механические свойства, такие как изменение модуля упругости в зависимости от композитной составляющей [5]. Важно изучать влияние способа производства на прочность, модуль упругости и работу разрушения высокопрочных пленок из хитозана [6]. Известно, что материалы чувствительны к временным характеристикам воздействия, в частности, к скорости деформации, которая может выражаться в разных эффектах. Для одних материалов характерно увеличение предела текучести с ростом скорости деформации [7]. Для других — предел текучести и прочность материала могут быть нечувствительны к скорости нагружения, но деформация разрушения может значительно уменьшаться с увеличением скорости нагружения и уменьшением времени воздействия [8]. В работе [9] рассматривается временная чувствительность предела текучести объемных образцов из композита на основе хитозана при одноосном сжатии при скоростях деформирования от 0.1

до 800 1/s. Показано, что для исследуемых материалов предел текучести возрастает с увеличением скорости деформации до ее критического значения. Зависимость предела текучести от скорости деформации становится более выраженной при увеличении степени гидратации материала. В работе [10] анализируется зависимость модуля упругости, прочности и энергии разрушения гидрогеля от скорости деформации в диапазоне от 10^{-4} до $10\,1/s$.

В настоящей работе экспериментально и аналитически исследуются механические характеристики разрушения пленки из чистого хитозана в диапазоне скоростей деформации от $1.6 \cdot 10^{-3}$ до 440 1/s. Проведен анализ влияния скорости деформации на величину деформации, время и энергию разрушения материала. Структурновременной подход [11] используется для прогнозирования предельных характеристик разрушения исследуемого материала от внешнего временного воздействия. Это исследование имеет важное значение для подтверждения применимости предложенного подхода к классу материалов-биополимерам. Временная зависимость механических характеристик важна для понимания реологии материала и необходима для последующего моделирования биоинженерных конструкций. Исследование биополимерной пленки из чистого хитозана также ценно для последующих оценок влияния композитных добавок на механические характеристики материалов на основе хитозана.

1. Материал

Пленки получены из 4% раствора хитозана в 2% уксусной кислоте. Использован хитозан фирмы BiologHeppe GmbH, Германия, с молекулярной массой $M_m = (1.64-2.1) \cdot 10^5$ и степенью деацетилирования DD = 92 %. Раствор хитозана перемешивали в воде в течение 30 min до набухания и частичного растворения хитозана. Затем в полученный раствор вводили уксусную кислоту, ее концентрация в растворе составляла 2%. Раствор перемешивали в течение 180 min, затем фильтровали и деаэрировали в вакуумной камере в течение 24 h при давлении 10 kPa. Пленки отливали путем экструзии раствора через щелевую фильеру на стеклянную подложку, высушивали при температуре 50°C в течение 1 h. Далее пленки на стеклянной подложке деаэрировали в вакуумной камере в течение 24 h при давлении 10 kPa, затем сушили на воздухе при комнатной температуре в течение 24 h. Для перевода пленок из солевой в основную форму их выдерживали в смеси 10% водного раствора NaOH и С₂H₅OH с соотношением компонентов 1:1 в течение 10 min, затем промывали дистиллированной водой и сушили на воздухе. Толщина пленок составила $(40 \pm 5) \, \mu \text{m}$.

Рис. 1. Зависимость напряжения от деформации для скоростей деформации 0.16, 0 и 016 и 440 1/s.

2. Подготовка образцов и условия испытаний

Геометрические параметры образцов соответствуют рекомендациям для испытаний на растяжение полимерных пленок: длина образца — 40 mm, длина рабочей части образца — 10 mm, ширина образца — 5 mm. Для каждого образца толщину замеряли в трех точках рабочей части и рассчитывали среднее значение. Перед испытаниями образцы выдерживались в эксикаторе при относительной влажности воздуха 60 % и температуре 23 °C не менее 24 h. Испытания на растяжение проводились при скоростях деформации 0.016, 0.16, 300 и 440 1/s. Для каждой скорости деформации было подготовлено не менее пяти образцов. Испытания проводились на экспериментальной машине Shimadzu AG-50kNXD при скоростях деформации $d\varepsilon/dt = 0.016$ и 0.16 1/s, а также на башенном копре Instron Ceast 9350 при скоростях деформации $d\varepsilon/dt = 300$ и 440 1/s при влажности 60 % и температуре 23 °C.

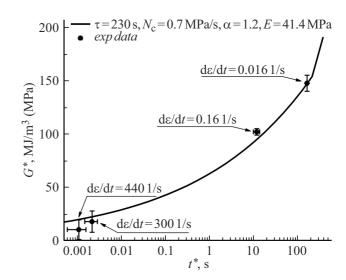
Деформационные кривые экспериментальных данных при различных скоростях деформации приведены на рис. 1. Для всех исследованных скоростей деформации у образцов наблюдалось формирование шейки, распространявшейся по всей длине без локализации, что характерно для полимерных материалов и является причиной значительной пластической деформации [12].

3. Анализ данных

Для экспериментальных данных наблюдается временная зависимость характеристик материала (рис. 1). Значение предела текучести и модуля упругости незначительно увеличивается с ростом скорости деформации. Для скоростей деформации 0.16 и 0.016 1/s наблюдается

деформационная кривая с несколькими этапами плато текучести и упрочнения, т. е. в материале последовательно развиваются процессы деформирования. Подобные деформационные зависимости наблюдаются при исследовании полимерных материалов при разных скоростях нагружения [13,14]. На основании релаксационной теории и представлении полимера как системы взаимодействующих цепей можно предположить последовательное развитие в материале деформационных процессов с различными энергиями активации. При достижении определенного уровня энергии развивается высокоэластическая деформация, соответствующие полимерные цепи распрямляются, структура полимера становится более ориентированной. Ориентация структуры материала влияет на его прочностные свойства: напряжение начинает расти с ростом деформации до достижения следующей энергии активации. При скоростях деформации 300 и 440 1/s площадки постоянного напряжения не наблюдаются. Можно предположить, что процессы разрушения преобладают над деформационными при скоростях деформации 300 и 440 1/s.

Ярким проявлением временной чувствительности исследуемого материала является то, что деформации разрушения значительно уменьшаются — с 300 % до 50% — с ростом скорости деформации от 0.016 до 440 1/s. Для описания временных зависимостей широко применяется структурно-временной подход, основанный на введении параметра инкубационного времени [11]. Инкубационное время — это характерный параметр процесса, предшествующего развитию макроструктурных изменений в материале. Данный подход используется для описания свойств материала в зависимости от скорости воздействия: откольного разрушения, вызываемого ударными волнами [15], динамического упрочнения в металлах [16] и пластиках [17], детонации в газах [18], хрупко-вязкого перехода при разрушении твердых тел [19].


3.1. Критерий разрушения

Энергия деформации на единицу объема, которую материал может поглотить до разрыва, является значимой характеристикой процесса разрушения.

$$G^* = \int_0^{\varepsilon^*} \sigma(\varepsilon) d\varepsilon, \tag{1}$$

где $\sigma(\varepsilon)$ — зависимость напряжения от деформации, ε^* — деформация разрушения. На рис. 2 представлены экспериментальные данные зависимости критического значения плотности энергии деформации G^* от скорости деформации. Временная чувствительность исследуемого материала также проявляется в уменьшении необходимой энергии и времени разрушения с увеличением скорости деформации.

Для биополимеров характерна самоорганизация полимерных цепей в упорядоченную структуру за счет

Рис. 2. Зависимость плотности энергии деформации (1) от времени разрушения: точки — экспериментальные данные с указанной погрешностью измерений, линия — теоретическая кривая критерия (2).

водородных связей между соседними цепями хитозана при растяжении [20]. В результате образуется прочный материал с ориентированной сеткой. Основываясь на экспериментальных данных (рис. 2) и свойствах полимеров, можно предположить, что при увеличении скорости растяжения полимерные цепи не успевают создать упорядоченную структуру, и для разрушения требуется меньше энергии. В соответствии с этим предполагается, что для рассматриваемой биополимерной пленки существенное значение имеет скорость ввода энергии. Для моделирования зависимости энергии, идущей на разрушение, от скорости деформации полимерных пленок предлагается рассмотреть структурно-временной подход в виде энергетического критерия мощностного типа:

$$\frac{1}{\tau} \int_{t-\tau}^{t} \left(\frac{N(s)}{N_c} \right)^{\alpha} ds \le 1, \tag{2}$$

где $N(t)=\frac{\partial G}{\partial t}$ — мощность на единицу объема (скорость ввода энергии), au — инкубационное время разрушения, N_c — мощность, lpha — параметр материала.

Для моделирования разрушения со значительной пластической деформацией зависимость напряжения от деформации выбрана в приближенном виде $\sigma(t)=E\varepsilon(t)$, где E — эффективный модуль. Зависимость деформации от времени определяется как $\varepsilon(t)=(d\varepsilon/dt)tH(t)$, так как экспериментальные данные были получены при постоянной скорости деформации $d\varepsilon/dt$ с момента времени t=0, H(t) — функция Хэвисайда. Результат применения критерия (2) показан на рис. 2. Подбор параметров производился с помощью метода наименьших квадратов [21]. Остаток регрессия для параметров $\alpha=1.2,\ N_c=0.7\ {\rm MPa},\ \tau=230\ {\rm s},\ E=41.4\ {\rm MPa}$ равен 0.1. Структурно-временной подход в виде (2)

достаточно хорошо описывает скоростную зависимость биополимерной пленки из хитозана в рассматриваемом диапазоне скоростей нагружения.

При растяжении полимерных материалов при высокой скорости воздействия подвижность сегментов "заморожена", и подводимая энергия идет только на межмолекулярную деформацию. При меньшей скорости воздействия подвижность сегментов возрастает, и внешнее воздействие идет также на межмолекулярное трение. Таким образом, при уменьшении скорости воздействия или увеличении времени воздействия для деформации будет требоваться больше энергии. Это согласуется с критерием (2) и продемонстрировано на рис. 2. Аналогичный подход использовался для описания условия детонации в газовых смесях, где, как и в нашем случае, играет роль не уровень силового поля, а скорость введения энергии в среду [18]. Как известно, разогрев полимера на фронте шейки аналогичен разогреву газа на фронте пламени, и оба процесса могут быть описаны автомодельными волновыми уравнениями [22]. Интересно, что подобны не только предшествующие процессы, но и последующие критические события, так как они описываются одним условием (2).

Заключение

Исследована временная зависимость эффектов необратимого деформирования и разрушения биополимерных пленок из хитозана. Получены деформационные кривые, значения энергии и деформации разрушения для разных режимов нагружения. Экспериментальные данные демонстрируют существенную временную зависимость для предельной деформации и энергии разрушения. Сильная временная зависимость предела текучести и модуля упругости в рассматриваемом диапазоне скоростей деформации растяжения не наблюдается. На основе структурно-временного подхода предложен критерий (2), который единообразно описывает разрушение материала как при малых, так и при больших скоростях воздействия. Показано, что примененный подход позволяет качественно и количественно описать деформацию, энергию и время разрушения материала в рассмотренном диапазоне скоростей деформации.

Финансирование работы

Работа выполнена выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации для ИПМаш РАН (проект № 124041500009-8). Раздел 3 выполнен Петровым Ю.В. при поддержке гранта РНФ 22-11-00091.

Благодарности

Экспериментальные исследования проведены с использованием оборудования ресурсного центра Научно-

го парка СПбГУ "Исследование экстремальных состояний материалов и конструкций".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H. Hamedi, S. Moradi, S.M. Hudson, A.E. Tonelli, M.W. King. Carbohydrate Polymers, 282, 119100 (2022). DOI: 10.1016/j.carbpol.2022.119100
- [2] C.P. Jiménez-Gómez, J.A. Cecilia. Molecules, 25 (17), 39812020 (2020). DOI: 10.3390/molecules25173981
- [3] A.K. Azad, N. Sermsintham, S. Chandrkrachang, W.F. Stevens.
 J. Biomed. Mater. Res. Part B, 69 (2), 216 (2004).
 DOI: 10.1002/jbm.b.30000
- [4] Y. Luo, L. Cui, L. Zou, Y. Zhao, L. Chen, Y. Guan, Y. Zhang. Carbohydrate Polymers, 294, 119774 (2022). DOI: 10.1016/j.carbpol.2022.119774
- [5] А.М. Камалов, В.В. Кодолова-Чухонцева, Е.Н. Дресвянина, Т.П. Масленникова, И.П. Добровольская, Е.М. Иванькова, Е.Н. Попова, В.Е. Смирнова, В.Е. Юдин. ЖТФ, 92 (3), 435 (2022). DOI: 10.21883/JTF.2022.03.52138.278-21
- [6] Q. Zhang, Y. Chen, P. Wei, Y. Zhong, C. Chen, J. Cai. Mater. Today, 51, 27 (2021). DOI: 10.1016/j.mattod.2021.10.030
- [7] M. Schosig, C. Bierögel, W. Grellmann, T. Mecklenburg. Polymer Testing, 27 (7), 893 (2008).DOI: 10.1016/j.polymertesting.2008.07.006
- [8] C. Chen, C. Zhang, C. Liu, Y. Miao, S.C. Wong, Y. Li. Composites Part B: Engineering, 136, 187 (2018). DOI: 10.1016/j.compositesb.2017.10.031
- [9] L. Figueiredo, A.V. Gregório, A. Rodrigues, P.A. Rosa.
 J. Mechan. Behavior Biomed. Mater., 116, 104337 (2021).
 DOI: 10.1016/j.jmbbm.2021.104337
- Z. Xiao, Y. Liu, J. Yang, H. Jiang, L. Tang, H. Chen, T.L. Sun. Mechan. Mater., 156, 103785 (2021).
 DOI: 10.1016/j.mechmat.2021.103785
- [11] Ю.В. Петров. ДАН СССР, 321 (1), 66 (1991).
- [12] J.W. Hutchinson, K.W. Neale. J. Mechan. Phys. Solids, 31 (5), 405 (1983).
- [13] S.F. Ali, J. Fan. J. Mater. Sci. Technol., 57, 12 (2020). DOI: 10.1016/j.jmst.2020.05.013
- [14] A.D. Mulliken, M.C. Boyce. Intern. J. Solids Structures, 43(5), 1331 (2006). DOI: 10.1016/j.ijsolstr.2005.04.016
- [15] Н.В. Михайлова, Г.А. Волков, Ю.И. Мещеряков, Ю.В. Петров, А.А. Уткин. ЖТФ, 87 (4), 527 (2017).
 DOI: 10.21883/JTF.2017.04.44312.1931
- [16] А.Д. Евстифеев, Г.А. Волков, А.А. Чеврычкина, Ю.В. Петров. ЖТФ, **89** (5), 670 (2019). DOI: 10.21883/JTF.2019.05.47466.72-18 [A.D. Evstifeev, G.A. Volkov, A.A. Chevrychkina, Yu.V. Petrov. Tech. Phys., **64** (5), 620 (2019). DOI: 10.1134/S1063784219050050]
- [17] С.А. Атрошенко, А.А. Чеврычкина, А.Д. Евстифеев, Г.А. Волков. ФТТ, **61** (11), 2103 (2019). DOI: 10.21883/FTT.2019.11.48414.364 [S.A. Atroshenko, A.A. Chevrychkina, A.D. Evstifeev, G.A. Volkov. Physics Solid State, **61** (11), 2075 (2019). DOI: 10.1134/S1063783419110052]
- [18] В.А. Братов, Л.М. Искаков, Ю.В. Петров. ДАН, **422** (5), 612 (2008).

- [19] А.Д. Евстифеев, А.А. Груздков, Ю.В. Петров. ЖТФ, **83** (7), 59 (2013).
- [20] H. Tu, X. Li, Y. Liu, L. Luo, B. Duan, R. Zhang. Carbohydrate Polymers, 296 (1), 119942 (2022).
 DOI: 10.1016/j.carbpol.2022.119942
- [21] L. Ljung. *System Identification*. In Al. Proch.zka, J. Uhlir, P.W.J. Rayner, N.G. Kingsbury (editors). *Signal analysis and prediction* (Birkhauser, Boston, MA, 1998), p. 163-173.
- [22] С.Л. Баженов, Е.П. Ковальчук. Высокомолекулярные соединения. Серия A, **50** (3), 501 (2008).