03

Роторно-лопастная машина в производстве холода

© С.В. Булович, В.Ю. Коекин

Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

e-mail: koiokin@mail.ru

Поступило в Редакцию 5 февраля 2025 г. В окончательной редакции 26 апреля 2025 г. Принято к публикации 20 июня 2025 г.

Рассмотрены характеристики роторно-лопастной машины, работающей в незамкнутом газовом цикле для производства холода. Математическое моделирование физико-технических процессов проведено в рамках численного интегрирования нестационарной осредненной по Рейнольдсу системы уравнений Навье-Стокса (URANS) с использованием пакета программ ANSYS Fluent 2021 R2. Полученные результаты по интегральным показателям работы роторно-лопастной машины позволяют рассчитывать на ее эффективное применение.

Ключевые слова: роторно-лопастная машина, охладитель, нестационарный теплообмен, численное моделирование.

DOI: 10.61011/JTF.2025.11.61592.17-25

Введение

Известен ряд технических устройств, с той или иной степени эффективности, служащих для решения задачи "генерации холода" или термостатирования ограниченной области пространства ниже температуры окружающей среды. Для этого используются различные явления, приводящие к снижению температуры. Наиболее распространенными из охлаждающих эффектов являются фазовые превращения, расширение сжатого газа с получением внешней работы (цикл Сименса), дросселирование (процесс Джоуля-Томсона), вихревой эффект (труба Ранка), термоэлектрическое охлаждение (эффект Пельтье) и т. д. На конечный выбор варианта охлаждения среды оказывает влияние не только возможность отвода тепла при заданной температуре, но и совокупность таких факторов, как доступность необходимой для решения задачи тепловой, механической или электрической энергии, высокое значение КПД реализованного процесса, экологические соображения при использовании хладогентов, ресурс и безотказность автономной работы.

Определенными преимуществами, при прочих равных условиях, обладает конструкция, работающая по незамкнутому газовому циклу. В этом случае в качестве рабочего тела выступает непосредственно окружающая среда, а отсутствие дополнительного теплоносителя существенно упрощает конструкцию генератора холода.

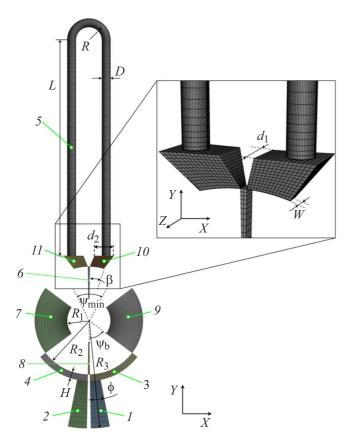
Общая схема, реализующая такой процесс охлаждения, опирается на использование компрессора, в котором в результате сжатия газа происходит увеличение температуры выше температуры стенок теплообменного аппарата для отвода тепла в окружающую среду за границу охлаждаемого контура и детандера, обеспе-

чивающего частичную компенсацию работы, которая затрачена при сжатии газа. В качестве компрессора и детандера могут привлекаться как поршневые, так и лопаточные машины. Хорошо известны их преимущества и недостатки.

К преимуществам лопаточных машин относят высокую производительность (расход газа) и относительно невысокий уровень аэродинамических потерь, связанных с тем, что газ не совершает колебательного движения, характерного для поршневых машин, нет системы клапанов, регулирующих впуск и выпуск рабочего тела. Недостатком лопаточных машин является необходимость высоких оборотов вращения ротора и технологическая сложность изготовления проточной части. По такой схеме, в частности, работает турбодетандер П.Л. Капицы [1], объединяющий на одном валу ступени компрессора и детандера. Поршневые машины, напротив, могут обеспечить невысокие расходы и их изготовление менее трудоемко [2].

Помимо названных двух разновидностей технических устройств, обеспечивающих процесс сжатия и расширения газа, сочетание в себе двух подходов допускают некоторые виды роторных машин. В классическом двигателе Ванкеля каждая из трех рабочих камер за один оборот ротора последовательно выполняет такты наполнения, сжатия, расширения и выпуска [3]. Другой пример — роторно-пластинчатые устройства, широко применяемые в качестве компрессоров, насосов и гидроприводов [4,5]. В роторно-пластинчатых машинах двойного действия (двухкамерное эллиптическое исполнение) возможно совмещение функций компрессора и детандера. Такие конструкции пока не получили развития и практически не обсуждаются вне патентной литературы,

где в основном они рассматриваются в качестве двигателей внутреннего сгорания [6]. Отметим работы, посвященные исследованию двигателя Ванкеля [7] и роторнопластинчатой машины [8], в которых решаются близкие к этой работе по проблематике вопросы численного моделирования, связанные с заданием кинематических законов перемещения расчетных областей, использованием динамической расчетной сетки, выбором модели турбулентности.


Обратим внимание на роторно-лопастную машину [9,10], которая в общепринятой классификации также называется роторно-поршневой. Она сочетает в себе как возможности, которыми обладает поршневая группа (низкие и умеренные скорости вращения вала, высокая степень сжатия), так и прямоточное движение рабочего тела, характерное для лопаточных и пластинчатых машин, отсутствие клапанов впуска и выпуска. С точки зрения компоновки компрессора и детандера, по сравнению, например, с турбодетандером, где необходимы два рабочих колеса для каждого из процессов сжатия или расширения, в роторно-лопастной машине за один оборот вала в разные фазы цикла одна и та же рабочая камера используется и как компрессор, и как детандер. Сама рабочая камера имеет простую конструктивную форму, что наделяет роторно-лопастную машину бесспорным преимуществом. Авторам неизвестны работы, в которых бы проводился анализ применения роторнолопастной машины в холодильном цикле. Настоящая работа фокусирует внимание на применении роторнолопастной машины как генератора охлажденной среды.

Функционирование роторно-лопастной машины в режиме компрессора исследуется в работах [11-14]. Особое внимание при этом авторы уделяют анализу протечек в бесконтактных уплотнениях двигателя. Проведенные опытные испытания роторно-лопастного компрессора доказали его работоспособность [12]. В работе [14] указывается на возможность применения роторно-лопастного компрессора в составе системы охлаждения. Однако в рассматриваемых схемах криогенных машин в качестве детандерных полостей выступают поршневые машины Стирлинга. Следует отметить, что в упомянутых работах рассматривается два способа организации перемещения рабочих камер. В первом варианте лопасти роторно-лопастной машины "колеблются" (совершают возвратно-поворотное движение), во втором варианте лопасти роторно-лопастной машины "вращаются" (возвратно-поворотное движение совмещено с однонаправленным вращательным движением). В обоих случаях основу устройства преобразования движения составляет механизм с некруглыми зубчатыми колесами. В настоящей работе для задания кинематических законов перемещения "вращающихся" лопастей используется кулачковый механизм преобразования движения [15].

Простейшие оценки характеристики работы роторнолопастной машины в режиме генератора холода возможны по индикаторной диаграмме [16]. В частности, достаточно точно можно определить поведение термодинамических функций в процессе сжатия и расширения газа, однако определение газообмена между элементами машины и описание режима нестационарного теплообмена крайне затруднительно в рамках этой модели. Более широкие возможности предоставляет математическая модель в узловых значениях. Успешный опыт применения этой модели для расчета характеристик роторно-лопастного двигателя с внешним подводом тепла приведен в работе [17]. В статье [18] рассмотрена математическая модель расчета режима работы роторнолопастного двигателя в двумерной постановке. В перечисленных работах моделирование трения и теплообмена проведено в квазистационарной постановке и опиралось на интегральную методику оценки происходящих процессов. Однако нестационарный процесс течения и теплообмена газа в трубе требует более полной постановки задачи. В настоящей работе вопросы, связанные с режимом нестационарного течения газа и теплообмена, рассмотрены в трехмерном приближении. Характеристики работы остальных узлов охладителя газа моделировались в двумерном приближении в слое переменной толщины.

1. Постановка задачи

Рассмотрим конструкцию на базе четырехлопастной машины. Расчетная область для определения характеристик роторно-лопастного охладителя газа представлена на рис. 1. Она состоит из полостей, которые служат для подачи 1 и отведения 2 охлаждаемого газа. Входной 3 и выходной 4 коллекторы являются газораспределительными устройствами и обеспечивают коммуникацию рабочих камер с устройствами подачи и отведения газа. Теплообменник 5 для рассеивания тепла представляет собой группу однотипных элементов в виде цилиндрических труб U-образной формы, присоединенных ко входному и выходному коллекторам. На рисунке приведена одна из труб. В простейшем случае двигатель описывается при помощи четырех рабочих камер 6-9. Процессы в двигателе циклические, определяемые частотой вращения вала. За один период рабочие камеры совершают один оборот против часовой стрелки, при этом изменение объема каждой из камер происходит с удвоенной частотой. В выбранный момент времени, как изображено на рисунке, камеры 6 и 8 имеют минимальный объем, а камеры 7 и 9 — максимальный. Если проследить перемещение, например, камеры 8 за один период в пространстве, то при движении против часовой стрелки она будет последовательно коммутировать с входной полостью, после чего займет положение камеры 9. Далее произойдет коммутация камеры с входным коллектором 10 теплообменного аппарата. Через полпериода камера будет иметь минимальный объем и занимать положение камеры 6. В последующие моменты времени камера будет соединена с выходным коллектором 11

Рис. 1. Расчетная область холодильной машины на основе роторно-лопастного двигателя.

теплообменного аппарата. Процесс расширения газа в камере закончится, когда она окажется в положении камеры 7. Окончание цикла будет сопровождаться ее коммутацией с выходной полостью и возвратом в состояние на начало цикла.

Для упрощения нахождения характеристик холодопроизводящей машины было выполнено моделирование в гибридной 2D - 3D-постановке. Сущность этой формулировки задачи заключатся в следующем. Состояние газа в U-образной трубе теплообменного аппарата определено в рамках решения трехмерной задачи с естественной постановкой корректных граничных условий на входе и выходе из трубы, отражающих суть нестационарного процесса. Остальные объекты машины описаны без учета некоторых "краевых эффектов". Такой подход возможен в силу того, что теплообменный аппарат состоит из однотипных элементов в виде цилиндрических труб, поэтому достаточно провести оценки происходящих процессов для одной трубы. Соответственно можно проследить "трубку тока", проходящую через выбранную трубу теплообменного аппарата, в других частях рассматриваемой конструкции: коллекторов теплообменного аппарата, рабочих камер двигателя, входной и выходной полостей. Эти части конструкции представлены в виде слоя переменной толщины (изменение толщины слоя происходит в области коллектора,

в остальных перечисленных элементах он постоянный) с условиями симметрии, исключающими трение, массои теплообмен через боковые границы слоя. Количество слоев соответствует количеству труб в теплообменнике, и характеристики холодильной машины определяются в удельных величинах в расчете на одну трубу теплообменного аппарата. Если исходить из того, что в холодильной машине будет использовано 50-100 теплообменных трубок, то потери на трение и теплообмен от взаимодействия газа со стенками рабочих камер, которые возникнут в первом и последнем слое, приведут к коррекции общей оценки происходящих процессов не более чем на 1%-2%.

Труба теплообменного аппарата U-образной формы состоит из двух прямолинейных участков, протяженностью $L=0.5\,\mathrm{m}$, соединенных между собой коленом с поворотом образующей на 180° . Радиус кривизны средней линии колена $R=0.04\,\mathrm{m}$. Диаметр трубы $D=0.02\,\mathrm{m}$.

Рассмотренные участки входного и выходного коллекторов в расчете на одну трубу теплообменного аппарата имеют призматическую шестигранную форму. Грань, контактирующая с трубой теплообменного аппарата, плоская, ее размеры $d_1=0.04~\mathrm{m},\ d_2=0.05~\mathrm{m}.$ Противоположная ей грань — участок боковой поверхности цилиндра радиусом $R_2=0.125~\mathrm{m}.$ Протяженность поверхности в угловом направлении $\beta=16^\circ$, в направлении оси z цилиндра $w_b=0.01~\mathrm{m}.$ Остальные четыре грани

Двигатель имеет четыре лопасти, которые делят пространство между корпусом и ротором на четыре камеры. Противоположные лопасти попарно связаны между собой и перемещаются по одному и тому же закону. Угловой размер лопасти $\psi_b=52^\circ$. Механизм перемещения лопастей обеспечивает сближение их средних линий на угол $\psi_{\min}=54.1^\circ$, при этом максимальный угол составляет $\psi_{\max}=125.9^\circ$. Участок протяженности лопасти в направлении z, приходящийся на одну трубу теплообменного аппарата, w_b ; радиус обода корпуса $R_2=0.125$ m; радиус ротора $R_1=0.05$ m.

Кинематические перемещения лопастей происходят попарно и определяются двумя угловыми скоростями

$$\omega_b = \omega(1 \mp (\frac{\pi}{2} - \psi_{\min}) \sin(2\varphi)),$$

где ω — угловая скорость вращения ротора, ϕ — угловая координата положения средней линии лопасти [15]. Положение граней лопастей ϕ_{bj} можно найти из решения обыкновенного дифференциального уравнения

$$\frac{d\varphi_{bj}}{dt} = \omega_{bj}.$$

Входная и выходная полости имеют форму сегмента кольца с присоединенным патрубком. Протяженность полости на радиусе R_2 по угловой координате 51.95° (размер окна впуска и выпуска). В радиальном направлении размер кольца H=0.015 m. Непосредственно участки входа и выхода газа в роторно-лопастную машину

расположены на радиальном удалении $R_3=0.25\,\mathrm{m}$ с протяженностью по угловой координате $\phi=10^\circ$. Размер полостей по "толщине слоя" w_b совпадает с соответствующим размером рабочих камер в этом координатном направлении.

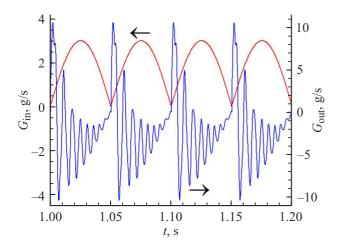
Рабочий газ — воздух. Состояние газа определяется термодинамическим уравнением Менделеева-Клапейрона и калорическим уравнением для совершенного газа. Давление газа на входе и выходе — $0.1\,\mathrm{MPa}$, температура газа на входе — $300\,\mathrm{K}$. Температура на выходной границе, на случай обратного затекания, задается равной $231\,\mathrm{K}$. Это значение соответствует средней температуре газа на выходе и определено в результате предварительного расчета. Температура стенки U-образной трубы — $400\,\mathrm{K}$. На остальных границах выполняется условие тепловой изоляции. Угловая скорость вращения ротора $\omega = 10\pi\,\mathrm{rad/s}$.

Режим течения и теплообмена газа в роторнолопастном охладителе газа определяется в рамках осредненной по Рэйнольдсу системы уравнений Навье-Стокса. Для определения характеристик турбулентности использована Realizable $k-\varepsilon$ -модель турбулентности. Авторами работы [19] проведено численное моделирование двигателя Стирлинга с трубчатыми теплообменниками. В расчетах использовались разные модели турбулентности. Сравнение интегральных характеристик, полученных в расчетах, с результатами эксперимента показало, что наиболее целесообразным вариантом является использование Realizable $k-\varepsilon$ -модели турбулентности.

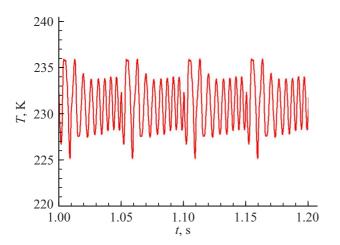
2. Алгоритм решения задачи

Решение задачи получено в результате численного интегрирования системы нестационарных осредненных уравнений Навье-Стокса (URANS). Для этого был использован пакет программ ANSYS Fluent 2021 R2, позволивший рассмотреть расчетную область со сложной топологией и изменением ее формы от времени, а также с возможностью создания и разрушения коммутационных связей между ее элементами и учитывающий балансы массы, энергии и количества движения. Дискретизация расчетной области была проведена по методу конечного объема с использованием шестигранных элементов. В трубе, коллекторах и входной/выходной полости сетка была неперестраиваемой. Для описания поведения значения функций в рабочих камерах была использована сетка с переменным количеством используемых элементов. Был использован алгоритм динамического наслоения Layering, когда добавление или удаление элементов дискретизации связано с перемещением границы расчетной области. Метод заключается в объединении ячеек на границе области с ячейками следующего ряда, если контролируемый размер ячейки становится меньше заданной величины. Если этот параметр превышает заданную величину, то производится деление ячейки в выбранном соотношении.

Для описания взаимодействия рабочих камер с коллекторами или полостями впуска и выпуска газа использована процедура интерфейса. При контакте различных элементов расчетной области участок интерфейса в зоне соприкосновения был проницаем для рабочего тела. В остальных ситуациях интерфейс реализует граничное условие адиабатической твердой стенки.


Для численного интегрирования использована схема Coupled (неявная аппроксимация всех термодинамических функций) и противопоточные аппроксимации потоков на границах контрольных объемов со вторым порядком точности. Количество элементов дискретизации на начало каждого цикла составляло порядка 10^5 , что обеспечивало определение суммарного значения теплового потока на стенке трубы теплообменного аппарата с погрешностью, не превышающей $1.5\,\%$. В связи с перестроением расчетной сетки шаг интегрирования по времени выбирался равным $10^{-4}\,\mathrm{s}$.

3. Анализ результатов

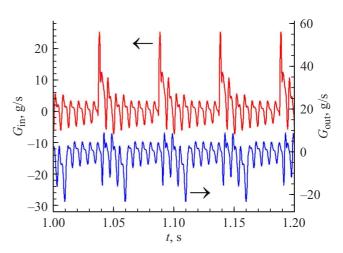

Прерывистый характер подачи массы в теплообменный аппарат роторно-лопастной машины приводит к нестационарному режиму течения газа. Рассмотрим некоторые узловые моменты.

Нестационарный режим течения газа в роторнолопастной машине вызван дискретностью работы ее поршневой группы. В циклическом процессе расход газа во входной полости определяется последовательной коммутацией с ней всех четырех рабочих камер и носит прерывистый характер. Увеличение объема рабочей камеры создает в ней пониженное давление, что приводит к наполнению ее газом из входной полости. Натекание происходит через окно коммутации переменного размера. В начальные моменты фазы наполнения рабочей камеры протяженность границы поступления газа соответствует размеру рабочей камеры по угловой координате, но в последующие моменты, когда рабочая камера "выходит из тени" входной полости, размер перекрытия уменьшается до нуля. Сочетание этих факторов (размер окна коммутации и скорость увеличения объема рабочей камеры) приводит к тому, что зависимость расхода газа от времени при поступлении газа в роторно-лопастную машину имеет форму гладкой периодической функции.

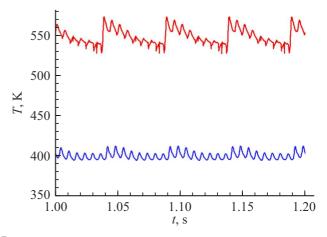
При истечении газа из рабочей камеры в выходную полость можно наблюдать высокочастотные колебания, которые накладываются на основной периодический сигнал. Связано это с тем, что при истечении газа из рабочей камеры давление в ней ниже, чем давление в выходной полости. При коммутации рабочей камеры и выходной полости возникает перетекание газа с выравниванием давлений в рабочей камере и выходной полости. Процесс характеризуется затухающими колебаниями давления и изменением направления течения газа между объектами. Зависимость расхода от времени во входной и выходной полости представлена на рис. 2.

Рис. 2. Зависимость расхода газа от времени во входной и выходной полости за один цикл.

Рис. 3. Изменение среднемассовой температуры в выходной полости за один цикл.


Положительные значения расхода соответствуют затеканию газа в охладитель, отрицательные — его истечению.

При температуре газа на входе 300 К средняя температура на выходе из выходной полости составляет 231 К. Зависимость среднемассовой температуры газа в контрольном сечении выходной полости от времени приведена на рис. 3.


Представление о режиме течения газа в трубе теплообменного аппарата дает рис. 4, где приведено значение расхода во входном и выходном сечении трубы. Истечение рабочего тела из трубки соответствует отрицательному значению расхода, затекание — положительному значению. Присоединение рабочих камер к теплообменному аппарату сопровождается резким изменением расхода от времени. Наиболее интенсивные броски "вверх" вызваны нестационарной подачей газа из рабочей камеры через входной коллектор. При этом в трубе формируется волна сжатия, которая, со временем запаздывания около 3 ms, видна на зависимости расхода

газа на другом конце трубы. Наиболее интенсивные броски "вниз" — нестационарное истечение газа из теплообменного аппарата через выходной коллектор с заполнением рабочей камеры. В этом случае формирование расхода газа в выходном сечении трубы происходит под воздействием волны разрежения, вызванной увеличением объема присоединенной к выходному коллектору теплообменного аппарата рабочей камеры. В остальные моменты времени система из коллекторов и труб теплообменного аппарата замкнута. В трубе теплообменного аппарата наблюдается затухание колебаний газа с выравниванием уровня давления между входным и выходным коллекторами. Частота колебаний связана с геометрией трубы, размерами коллекторов и режимом теплообмена на стенке трубы. В трудах конференции [20] проведено исследование волновых процессов в теплообменном аппарате.

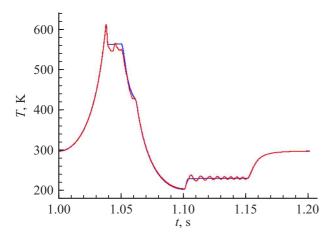
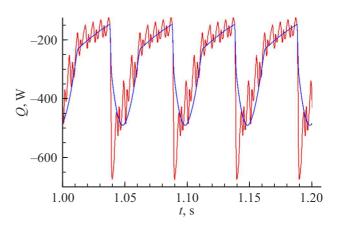

Зависимость среднемассового значения температуры от времени для этих же сечений трубы приведена на рис. 5.

Рис. 4. Расход газа через торцевые сечения трубы теплообменного аппарата за цикл.

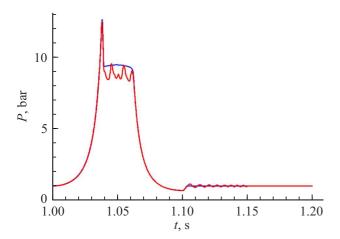
Рис. 5. Значения среднемассовой температуры газа на торцах трубы теплообменного аппарата за цикл.

Рис. 6. Изменение среднемассовой температуры в рабочей камере за цикл. Красная кривая — результат численного моделирования в пакете Fluent, синяя кривая — результат моделирования методом узлового анализа.

Средняя температура поступающего газа в трубу теплообменного аппарата — 547 К. Как можно судить по зависимости значения температуры на входе в теплообменный аппарат, проявление нестационарного характера течения газа наблюдается не только в расходной составляющей компоненты скорости, но и по этой характеристике потока. Средняя температура газа, вытекающего из трубы, — 400 К. Тот факт, что температура газа при истечении из U-образной трубы совпадает со значением температуры, которая задана как граничное условие на стенке трубы, в большей степени свидетельствует о неоптимальном режиме теплосьема в теплообменном аппарате. По крайней мере, выходной участок трубы не участвует в теплообмене газа со стенкой трубы.


На рис. 6 приведено изменение среднемассовой температуры в камере за период. В начале рассматриваемого цикла рабочая камера находится в положении камеры 9 (рис. 1); среднемассовая температура газа в камере равна температуре газа на входе в охладитель. Рост температуры с 300 до 600 К отражает адиабатический процесс сжатия газа (1-1.04 s). Процесс нагнетания газа из рабочей камеры во входной коллектор теплообменного аппарата (1.04—1.05 s) сопровождается перемешиванием и происходит со снижением температуры. По окончании процесса рабочая камера занимает положение камеры 6 и уровень температуры в камере отражает состояние газа в "верхней мертвой точке". Последующее снижение температуры газа вызвано увеличением размера рабочей камеры и ее наполнением газом из выходного коллектора теплообменного аппарата (1.05–1.06 s). Конечное значение температуры в камере превышает температуру газа на выходе из трубы. Это объясняется наличием мертвого объема в рабочей камере, в котором оставался газ, не участвовавший в теплообмене [18].

В процессе адиабатического расширения газа $(1.06-1.1\,\mathrm{s})$ среднемассовая температура газа в рабочей


камере снижается до значения 204 К. Рабочая камера занимает положение 7 ("нижняя мертвая точка"). Коммутация рабочей камеры с выходным коллектором сопровождается быстрым ростом температуры до уровня температуры на выходе из охладителя. Повышение температуры связано с выравниванием давления между рабочей камерой и выходным коллектором. Нагнетание газа из рабочей камеры в выходной коллектор (1.1—1.15 s) сопровождается затухающим волновым процессом. Рассмотренный цикл изменения температуры в рабочей камере завершается ее наполнением газом из входного коллектора (1.15—1.2 s).

Изменение температуры газа в теплообменном аппарате связано с нестационарным теплообменом на стенке трубы. Зависимость интегрального значения теплового потока на стенке U-образной трубы от времени представлена на рис. 7 (красная кривая). При средней за цикл величине теплового потока 288 W (по модулю) амплитуды отклонения от среднего значения составляют 160 и 386 W в меньшую и большую сторону. Следует обратить внимание на корреляцию теплового потока с расходом газа во входном сечении трубы теплообменного аппарата (рис. 4). Максимальное (по модулю) значение теплового потока локализовано начальным участком трубы теплообменного аппарата и вызвано интенсивным изменением значения расхода на входе в трубу при истечении из коллектора теплообменного аппарата.

Рассматривая тепловой баланс в теплообменном аппарате, среднее значение потока тепла через стенку трубы за цикл можно соотнести с изменением внутренней энтальпии массы газа, которая, в свою очередь, связана с изменением температуры газа. Если исходить из значения среднего за период расхода газа в трубе 1.92 g/s, снижение температуры газа в трубе оценить величиной 147 K, удельную теплоемкость газа при постоянном давлении — значением 1006 J/(kg·K), то изменение внутренней энтальпии составит 284 W, что

Рис. 7. Значения теплового потока на стенке трубы за один цикл, полученное в результате численного моделирования в пакете Fluent (красная кривая); тепловыделение в теплообменнике за один цикл, полученное в расчете методом узлового анализа (синяя кривая).

Рис. 8. Изменение среднемассового давления в рабочей камере за цикл. Красная кривая — результат численного моделирования в пакете Fluent, синяя кривая — результат моделирования методом узлового анализа.

свидетельствует об удовлетворительном энергетическом балансе в теплообменном аппарате на уровне средних за цикл значений термодинамических функций.

Исходя из Первого начала термодинамики, совершаемая работа над газом за цикл в объединенном компрессорном и детандерном режиме будет определяться разностью между отведенным теплом и изменением внутренней энергии на входе и выходе устройства. Если провести эти оценки, то совершенная работа составит около 192 W.

Для проверки результатов, полученных настоящей в работе, был проведен расчет охладительной машины методом узлового анализа [17]. В данном методе не учитывается форма теплообменного аппарата, тепловыделение в теплообменнике определяется, исходя из коэффициента объемной теплоотдачи, значение которого назначается. Поэтому для сравнения результатов коэффициент объемной теплоотдачи задавался таким, чтобы средняя за цикл мощность тепловыделения в теплообменнике, в расчете методом узловых значений функций, равнялась среднему за цикл тепловому потоку на стенке трубы. Объем теплообменника в методе узлового анализа задавался равным объему трубы вместе с примыкающими к ней коллекторами. Полученному в численном моделировании среднему тепловому потоку (288 W) отвечает коэффициент объемной теплоотдачи, равный $100 \, \text{KW/(m}^3 \cdot \text{K})$.

Моделирование теплообменного аппарата различными методами приводит к близким зависимостям полного тепловыделения (рис. 7). Значения среднемассовой температуры (рис. 6) и давления (рис. 8) в рабочей камере, полученные разными подходами, практически идентичны на большей части рабочего цикла в силу масштаба изменения величин. Расхождения наблюдаются в моменты контакта камеры с коллекторами теплообменника и с выходным коллектором, когда проявление

упругих свойств газа оказывает существенное влияние на состояние рабочего тела в камере. Волновые процессы, вызывающие характерные колебания в численном моделировании, принципиально не могут быть воспроизведены при использовании метода узловых значений функций.

Заключение

В работе предложен принципиально новый способ применения роторно-лопастной машины, ранее не описанный в научной литературе. Средствами математического моделирования установлена возможность создания охладителя газа на базе роторно-лопастной машины. Определены значения удельных величин (в расчете на типовой элемент теплообменного аппарата) газодинамических функций в рабочих камерах и теплообменном аппарате. В частности, для рассмотренной конструкции и режима работы на 192 W затраченной энергии на валу роторно-лопастной машины приходится 94W снижения внутренней энергии рабочего тела в виде воздуха. При нормальных условиях и расходе газа 1.92 g/s изменение температуры воздуха составит 69°C. Проверка результатов была осуществлена путем сравнения с методом узлового анализа. Получено качественное соответствие изменения термодинамических функций в рабочих камерах, что подтверждает правильность проведенного численного моделирования. Следует отметить, что нестационарный режим течения газа в теплообменном аппарате, не связанный с процессом сжатия-расширения, открывает широкие возможности для интенсификации процесса отвода тепла. Полученные результаты расширяют область применения роторно-лопастных машин и открывают перспективы их использования в холодильной технике.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] В.Г. Фастовский, Ю.В. Петровский, А.Е. Ровинский. *Криогенная техника* (Энергия, М., 1967)
- [2] Г.И. Бумагин. Поршневые детандеры: учебное пособие (ОмПИ, Омск, 1981)
- [3] K. Yamamoto. *Rotary engine* (Sankaido Co., Tokyo, 1981), p. 67.
- [4] К.И. Страхович, М.И. Френкель, И.К. Кондряков, В.Ф. Рис. *Компрессорные машины* (Гос. изд-во торговой лит-ры, М., 1961), 600 с.
- [5] И.З. Зайченко, Л.М. Мышлевский. Пластинчатые насосы и гидромоторы (Машиностроение, М., 1970)
- [6] G.J. Thompson, Z.S. Wowczuk, J.E. Smith. Rotary Engines A Concept Review (SAE Technical Paper 2003-01-3206), DOI: 10.4271/2003-01-3206

- [7] G. Sadiq, G. Tozer, R. Al-Dadah, S. Mahmoud. Energy Conversion and Management, 142, 42 (2017). DOI: 10.1016/j.enconman.2017.03.040
- [8] G. Huaduo, C. Yaping, W. Jiafeng, J. Yunhui, S. Bengt. Appl. Thermal Eng., 186 (3), (2021).
 DOI: 10.1016/j.applthermaleng.2020.116526
- [9] Д.В. Гринев. Вестник ПсковГУ. Экономические и технические науки, 5, 142 (2014).
- [10] Ю.Н. Журавлев, И.В. Плохов, Ю.Н. Лукьянов, М.А. Донченко, С.И. Тихонов, А.Л. Перминов, А.В. Ильин, С.Н. Семенов, А.В. Иванов, М.Л. Андреев, А.А. Хитров. Математические модели физических процессов в роторнолопастном двигателе с внешним подводом теплоты (ПсковГУ, Псков, 2012)
- [11] А.И. Довгялло, И.В. Коломин. Вестник СГАУ, **8** (2), 52 (2009).
- [12] И.В. Коломин, А.И. Довгялло, Ю.М. Русанов, В.В. Лысенков, Ю.М. Трубников. Вестник СГАУ, 5 (2-1), 302 (2006).
- [13] И.В. Коломин, А.И. Довгялло, Р.Н. Гальперин, Л.Ю. Гуляев, А.П. Логашкин. Вестник СГАУ, **8** (3-1), 260 (2009).
- [14] И.В. Коломин. Роторно-лопастной компрессор для бортовой системы охлаждения летательных аппаратов (Автореф. канд. дисс., СГАУ, Самара, 2007)
- [15] Д.В. Гринев, М.А. Донченко, Ю.Н. Журавлев, В.Ф. Клейн. Технологии и технические средства механизированного производства продукции растениеводства и животноводства, **80**, 247 (2008).
- [16] Ю.Н. Журавлев, И.В. Плохов, Ю.Н. Лукьянов, М.А. Донченко, С.И. Тихонов, А.Л. Перминов, А.В. Ильин, С.Н. Семенов, А.В. Иванов, М.Л. Андреев, А.А. Хитров. Расчет и проектирование роторно-лопастной машины с внешним подводом теплоты (ПсковГУ, Псков, 2012)
- [17] В.Ю. Коекин, С.В. Булович. Научно-технические ведомости СПбГПУ. Физико-математические науки, 16 (3), 49 (2023). DOI: 10.18721/JPM.16305
- [18] В.Ю. Коекин, С.В. Булович. Научно-технические ведомости СПбГПУ. Физико-математические науки, 17 (4), 20 (2024). DOI: 10.18721/JPM.17402
- [19] S.A. El-Ghafour, M. El-Ghandour, N.N. Mikhael. Energy Conversion and Management, 180, 533 (2019). DOI: 10.1016/j.enconman.2018.10.103
- [20] V.Yu. Koyokin, S.V. Bulovich. XXII Conf. Methods of Aerophysical Research (ICMAR 2024), (Novosibirsk, 2024), DOI: 10.53954/9785604990148 104