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С помощью ансамбля дискретных осцилляторов ван дер Поля-Дуффинга исследовано влияние резонансов

на каскад квазипериодических бифуркаций, последовательность которых отвечает сценарию Ландау-Хопфа.

При небольших частотных расстройках осцилляторов возникают языки квазипериодических режимов,

аналогичные языкам Арнольда, причем в области самых высокочастотных колебаний. При большой

частотной расстройке общая картина трансформации режимов по Ландау-Хопфу сохраняется, но квазиперио-

дическая бифуркация Хопфа в каскаде может замениться на седло-узловую бифуркацию тора. Наблюдаются

также узкие области резонансов на базе торов разной размерности. При больших значениях параметра

нелинейности по типу осциллятора Дуффинга резонансы могут разрушить высокоразмерные торы в каскаде

Ландау-Хопфа.
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Введение

Квазипериодические колебания достаточно распро-

странены в природе и технике. Они могут характери-

зоваться разным, иногда достаточно большим числом

несоизмеримых частот. Такие примеры можно найти в

радиофизике и электронике [1–9], в теории контактов

Джозефсона [10–12], механике и гидродинамике [13–18],
много примеров известно в астрофизике [19,20], а также

и в других областях. Квазипериодические колебания с

разным числом несоизмеримых частот изучаются также

на примерах модельных дискретных систем (отображе-
ний), в частности, в [21–25].

С квазипериодическими колебаниями Ландау и Хопф

в свое время ассоциировали сценарий возникновения

сложной (хаотической) динамики [26,27]. Сценарий

предполагает поэтапное увеличение числа несоизмери-

мых частот за счет подключения новых колебательных

мод. Этот процесс происходит через каскад квазипери-

одических бифуркаций Хопфа, в результате которых в

фазовом пространстве рождаются инвариантные торы

все более высокой размерности. Общая дискуссия о та-

ком сценарии обсуждается во многих работах, например,

в [14–17,28–30].

Формально сценарий Ландау-Хопфа предполагает бес-

конечное число квазипериодических бифуркаций. Од-

нако значительный интерес с точки зрения механиз-

мов возникновения сложных колебаний представляют

более реалистичные ситуации, когда число бифурка-

ций сравнительно велико, но конечно. Каскад Ландау-

Хопфа может быть оборван за счет разрушения тора

с образованием хаоса. На этот момент, как известно,

обратили внимание Рюэль и Такенс [31], что вызвало

последующее обсуждение и активную дискуссию. При

этом Афраймович и Шильников установили, что раз-

рушиться с образованием хаоса может уже двумерный

двухчастотный тор [32]. Однако сейчас известны приме-

ры устойчивых торов достаточно высокой размерности,

отвечающих четырех-, пяти- и даже шестичастотным

колебаниям [4–6,8–10,18,21,22,24,25].

Каскад квазипериодических бифуркаций может быть

ограничен также за счет конечного числа колебатель-

ных мод самой системы. Например, в [33] рассмотрен

ансамбль пяти автоколебательных осцилляторов ван дер

Поля, демонстрирующий пять шагов сценария Ландау-

Хопфа. Подчеркнем здесь универсальный характер си-

стемы ван дер Поля, описывающий как радиофизический

генератор, так и системы самой разнообразной природы,

см. [34] и обзор [35]. Интересно, что взаимодействие си-

стемы [33] с дополнительной хаотической подсистемой

не уменьшает, а увеличивает число квазипериодических

бифуркаций и возможную размерность тора [36].

С точки зрения теории колебаний представляется, что

еще одним механизмом обрыва каскада бифуркаций по

Ландау-Хопфу может служить возникновение синхрони-

зации и отвечающих ей резонансов на высокоразмерных

торах. Именно этот аспект мы и рассмотрим в настоя-

щей работе.

Как известно, в простейшем случае двухчастотной

квазипериодичности на поверхности отвечающего ей

аттрактора в виде инвариантного тора могут возникать

резонансные предельные циклы. Этот переход обеспе-

чивается за счет седло-узловой бифуркации предельных

циклов. При этом на плоскости параметров возника-
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ет структура языков Арнольда, встроенных в область

квазипериодичности [34,37,38]. Со временем стало из-

вестно, что возможна синхронизация и многочастотных

квазипериодических колебаний, когда на поверхности

тора высокой размерности рождается тор меньшей раз-

мерности. Такой переход происходит через бифуркацию

торов [39,40], обусловленную столкновением устойчи-

вого и седлового торов. Ранние примеры для радиофи-

зических генераторов можно найти, например, в [4–6].
При этом на плоскости параметров в ситуации син-

хронизации многочастотных колебаний может возникать

картина, аналогичная системе языков Арнольда, но в

виде языков квазипериодических режимов. Она наблю-

далась в модельных отображениях [25,41], связанных

радиофизических генераторах [8,9,42], системе хищник-

жертва [43] и других примерах.

В настоящей работе мы обсудим, как соотносится

картина бифуркаций по Ландау-Хопфу с возможными

резонансами.

1. Исследуемая система. Случай
отсутствия резонансов

В [33,36] в контексте сценария Ландау-Хопфа бы-

ла предложена система пяти диссипативно связанных

неидентичных по управляющим параметрам осциллято-

ров ван дер Поля. В такой системе при уменьшении

величины связи (аналог числа Рэйнольдса) последова-

тельно наблюдается пять шагов сценария Ландау-Хопфа.

Как известно, для двух связанных осцилляторов ван

дер Поля высокие резонансы в отличие от основного

слабо выражены, особенно в случае малых значений па-

раметров возбуждения [44,45]. Поэтому мы, во-первых,

используем увеличенные по сравнению с [33,36] зна-

чения этих параметров. Во-вторых, мы дополним эту

модель кубической нелинейностью по типу осциллятора

Дуффинга. Физически такая нелинейность отвечает за

неизохронность малых колебаний [34]. В случае двух ос-

цилляторов это приводит к возникновению существенно

более выраженной системы резонансных языков разного

порядка [46].
С целью упрощения анализа мы также используем

дискретную версию системы. Она получается путем

замены в исходных уравнениях производных по времени

конечными разностями. Подобный прием был предложен

еще в ранних работах по нелинейной физике [47–49].
Сейчас он получил широкое распространение в самых

разных областях: радиофизике, динамике популяций,

нейродинамике, теории генных сетей, а также при опи-

сании базовых моделей теории колебаний и нелинейной

динамики (ряд конкретных примеров можно найти в

обзорной части [25]). Причем, если использовать малое

значение параметра дискретизации, то устройство обла-

стей в пространстве параметров будет очень близко к

системе-прототипу с непрерывным временем. В то же

время анализ дискретной системы гораздо проще.
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Рис. 1. Карта ляпуновских показателей ансамбля пяти дис-

кретных осцилляторов ван де Поля (1) для λ1 = 0.1, λ2 = 0.2,

λ3 = 0.3, λ4 = 0.4, λ5 = 0.5, ε = 0.1. Параметр кубической

нелинейности β = 0.

С учетом данных замечаний исследуемая система

имеет вид

x i,n+1 = x i,n + εy i,n+1,

y i,n+1 =y i,n + ε(λi − x2
i,n)y i,n − ε(1 + 1i−1)x i,n

−εβx3
i,n − ε

µ

4

5∑

j=1

(y i,n − y j,n) (1)

Здесь x i,n, y i,n — переменные (координата и скорость)
i-го осциллятора, λi — параметр его возбуждения,

β — параметр дополнительной нелинейности по типу

осциллятора Дуффинга, µ — величина диссипативной

связи. Величины 1i−1 = 1(i − 1)/4 — частотные рас-

стройки осцилляторов относительно первого, частота

которого принята за единицу. В данном случае взаимные

расстройки осцилляторов управляются единственным

параметром 1. Кроме того, n — номер итерации, ε —

параметр дискретизации.

Вслед за [33,36] положим сначала λ1 = 0.1, λ2 = 0.2,

λ3 = 0.3, λ4 = 0.4, λ5 = 0.5. Здесь и далее будем исполь-

зовать маленькое значение ε = 0.1. Для последующего

обсуждения представим сначала случай отсутствия до-

полнительной нелинейности β = 0. На рис. 1 показа-

на соответствующая карта ляпуновских показателей на

плоскости частотная расстройка-величина связи (1, µ).
На этой карте разными цветами обозначены области с

разным характером динамики в соответствии с сигна-

турой спектра показателей Ляпунова 3n, как указано в

таблице. В этой таблице приведены шесть существенных

показателей, остальные всегда отрицательные. Расшиф-

ровка цветовой палитры показана справа от рисунка.

При уменьшении величины связи µ вдоль правого

обреза карты при частотной расстройке 1 = 3 сначала

наблюдается состояние равновесия E . Затем в результа-

те бифуркации Неймарка-Сакера NS от него отделяется

31 Журнал технической физики, 2025, том 95, вып. 11
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Типы режимов и спектр показателей Ляпунова для отображения

Обозначение Тип режима Тип аттрактора в отображении Спектр показателей Ляпунова

E Состояние равновесия (Equilibrium) Неподвижная точка 31,2,3,4,5,6 < 0

2T Двухчастотный квазипериодический Инвариантная кривая 31 = 0, 32,3,4,5,6 < 0

3T Трехчастотный квазипериодический Двумерный тор 31,2 = 0, 33,4,5,6 < 0

4T Четырехчастотный квазипериодический Трехмерный тор 31,2,3 = 0, 34,5,6 < 0

5T Пятичастотный квазипериодический Четырехмерный тор 31,2,3,4 = 0, 35,6 < 0

6T Шестичастотный квазипериодический Пятимерный тор 31,2,3,4,5 = 0, 36 < 0

C Хаос Хаотический аттрактор 31 > 0, 32,3,4,5,6 < 0

H Гиперхаос Гиперхаотический аттрактор 31,2 > 0, 33,4,5,6 < 0
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Рис. 2. Карта ляпуновских показателей ансамбля пяти дискретных осцилляторов ван де Поля-Дуффинга для β = 1 (а) и ее

увеличенный фрагмент (b). Стрелкой отмечено значение µ = 0.14, отвечающее графикам на рис. 3. Значения параметров: λ1 = 0.5,

λ2 = 1, λ3 = 1.5, λ4 = 2, λ5 = 2.5, ε = 0.1.

устойчивая инвариантная кривая, что отвечает рожде-

нию двухчастотного режима 2T. Затем в точке QH1 от

этой кривой в результате квазипериодической бифур-

кации Хопфа отделяется двумерный тор и рождается

трехчастотный режим 3T. Далее происходит каскад ква-

зипериодических бифуркаций Хопфа QH2,3,4 поэтапного

рождения четырех-, пяти- и шестичастотных режимов

4T, 5T и 6T. (Как мы отмечали, в силу малости, ε

конфигурация областей и характер бифуркаций анало-

гичны случаю потоковой системы [33], за исключением

увеличения на единицу числа возникающих частот, что

характерно для дискретных систем.)
Как видно из рис. 1, в случае небольших параметров

возбуждения λ и в отсутствии дополнительной нелиней-

ности резонансные режимы (кроме основного резонанса

1 = 0) отсутствуют. При этом при достаточно большой

частотной расстройке 1 при уменьшении величины

диссипативной связи µ наблюдается пять шагов каскада

Ландау-Хопфа.

2. Случай квазипериодических
резонансов

Увеличим теперь управляющие параметры так, что

λ1 = 0.5, λ2 = 1, λ3 = 1.5, λ4 = 2, λ5 = 2.5 и выберем

по аналогии с [46] значение параметра дополнительной

нелинейности β = 1. Соответствующая ляпуновская кар-

та показана на рис. 2, a. Теперь появляются характерные

квазипериодические резонансы. Особенно это заметно

для шестичастотной области. Соответствующий увели-

ченный фрагмент карты показан на рис. 2, b. Можно

видеть появление языков, аналогичных традиционным

языкам Арнольда, но на базе торов высокой размерности

6T и отвечающих пятичастотным режимам 5T. Наиболее

крупные языки имеют острия на оси частотной расстрой-

ки 1. Отменим, что резонансы тем более выражены, чем

меньше частотная расстройка 1 осцилляторов.

В области пятичастотных режимов 5T и четырехча-

стотных 4T резонансы также присутствуют, но менее вы-

Журнал технической физики, 2025, том 95, вып. 11
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Рис. 3. Графики ляпуновских показателей вдоль линии

µ = 0.14. Значения параметров: λ1 = 0.5, λ2 = 1, λ3 = 1.5,

λ4 = 2, λ5 = 2.5, ε = 0.1 и β = 1. QSN1,2 — точки седло-

узловых бифуркаций тора.

ражены. В трех- и двухчастотной областях 3T и 2T они

практически отсутствуют. Таким образом, резонансы в

первую очередь возникают в наиболее высокочастотных

областях.

Еще одна из особенностей картины на рис. 2, b —

появление хаоса C в области перекрытия пятичастотных

языков. На рис. 1 хаос отсутствовал. Также в диапазоне

0 < 1 < 10 на рис. 2, a можно видеть, что хаос теперь

возможен в области локализации трехчастотных языков

3T — они погружены в область хаоса. Однако в целом

области хаоса имеют малый размер.

Резонансную природу квазипериодических языков ил-

люстрирует рис. 3. На нем показаны графики ляпунов-

ских показателей вдоль отрезка горизонтальной линии

µ = 0.14 в диапазоне 5.1 < 1 < 10.5, пересекающего

один из наиболее крупных языков и несколько мелких.

Это значение связи отмечено стрелкой на рис. 2, b.

На графиках вне резонансных областей наблюдается

шестичастотный режим 6T с нулевыми показателя-

ми 31,2,3,4,5 = 0. Внутри — равны нулю показатели

31,2,3,4 = 0, а пятый 35 отрицательный, так что реали-

зуется пятичастотный режим 5T. При этом шестой по-

казатель 36 тоже отрицательный, причем вблизи границ

языка нигде не совпадает с 35. Согласно [39,40], это есть

признак квазипериодической седло-узловой бифуркации

тора. Такие бифуркации для самого крупного языка от-

мечены стрелками на рис. 3 и обозначены QSN1,2 . Также

соответствующие границы языка отмечены на плоскости

параметров рис. 2, b. Таким образом, мы действительно

наблюдаем резонансные режимы. Их характерная осо-

бенность —
”
провалы“ соответствующего показателя

(в данном случае 35) на графиках в отрицательную

область.

На карте рис. 2, a при больших частотных расстройках

порядка 1 = 30 ширина резонансных языков заметно

уменьшается, и при вариации связи µ снова возникает

чередование областей, характерное для каскада Ландау-

Хопфа. При этом, однако, требуемая величина частотной

расстройки 1 возрастает в десять раз по сравнению с

рис. 1. Таким образом, чтобы влияние резонансов было

не очень существенным, требуется большая взаимная

расстройка осцилляторов по частоте. Но даже в этом

случае возникают некоторые особенности. Обсудим на-

блюдаемую картину и эти особенности подробнее.

Для этого обратимся к графикам ляпуновских по-

казателей в зависимости от величины связи µ при

1 = 30 (правый обрез карты на рис. 2, a) в диапазоне

0 < µ < 2, показанном на рис. 4. Можно видеть наличие

характерных областей, где доминируют режимы NT с

соответствующим количеством нулевых показателей и

несоизмеримых частот. Для удобства восприятия их

области обозначены на рисунке символами в кружочках.

Обсудим наблюдаемые бифуркации.

В правой части рисунка показатель 31 = 0, а осталь-

ные — отрицательные. В соответствии с таблицей

наблюдается двухчастотный режим 2T с аттрактором в

виде инвариантной кривой. При приближении к точке

QН1 второй и третий показатели равны друг другу:

32 = 33. Они отрицательные и возрастают с уменьше-

нием связи. Непосредственно в точке QН1 оба показа-

теля обращаются в нуль, причем далее показатель 32

остается нулевым, так что теперь 31,2 = 0, а показатель

33 уходит в отрицательную область. В соответствии

с [39] условие 32 = 33 отвечает квазипериодической

бифуркации Хопфа QН1, когда из инвариантной кривой

мягким образом рождается двумерный тор, отвечающий

трехчастотному режиму 3T.

Аналогично при приближении к точке QН2 выполня-

ется условие 33 = 34 < 0, так что наблюдается квазипе-

риодическая бифуркация Хопфа рождения трехмерного

тора, соответствующая переходу от трехчастотного ре-

µ
0.4 0.8 1.2 1.6 2.0

–0.03

–0.02

–0.01

0

Λ

Λ1,2,3,4 QSN3
Λ1,2,3,4,5

Λ5

Λ4

Λ6

Λ3
Λ3

Λ5, 6

QH2 QH1QH4

Λ3, 4

Λ2, 3

Λ1,2

Λ4, 5

Λ1

–0.04

–0.02

–0.01

6T 5T 4T 3T

2T

0
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область шестичастотных режимов.

жима 3T к четырехчастотному 4T. При этом резонансы

в области двух- и трехчастотных режимов и вблизи

точки QН2 не наблюдаются. Поэтому в данной области

реализуются первые этапы каскада Ландау-Хопфа.

Однако далее возникают некоторые особенности. Их

иллюстрирует увеличенный фрагмент рисунка в окрест-

ности точки перехода от режима 4T к пятичастотному

режиму 5T, показанный на рис. 5, a.

При приближении к этой точке справа показатели

31,2,3 = 0, а показатели 34 и 35 совпадают. Это ха-

рактерно для квазипериодической бифуркации Хопфа

соответствующего порядка. Однако в непосредственной

окрестности точки перехода графики показателей 34 и

35 расходятся. При этом показатель 35 уходит в отрица-

тельную область, а показатель 34 возрастает, обращаясь

в нуль в точке QSN3 . В соответствии с [39,40] такое

поведение отвечает седло-узловой бифуркации торов.

Таким образом, одна из квазипериодических бифуркаций

Хопфа в каскаде Ландау-Хопфа может замениться на

седло-узловую бифуркацию. Однако в окрестности точки

такой бифуркации сохраняется поведение, характерное

для квазипериодической бифуркации Хопфа. Так, в боль-

шом масштабе на рис. 4 вблизи точки QSN3 пове-

дение показателей визуально характерно именно для

квазипериодической бифуркации Хопфа. Такое комбини-

рованное поведение можно объяснить тем, что точка

бифуркации Хопфа попала в окрестность некоторого

резонанса.

Отмечаем также, что теперь наблюдаются узкие окна

резонансов на базе торов разной размерности. На увели-

ченном рис. 5, a можно видеть характерные
”
провалы“

третьего показателя 33, отвечающие трехчастотным ре-

зонансам на базе четырехчастотного 4T тора. Наиболее

крупный из них отмечен символом 31,2, обозначаю-

щим нулевое значение этих двух показателей. Имеется

несколько менее выраженных резонансов такого типа.

Левее точки QSN3 наблюдается множество очень мел-

ких четырехчастотных резонансов.

Вернемся к рис. 4. При дальнейшем уменьшении связи

в соответствии с условием 35 = 36 снова происходит

квазипериодическая бифуркация Хопфа QH4 рождения

шестичастотного режима 6T. Можно отметить, что очень

близко к точке QH4 слева от нее наблюдается сравни-

тельно широкий пятичастотный резонанс, отмеченный

на рис. 4 стрелкой и подписанный символом 31,2,3,4.

В целом резонансы в шестичастотной области наиболее

выражены. Их иллюстрирует увеличенный фрагмент

графиков на рис. 5, b. Можно видеть область шестича-

стотных режимов с 31,2,3,4,5 = 0, в которую встроены

пятичастотные резонансы с 31,2,3,4 = 0. Их границами

также являются точки седло-узловых бифуркаций торов

QSN. Интересную особенность можно видеть для резо-

нансного окна, расположенного в правой части рис. 5, b.

Внутри него наблюдается (хотя и очень узкая) область

с 31,2,3 = 0. Таким образом, на поверхности резонансно-

го пятичастотного тора возможен вторичный резонанс

с возникновением четырехчастотного тора. На картах

рис. 2 им отвечают характерные маленькие острова,

лежащие на пересечении пятичастотных языков.

Таким образом, в системе со сценарием Ландау-Хопфа

при определенном подборе параметров могут возникать

квазипериодические резонансы на базе высокочастотных

торов. Однако при достаточной большой частотной рас-

стройке осцилляторов резонансы являются узкими и в

целом не разрушают сценарий Ландау-Хопфа.

3. Случай больших значений
параметра нелинейности по типу
осциллятора Дуффинга

Увеличим теперь значение параметра дополнительной

нелинейности β . Отметим, что нелинейный параметр β

с точки зрения колебательных режимов в отдельном

осцилляторе отвечает за отклонение формы потенциаль-

ной
”
ямы“ от классической квадратичной. Возникающие

колебания становятся неизохронными, т. е. их период

зависит от амплитуды. Этот фактор с точки зрения
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Рис. 6. Графики ляпуновских показателей в зависимости

от величины связи µ для 1 = 30: a — β = 2, b — β = 3.

Значения остальных параметров: λ1 = 0.5, λ2 = 1, λ3 = 1.5,

λ4 = 2, λ5 = 2.5, ε = 0.1.

синхронизации приводит к увеличению области синхро-

низации тем больше, чем больше параметр β, на что

указано в [34]. Поэтому в случае больших значений

этого параметра можно ожидать как более сильных

резонансов, так и разрушения квазипериодических би-

фуркаций за их счет. Эти эффекты мы и обсудим в

разд. 3.

На рис. 6 показаны аналогичные рис. 4 графики

ляпуновских показателей в зависимости от величины

связи µ для β = 2 и 3. В случае β = 2 на рис. 6, a на-

блюдается каскад из бифуркации Неймарка-Сакера (NS)
рождения инвариантной кривой из состояния равнове-

сия E и квазипериодических бифуркаций Хопфа QH1,2,3 .

В этой области резонансы практически отсутствуют.

При приближении к более высокочастотной точке QH4

справа наблюдается
”
сгущение“ достаточно выраженных

четырехчастотных резонансов. Однако в ее окрестности

характерное условие для квазипериодической бифурка-

ции Хопфа 35 = 36 сохраняется. В то же время слева

от этой точки шестичастотный режим практически не

возникает. Наблюдается нерегулярное чередование окон

пяти- и четырехчастотных режимов, и возможны даже

узкие области трехчастотного режима и хаоса с 31 > 0.

При дальнейшем уменьшении связи при приближении

к точке µ = 0 реализуется пятичастотный режим с

31,2,3,4 = 0.

Перейдем к случаю β = 3, рис. 6, b. Теперь достаточно

достоверно наблюдаются только точки NS и QH1,2 .

В окрестности точки QH3 справа происходит ”
сгущение“

мелких трехчастотных резонансов, а слева — четырех-

частотных. При дальнейшем уменьшении связи снова

наблюдается чередование окон режимов разного типа,

в основном четырехчастотных и хаоса, но исключая

шестичастотные. В отличие от случая рис. 6, a при малой

связи µ все торы разрушены — возникает достаточно

широкое окно хаоса C.

На рис. 7 показана ляпуновская карта для случая

β = 3. Ее надо сравнить с рис. 2, a. Вдоль правого

края карты наблюдается динамика, соответствующая

графикам на рис. 6, b. В центральной части карты в

области двухчастотных режимов 2T и трехчастотных

3T резонансы отсутствуют. В четырехчастотной обла-

сти 4T присутствуют языки трехчастотных режимов.

Ниже, при меньшей связи µ, выраженные языки не

наблюдаются, а происходит отчасти нерегулярное чере-

дование режимов. При частотных расстройках 1 < 17.7

восстанавливаются шестичастотные режимы. Интересно

проследить характер режимов при малых 1 с ростом

величины связи µ. Сначала реализуется шестичастотный

режим, который переходит в пятичастотный или четы-

рехчастотный. Они затем разрушаются с образованием

хаоса. При этом области хаоса заметно увеличиваются

по сравнению с рис. 2, a. Еще одна особенность —

появление гиперхаоса H. При достаточно большой связи

квазипериодические колебания восстанавливаются сразу

из хаоса, причем в виде двухчастотного режима 2T.

Таким образом, большие значения дополнительной нели-

нейности по типу осциллятора Дуффинга усиливают

резонансы и способствуют разрушению синхронизации

и возможному разрушению квазипериодических бифур-

каций инвариантных торов.

Заключение

Влияние квазипериодических резонансов на сценарий

Ландау-Хопфа может быть исследовано на примере

ансамбля дискретных осцилляторов ван дер Поля при

учете дополнительной нелинейности по типу осцилля-

тора Дуффинга. При небольших частотных расстрой-

ках осцилляторов возникают языки квазипериодических

режимов, аналогичные языкам Арнольда, причем в об-

ласти самых высокочастотных колебаний. В области

перекрытия таких языков возникает хаос. При боль-

шой частотной расстройке осцилляторов общая картина

трансформации режимов по Ландау-Хопфу сохраняется,

но квазипериодическая бифуркация Хопфа в каскаде

может замениться на седло-узловую бифуркацию тора

в узкой окрестности точки бифуркации. Наблюдаются

также узкие области резонансов на базе торов разной

размерности, причем на резонансных торах могут возни-
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Рис. 7. Карта ляпуновских показателей для β = 3. Значения остальных параметров аналогичны рис. 2.

кать вторичные резонансы. Для низкоразмерных торов

резонансы фактически отсутствуют. При увеличении

параметра нелинейности по типу осциллятора Дуффинга

резонансы могут разрушить высокоразмерные торы в

каскаде Ландау-Хопфа. При этом наблюдается нерегу-

лярное чередование окон торов разной размерности и

хаоса. Для этого, однако, требуется достаточно большая

нелинейность.

Отметим, что, в силу универсальности подходов нели-

нейной теории колебаний, полученные результаты могут

представлять интерес для различных конкретных обла-

стей. Квазипериодические колебания достаточно часто

встречаются в радиоэлектронике, радиофизике, астрофи-

зике, лазерной физике, климатологии и др. При этом

возможны ситуации, когда наблюдаются многочастотные

колебания, характеризующиеся набором несоизмеримых

частот. Подобные случаи, однако, мало исследованы.

Представляет интерес влияния тех или иных факторов

на такие колебания и
”
силу“ возможных резонансов. Ин-

струментарий и подходы нелинейной теории колебаний

и теории динамических систем в этом случае оказы-

ваются эффективными. В этом плане универсальным и

информативным может служить метод карт ляпуновских

показателей.
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