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Введение

Исследование устойчивости пузырьков в жидкости

представляет интерес не только с теоретической, но

и с практической точки зрения, поскольку связано со

многими технологическими приложениями, такими как,

например, флотация, кавитация, теплообмен при кипе-

нии, подводная акустика, барботаж и т. д. [1].

Изучению устойчивости пузырьков с различным со-

ставом газовой фазы посвящены работы [2–5].

В работе [2] показано, что пузырьки растворимо-

го в жидкости газа, совершающие малые радиально-

симметричные колебания в акустическом поле, неустой-

чивы по амплитуде. Получено выражение для инкремен-

та, характеризующего темп развития неустойчивости.

Исследованию диффузионной устойчивости газовых

пузырьков в одно- и двухфракционном кластере при

воздействии на них акустического поля посвящена ра-

бота [3]. В этой работе для однофракционного класте-

ра численно получены диапазоны значений начальных

концентраций газа в жидкости, при которых пузы-

рек, вследствие диффузионных процессов, протекающих

между ним и окружающей жидкостью, стремится к

одному из двух равновесных состояний. Установлено,

что двухфракционный кластер стремится стать одно-

фракционным.

Устойчивости перегретой жидкости, содержащей заро-

дыши нерастворимого газа, посвящена работа [4]. Опре-
делены критические условия для массы газовых зароды-

шей, их радиусов и объемных концентраций в случае

устойчивого состояния системы жидкость−парогазовые

зародыши. Построена теория спонтанных решений, опи-

сывающая выход перегретой пузырьковой парогазожид-

костной системы из неустойчивого состояния. На основе

таких решений изучена динамика перехода перегретой

жидкости в устойчивое состояние.

Изучению кипения перегретой жидкости, содержащей

паровой пузырек (или систему паровых пузырьков),
посвящена работа [5]. В этой работе установлено, что

состояние смеси жидкости с пузырьками неустойчиво

вследствие действия капиллярных сил. Построены ли-

нейные и нелинейные решения, описывающие выход

системы из неустойчивого состояния, а также неограни-

ченный рост одиночного пузырька и переход в устойчи-

вое парожидкостное состояние при наличии в исходном

состоянии распределенных по объему пузырьков.

Пузырьки газа играют отрицательную роль в диэлек-

трической прочности изолирующих жидкостей. В зави-

симости от их формы и локализованного электрического

поля пузырьки могут значительно снизить диэлектриче-

скую прочность изолирующей жидкости.

Отметим работы, в которых исследуются вопросы

устойчивости заряженных пузырьков, [6–10].

В работе [6] выводится дисперсионное уравнение для

капиллярных движений в вязкой жидкости, окружающей

сферический пузырь, несущий поверхностный заряд,

способный привести к неустойчивости границы раздела.

Находятся критические условия такой неустойчивости.

Решение задачи проводится в рамках метода скаляриза-

ции в сферической системе координат.

Равновесные состояния заряженного сферического

пузыря в диэлектрической жидкости исследуются на

устойчивость по отношению к виртуальным центрально-

симметричным изменениям его объема на основе ана-

лиза нелинейного уравнения, описывающего радиаль-

ные колебания такого пузыря, в окрестности особых

точек [7]. Показано, что из двух возможных равновес-

ных состояний пузыря устойчиво лишь одно. Найдены
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границы областей значений физических параметров,

разделяющих устойчивые и неустойчивые состояния.

Выяснилось, что наличие на пузыре электрического

заряда приводит к расширению областей значений физи-

ческих параметров, в которых существуют равновесные

состояния пузыря.

В статье [8] показано, что экспериментально обнару-

женные пузырьки наноразмера в водной среде возни-

кают спонтанно за счет минимизации энергии Гиббса,

учитывающей электростатическую составляющую, газо-

жидкостной дисперсной системы. Повышенное давление

газа внутри нанопузырька постепенно выравнивается

(согласно закону Генри) с атмосферным давлением воз-

духа, растворенного в воде. Радиус пузырька в некоторой

степени уменьшается, и пузырек переходит в стабильное

состояние.

В статье [9] на основе теоретического анализа описан

механизм стабильности заряженных объемных нанопу-

зырьков. Сильное притяжение отрицательных зарядов

к поверхности нанопузыря приводит к накоплению за-

ряда, в результате чего энергия электрического поля

создает локальный минимум для свободной энергии,

необходимой для образования пузырька, что приво-

дит к термодинамической метастабильности заряжен-

ных нанопузырей. Избыточные поверхностные заряды

механически создают зависящую от размера силу, ко-

торая уравновешивает давление Лапласа и действует

как восстанавливающая сила, когда нанопузырь термо-

динамически отклоняется от своего равновесного со-

стояния. С помощью этого механизма отрицательной

обратной связи обсуждена стабильность нанопузыря в

зависимости от поверхностного заряда и перенасыщения

газом. Сравнено теоретическое предсказание с экспе-

риментальными наблюдениями и обнаружено хорошее

соответствие.

В работе [10] развиты теоретические преставления

о существовании в чистой воде и водных растворах

электролитов, находящихся в равновесии с внешней

газовой средой, стабильных газовых пузырьков — баб-

стонов. Предложена теоретическая модель адсорбции

ионов на поверхности воды, на ее основе дано ко-

личественное описание возникающего двойного элек-

трического слоя. Эти результаты позволили провести

и термодинамическое описание бабстонной структуры

в системе
”
вода−внешняя газовая среда“. Показано,

что возникновение такой структуры при определен-

ных значениях температуры и концентрации раство-

ренных примесных ионов является фазовым перехо-

дом первого рода. В рассматриваемой задаче уста-

новлена уникальная роль гелия как внешней газо-

вой среды: в этом случае бабстонная структура не

возникает ни при каких начальных концентрациях

ионов, а растворимость самого гелия возрастает с

увеличением температуры. Рассмотрен механизм об-

разования экспериментально наблюдаемых бабстонных

кластеров.

Отметим монографическую работу [11]. В ней указа-

но, что нанопузырьки, наполненные воздухом или раз-

личными чистыми газами, сохраняются в воде в течение

нескольких недель и месяцев. Наноэмульсии, состоящие

из капель масла в воде, также удивительно устойчи-

вы к коагуляции и могут существовать до несколь-

ких недель, даже если они не покрыты поверхностно-

активными веществами. Обратная система, состоящая из

нанокапель воды в масле, также доступна для изучения

и применения. Пустоты в наномасштабе образуются

при моделировании воды под сильным натяжением и

стабильны в течение всего времени моделирования.

Стабильность этих нанообъектов в конечном итоге опре-

деляется структурой их поверхностей на молекулярном

уровне. Однако термодинамическая теория также может

дать некоторое представление об этом. Поэтому мы рас-

сматриваем сферические газовые нанопузырьки, несме-

шивающиеся жидкие нанокапли и нанополости, образу-

ющиеся в воде при отрицательном давлении, на одном

уровне и проводим единый термодинамический анализ

этих систем. Во всех случаях механическое равновесие

(локальный максимум или минимум свободной энергии)
выражается уравнением Лапласа, а термодинамическая

стабильность (локальный минимум свободной энергии)
следует из зависимости поверхностного натяжения от

радиуса. Все они были бы нестабильны, если бы их

поверхностное натяжение было постоянным. Данные из

литературы позволяют построить численные примеры

для полостей и газовых нанопузырьков. Спектроскопи-

ческие данные приводятся в подтверждение того, что

структура воды на границе раздела газовых нанопузырь-

ков и капель воды в нефти отличается от их аналогов

на плоской поверхности. Считалось, что наблюдаемая

долговечность нанопузырьков, в частности, нарушает

фундаментальные принципы диффузии и растворимости.

Внимательный взгляд на уравнение Лапласа и его вывод

показывает, почему это широко распространенное мне-

ние неверно.

Исследованию капиллярных колебаний и устойчи-

вости заряженного пузырька в вязкой несжимаемой

диэлектрической жидкости по отношению к беско-

нечно малым искажениям объема и формы посвяще-

на работа [12]. В ней определены области физиче-

ских параметров, при которых наблюдается неустой-

чивость центрально-симметричных радиальных и осе-

симметричных поверхностных движений пузырька. По-

лучены аналитические асимптотические выражения для

декрементов затухания осесимметричных капиллярных

колебаний пузырька в приближениях малой и большой

вязкости.

В настоящей работе рассматривается неустойчивость

одиночного заряженного пузырька в насыщенной угле-

кислым газом воде, когда пузырек в исходном состоянии

находится в динамическом и термическом равновесии.

Анализируется влияние радиальной инерции, вязкости

жидкости и диффузии, влияющих на неустойчивость

пузырька.
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1. Постановка задачи и основные
уравнения

Пусть в жидкости при температуре T0 и давлении p0

находится газовый пузырек радиусом a0, на поверхно-

сти которого равномерно распределен заряд Q0. Будем

полагать, что жидкость является диэлектриком с прони-

цаемостью ε, также будем считать, что система
”
газовый

пузырек−жидкость“ находится в динамическом и тер-

мическом равновесии. Исходя из этого предположения,

можем записать следующее соотношение:

pg0 + pel0 = p0 +
2σ

a0

, (1)

где pg0, pel0 — исходное парциальное давление пара в

пузырьке и сила давления электрического поля, σ —

коэффициент поверхностного натяжения жидкости.

Газ внутри пузырьков будем считать растворимым.

Давление газа будем считать однородным и подчиняю-

щимся уравнению Клапейрона−Менделеева:

pg0 = ρ0gRgT0,

где ρ0g — исходная плотность газа, Rg — приведенная

газовая постоянная.

В дальнейшем описании задачи нижними индекса-

ми (l) и (g) обозначим параметры жидкости и газа;

дополнительный нижний индекс соответствует началь-

ному состоянию равновесия; индекс (el) относится к па-

раметрам, обозначающим действие электрического поля

заряда на поверхности пузырька.

Рассмотрим радиально-симметричное движение систе-

мы в окрестности равновесного состояния, определяемо-

го уравнением (1).
Для изучения динамики

”
выхода“ электрически за-

ряженного газового пузырька из состояния равнове-

сия приведем основные уравнения, описывающие ра-

диальные движения пузырька в несжимаемой жидкости

(ρ0l = const — плотность жидкости).
Уравнение пульсационного движения пузырька —

уравнение Рэлея−Лэмба имеет вид [13]:

ρ0l

(

aä +
3

2
ȧ2 +

4ν
(µ)
l ȧ

a

)

= pg + pel − pl −
2σ

a
. (2)

Учитывая гипотезу гомобаричности, можно получить

уравнение для изменения давления газа в следующем

виде [14]:

d pg

dt
= −3

pg

a

da

dt
+ 3

pg

a

ρ0l
ρ0g

Dl

(

∂g

∂r

)

a

. (3)

Параметры ν
(µ)
l , Dl и g — кинематическая вязкость

жидкости, коэффициент диффузии и массовая концен-

трация газа в жидкости.

В уравнении (3) нижний индекс a для градиента кон-

центрации газа соответствует границе пузырька. Второе

слагаемое в (3) отвечает за интенсивность растворения

газа, лимитируемой процессом диффузии газа из жидко-

сти в пузырек вблизи межфазной поверхности.

Для определения интенсивности массообмена запи-

шем уравнение диффузии в жидкости [13]:

∂g

∂t
+ w l

∂g

∂r
= Dl

1

r2
∂

∂r

(

r2
∂g

∂r

)

, (4)

где w l = a2

r 2
ȧ — радиальная скорость жидкости.

Граничные условия для уравнения диффузии (4) в

жидкости имеют вид

g = ga при r = a и g = g0 при r = ∞. (5)

Здесь ga — концентрация газа на поверхности пузырька,

которая связана с давлением газа по закону Генри:

ga = Gpg . (6)

Исходное давление сил электрического поля пузырька

примем в следующем виде [7]:

pel0 =
kQ2

0

8πεa4
0

, (7)

где k = 1
4πε0

— коэффициент пропорциональности,

ε0 = 8.85 · 10−12 F/m — электрическая постоянная.

Полагаем, что выполняется закон сохранения заряда

на поверхности пузырька:

Q = Q0. (8)

Исходя из этого предположения получим связь теку-

щего давления с исходным:

pel = pel0

(a0

a

)4

. (9)

2. Линейный анализ

Пусть давление в жидкости pl постоянно и равно

исходному значению p0 (pl = p0). Рассмотрим малые от-

клонения радиуса пузырька от исходного значения, кото-

рые повлекут за собой изменение остальных параметров.

Выражения для радиуса, давления газа, давления силы

электрического поля заряда на поверхности пузырька,

плотности и концентрации газа представим в виде:

a = a0 + a ′, pg = pg0 + p′

g , pel = pel0 + p′

el,

ρg = ρg0 + ρ′g , g = g0 + g ′,

где параметры со штрихами — малые отклонения

параметров от равновесного состояния, являющиеся

величинами первого порядка малости [15].
Линеаризуя систему уравнений (2)−(9) около со-

стояния равновесия (пренебрегая величинами второго
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порядка малости, например, произведением параметров

со штрихами), получим

ρ0l

(

a0

∂2a

∂t2
+ 4

ν
(µ)
l

a0

∂a

∂t

)

= pg + pel +
2σ

a2
0

a,

∂a

∂t
= w, (10)

∂ pg

∂t
= −3

pg0

a0

∂a

∂t
+ 3

pg0

a0

ρ0l
ρg0

Dl

(

∂g

∂r

)

a0

, (11)

∂g

∂t
= Dl

1

r2
∂

∂r

(

r2
∂g

∂r

)

a0

, (a0 < r < ∞), (12)

g = ga при r = a0 и g = 0 при r = ∞, (13)

ga = Gpg , (14)

pel = −4pel0

a

a0

. (15)

В полученных уравнениях и далее знак штрих, обо-

значающий возмущения параметров, опущен.

Решение системы (10)−(15) будем искать в виде

a = Aaeλt, pg = Apeλt, g = Ag(r)eλt . (16)

Отметим, что при таком виде решений, величина,

обратная λ, показывает, за какое время амплитуда воз-

мущений увеличивается в e раз (τ = 1/λ).
Из уравнения диффузии (12) на основе (13), (14) для

амплитуды концентрации газа вокруг пузырька имеем

Ag(r) = ApG
a0

r
exp

(

Y

(

1−
r

a0

))

,

Y = a0k =
√

a2
0λ/Dl . (17)

Из уравнения (15) амплитуда давления сил электри-

ческого поля имеет вид

Ael = −4
pel0

a0

Aa . (18)

Используя это решение на основе уравнений (10),
(11) из условия существования нетривиального решения

вида (16), получаем уравнение для определения λ:

ψ(λ) = ρ0l λ
2a2

0 + 4ρ0l λν
(µ)
l +

+
3pg0Y

2

Y 2 + 3Os(1 + Y )
+ 4pel0 −

2σ

a0

= 0, (19)

где Os — число Оствальда, показывающее значение

объема газа, которое может раствориться в единице

объема жидкости [16].
Уравнение (19) имеет положительный корень λ, если

выполняется условие

pel0 <
σ

2a0

, (20)

2 4 6
0

15

20

4
f(
a

),
 a

P
a 

m ·
0

5

8 10

10

–15

–10

–5
a , µm0

Рис. 1. Зависимость функции f (a0) от начального радиуса a0,

для различных значений зарядов пузырьков: 1-й случай —

штриховая линия, 2-й случай — штрихпунктирная, 3-й слу-

чай — точечная, 4-й случай — сплошная.

следовательно, пузырек при выполнении этого условия

неустойчив.

Если давление сил электрического поля заряда не

удовлетворяет условию (20), то состояние пузырька

является устойчивым. При этом значение корня, на-

зываемое инкрементом, определяет скорость развития

неустойчивости на начальной линейной стадии. Суще-

ствование положительного корня означает, что выраже-

ния вида (16) представляют собой спонтанные реше-

ния [17], для которых исходное состояние равновесия

достигается при t → −∞.

В случае отсутствия заряда на пузырьке (Q0 = 0,

pel0 = 0) из условия (1) можно найти значение радиуса

пузырька при заданных значениях давления жидкости p0:

a
(M)
0 =

2σ

pg0 − p0

. (21)

Из условия механического равновесия (1) следует,

что в случае наличия заряда на поверхности пузырька

(Q0 > 0, pel0 > 0) радиус a0 всегда меньше значения,

определяемого выражением (21) (a0 < a
(M)
0 ). Определим

нижнее предельное значение радиуса пузырьков в равно-

весном состоянии в случае, когда пузырек неустойчив,

т. е. выполняется условие (20). Очевидно, для этого

радиуса, помимо (1), должно выполняться условие

pel0 =
σ

2a0

. (22)

Исключая из (1), (22) pel0, находим выражение для

минимального радиуса a
(m)
0 в виде

a
(m)
0 =

3

4
a

(M)
0 =

3σ

2(pg0 − p0)
. (23)
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Используя выражения (7), (23), можно получить вы-

ражение для критического заряда газового пузырька

Qcr =

√

27πεσ 4

2k(pg0 − p0)3
. (24)

Подставляя выражение (7) в условие механического

равновесия (1), получаем уравнение для определения

равновесного радиуса a0 при заданном значении заряда

pel0 газового пузырька

f (a0) = (pg0 − p0)a
4
0 − 2σ a3

0 +
kQ2

0

8πε
= 0. (25)

Проанализируем выражение (25). Возможны следующие

случаи, которые показаны на рис. 1:

1) при pg0 < p0 уравнение имеет один положительный

корень при любом значении Q0;

2) для случая pg0 > p0 и при Q0 > Qcr действитель-

ных корней нет;

3) Если же pg0 > p0 и при Q0 = Qcr уравнение имеет

один действительный корень;

4) и, наконец, если pg0 > p0 при Q0 < Qcr уравнение

имеет два действительных корня.

Кроме того, при 0 < Q0 < Qcr уравнение име-

ет два положительных корня a
(m)
0 < a01 < a

(M)
0 и

0 < a02 < a
(m)
0 , причем при большем значении радиу-

са a01 ”
система пузырек–жидкость“ неустойчива для

случая положительных корней уравнения (19), а при

меньшем значении радиуса a02 устойчива для случая

комплексно-сопряженных корней уравнения (19).
Из формулы (24) для критического заряда при па-

раметрах ε = 87.9, σ = 75.64 · 10−3 Pa ·m, a0 = 10−5 m

получаем значение Qcr ≈ 2 pC. В случае, когда заряд

пузырька равен нулю (Q0 = 0), максимальное значе-

ние равновесного радиуса составляет a
(M)
0 = 10−5 m.

Все необходимые значения теплофизических параметров

взяты из [18].
Для заданного значения заряда Q0 на основе уравне-

ния (25) можно определить значения радиусов, которые

соответствуют неустойчивому и устойчивому состоянию

равновесия газового пузырька. На рис. 2 представлена

зависимость равновесных радиусов газового пузырька

от его заряда, находящегося в насыщенной диоксидом

углерода воде. Верхней ветви кривой зависимости ради-

уса от заряда соответствуют действительные значения

корней уравнения (19); они же отвечают неустойчивому

состоянию равновесия пузырька. Нижней ветви кривой

соответствуют комплексно-сопряженные корни уравне-

ния (19), отвечающие устойчивым состояниям пузырь-

ков. Эти корни соответствуют затухающим собственным

колебаниям. Верхнюю и нижнюю ветви отделяет гори-

зонтальная линия a0 = a
(m)
0 .

На рис. 3 представлена зависимость инкремента (по-
ложительного корня уравнения (19)), соответствующего

верхней ветви зависимости, представленной на рис. 2, от

заряда газового пузырька. В левой части уравнения (19)

первое, второе и третье слагаемые учитывают влияние

радиальной инерции, вязкости жидкости и диффузии газа

на развитие неустойчивости на линейной стадии, когда

радиус пузырька равен равновесному значению.

В том случае, когда развитие неустойчивости лими-

тируется радиальной инерцией, т. е. в уравнении (24)
опускаются второе и третье слагаемые, связанные с вяз-

костью и диффузией, для величины инкремента имеем

λ(R) =

√

2σ/a0 − 4pel0

ρ0l a2
0

. (26)

0 0.5 1.0 1.5
0

2

4

8

10

6

2.0
Q , pC0

a
, 
µ

m
0

(M)a ,
0

(m) (M)a  = (3/4)a
0 0

Qcr

Рис. 2. Зависимость равновесного радиуса от заряда пузырька

при p0 = 0.1MPa, T0 = 273K, Os = 1.7.
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–
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010

–110

Qcr

Рис. 3. Зависимость инкрементов неустойчивых

равновесных радиусов от заряда пузырька при ε = 87.9,

σ = 75.64 · 10−3 Pa·m, a0 = 10−5 m, ρ = 1000m/s,

ν = 1.787 · 10−6 m2/s, D = 3.53 · 10(−9) m2/s, остальные

параметры такие же, как на рис. 2: сплошная линия —

общее решение уравнения (19), точечная, штриховая

и штрихпунктирная линии — решения уравнения (19)
(точечная — c учетом радиальной инерции, штриховая —

вязкости, штрихпунктирная — диффузии).
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b

Рис. 4. Зависимости собственной частоты колебаний (а) и декремента затухания (b) для устойчивых радиусов от заряда на

пузырьках. Параметры расчета такие же, как на рис. 3.
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Рис. 5. a — зависимость инкрементов неустойчивых радиусов от заряда пузырька. Газ — диоксид углерода, жидкость — вода при

p0 = 0.1MPa для различных значений числа Оствальда и температур: сплошная линия — Os = 0.51, T0 = 323K; штриховая —

Os = 1, T0 = 288K; точечная —Os = 1.7, T0 = 273K. b — зависимость инкрементов неустойчивых радиусов от заряда пузырька

для диоксида углерода в воде при T0 = 273K, Os = 1.7. Линии 1 и 2 соответствуют статическим давлениям жидкости p0 = 0.1 и

1MPa.

Предполагая, что величина инкремента определяется

вязкостью жидкости, получим

λ(µ) =
σ/a0 − 2pel0

2ρ0l ν
(µ)
l

. (27)

Приведем также формулу для инкремента, когда опре-

деляющим фактором в развитии неустойчивости являет-

ся диффузионный процесс

λD =
Dl

a2
0

(

A

2
+

√

A2

4
+ A

)2

,

(

A = 3Os
6

1 − 6
, 6 =

2σ/a0 − 4pelo

3pg0

)

. (28)

На рис. 3 точечные, штриховые и штрихпунктирные

линии получены соответственно по формулам (26), (27)

и (28).

Анализ рис. 3 показывает, что величины инкремента,

определяемые радиальной инерцией, вязкостью и диффу-

зией, не зависят от величины заряда Q0 вплоть до Qcr.

При Q0 = Qcr значение инкремента λ → 0 вне зависимо-

сти от фактора, влияющего на неустойчивость пузырька,

следовательно, τ → ∞. Это означает, что для того чтобы

пузырек, имеющий на своей поверхности заряд Qcr, стал

расти, ему необходимо бесконечно много времени. При

таких условиях заряженный пузырек близок к устойчи-

вому состоянию. Наибольшее значение имеет инкремент
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для случая, когда неустойчивость пузырька лимитиру-

ется вязкостью (штриховая линия, рис. 3). Необходи-
мо отметить, что инкремент, определяемый диффузией

(штрихпунктирная линия), совпадает с общим решением

уравнения (19) (сплошная линия), т. е. основную роль

в развитии неустойчивости оказывает эффект диффузии

для любых значений заряда на пузырьке вплоть до Qcr.

На рис. 4 представлены зависимости собственной ча-

стоты колебаний ωR = Im(λ) и логарифмического декре-

мента затухания δ = −2πRe(λ)/Imλ от заряда газового

пузырька. Из рис. 4 следует, что с увеличением заряда на

поверхности пузырька собственная частота колебаний и

декремент затухания уменьшаются.

На рис. 5, a представлены зависимости инкремента,

определяющего темп развития выхода заряженного пу-

зырька с диоксидом углерода, от заряда Q0 . Точечная,

пунктирная и сплошная линии соответствуют решению

уравнения (19). Видно, что чем выше температура жид-

кости, тем пузырек более устойчив. Также из графика

следует, что с увеличением числа Оствальда значение

критического заряда растет. На рис. 5, b представлены

зависимости инкремента неустойчивых радиусов от за-

ряда Q0 при различных статических давлениях. Линии

1 и 2 получены согласно решению уравнения (10).
Линия 2 находится ниже линии 1, это означает, что

для температуры T0 = 273K чем больше статическое

давление жидкости, тем пузырек более устойчив.

Заключение

В работе показано, что в воде, насыщенной диоксидом

углерода, одиночный заряженный пузырек может нахо-

диться в динамическом и термическом равновесии, если

заряд пузырька меньше критического значения.

Линейный анализ неустойчивости одиночного пузырь-

ка в газонасыщенной диоксидом углерода воде показал,

что неустойчивость лимитируется в основном эффектом

диффузии газа в пузырек.

При заряде пузырька, меньшем критического зна-

чения, существует два значения равновесного радиу-

са. Причем большему значению радиуса соответствует

неустойчивое состояние, меньшему — устойчивое.
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