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Density matrix and temperature of an isolated body
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The density matrix for an isolated body is defined as the Laplace transform of the density matrix of the Gibbs

statistical ensemble. On this basis, the temperature of an isolated body is determined as a function of its energy.

The temperature of an isolated ensemble of harmonic oscillators is determined, which is in accordance with the

law of equipartition of energy. The thermoelastic effect under mechanical loading of anharmonic oscillators is

considered as a consequence of their parametric excitation using adiabatic invariants..
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1. Introduction

The Gibbs distribution cannot be used without isolated

body corrections because it predicts non-zero energy fluc-

tuations, while the isolated body energy is constant by

default [1]. Certainly, in equilibrium for small subsystems

of a large body, this distribution is implemented to a high

degree of accuracy. Nevertheless, searching for an adequate

replacement for the Gibbs distribution is a matter of prin-

ciple. This search will be based on close coupling between

the nonrelativistic quantum mechanics and statistical Gibbs

distribution. It implies that the parabolic equation for

statistical operator (density matrix) is

−
∂ρ

∂β
= Ĥρ̂, (1)

where β = 1/(kBT ) is derived from the Schrödinger

non-steady-state equation through transition to imaginary

time [2]:

t = −i~β. (2)

Therefore, possible distribution modification can be also

seen. Modification of statistical partition for the isolated

body by transition to a covariant quantum theory formalism

was proposed in [3]. Covariance is based on the fact that

there is no concept of thermostat-defined external temper-

ature or external time for the isolated body. However,

the transition to covariant formalism was performed with

excessive details that hindered calculations. Unlike [3], this
work addresses equation

C(p, q) ≡ H(p, q) − E = 0 (3)

as the main, rather than supplementary, dynamic equation

of constraints or covariant mechanics.

2. Covariant quantum mechanics
of the isolated body

Stationary Schrödinger equation is the main equation of

”
motion“ in the quantum mechanics of isolated body

Ĥ9 = E9, (4)

and will be addressed herein as the equation of constraints

in the covariant quantum theory. For this, we will start from

a covariant form of classical mechanics, whose canonical

action is written as

I =

1
∫

0

dτ
[

p(τ ), q̇(τ ) − N(τ )C
(

p(τ ), q(τ )
)]

, (5)

where N(τ ) is an arbitrary Lagrange multiplier; a point

indicates a derivative with respect to τ . Selection of path

parameterization here is arbitrary and therefore quantization

shall be covariant. Transition to the covariant quantum

theory is now feasible by writing the propagator for the

Schrödinger equation (4) as an invariant functional integral.

This theory is generally formulated in the Batalin–Fradkin–
Vilkovyssky (BFV) theorem [4,5]. However, in the simplest

case of the reparametrization-invariant theory when (5) is

applicable, the resulting expression for invariant propagator

is derived in the same easy way [6]: solution of the equation

−
∂ρ̂

∂β
= (Ĥ − E)ρ̂ (6)

— density matrix ρ(q, q′; β, E), satisfying the initial con-

dition ρ(q, q′; β, E) = δ(q − q′) shall be integrated with

respect to β ∈ [0,∞]:

D(q, q′;E) =

∞
∫

0

dβρ(q, q′; β, E). (7)
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The obtained result may be formulated otherwise:

D(q, q′;E) is the Laplace transform [7] of the density matrix

ρ(q, q′; β) — solution of equation (1) corresponding to the

Gibbs distribution, or the operator resolvent Ĥ [8]. This

quantity depending on E , is assumed as the density matrix

of the isolated body. Elaborating the form of the initial

Lagrange function of the body,

L =
1

2
mlk q̇l q̇k −V (q), (8)

ρ(q, q′; β) is written as a functional Feynman integral [9]:

ρ(q, q′; β) =

∫

Dq exp

{

−

β
∫

0

dτ
[1

2
mlk q̇l q̇k + V

]

}

. (9)

As for the initial density matrix, D(q, q;E) is supposed

to be equal to the density of probability that the system will

be identified in the vicinity of point q of the configuration

space, and

Z(E) =

∫

dqD(q, q;E) (10)

is the partition function for the isolated body. Now, the

isolated body temperature is defined as [10]:

1

kBT
=

∂ lnZ(E)

∂E
. (11)

We are based here on the fact that statistical partition for

the isolated body doesn’t differ a lot from the Gibbs distri-

bution that is a function of dimensionless ratio E/(k /BT ).

3. Temperature of an isolated ensemble
of harmonic oscillators

It should be clarified here that, as we assume, thermody-

namic equilibrium in the isolated ensemble is established by

means of weak anharmonic oscillator interaction that will

be neglected in calculations. We use a density matrix for

harmonic oscillator in the Gibbs distribution case [2]:

ρ1(q, q′; β) =

√

mω

2π~ sh(2 f )

× exp
{

−
mω

2~ sh(2 f )

[

(q + q′) ch(2 f ) − 2qq′
]

}

, (12)

where f = ~ωβ/2. Partition function of the oscillator

ensemble:

ZN(β) =

∫

∏

k

dqkρ1(qk , qk ; β) = (sh f )−N . (13)

Partition function of the isolated ensemble is found using

the Laplace transform:

ZN(E) =

∞
∫

0

dβZN(β) exp(Eβ)

=

∞
∫

0

dβ exp(−N ln sh f + Eβ). (14)

Integral is calculated approximately in (14) by the saddle-

point method [11]:

ZN(E) ≈

√

2π

N
2

~ω
sh f 0 exp(−N ln sh f 0 + Eβ0), (15)

where f 0 is defined as follows

cth f 0 =
2E

~ωN
. (16)

Note that this relation associates the ensemble tempera-

ture with the mean oscillator energy in the statistical Gibbs

mechanics assuming that E/N = 〈Eosc〉 [2]. This is exactly

the desired definition of temperature for a large isolated

oscillator ensemble. However, we find a correction to

the ensemble’s intrinsic temperature associated with the

ensemble finitrness. According to equation (11), the isolated
ensemble temperature with the pe-defined full energy is

equal to

kBT =

(

β0 −
ch2 f 0

E

)

−1

. (17)

With high oscillator excitation energy

kBT ∝
E

N − 1
, (18)

which corresponds to the law of equipartition of energy at

high N. Note that for low N such definition of temperature

deviates from the law of equipartition of energy, and is not

applicable at all to one oscillator. This is explained by the

fact that the intrinsic temperature of the body (ensemble)
is set by energy partitioning within the body, rather than in

equilibrium with a thermostat.

4. Thermoelastic effect

The initial target of search for statistical partition for

the isolated body was a thermoelastic effect [12] meaning

that the body temperature varies a little when adiabatic

mechanical loading is applied. It is clear that body isolation

is an important precondition here. Anharmonic nature

of this effect is also obvious. If we limit ourselves to

the first order perturbation theory with respect to cubic

anharmonicity, adiabatic approximation , where the system

energy varies parametrically, will be sufficient to explain the

thermoelastic effect (see [13]). In a classical high excitation

(temperature) region, the law of equipartition of energy (18)
and mechanical adiabatic invariant will be used [14]:

J = E/ω, (19)

where the oscillator frequency depends on the external

force F —

ω = ω0

√

1−
2gF

k
, (20)
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and k, g are harmonic and anharmonic constants of poten-

tial. Hence, for the isolated oscillator ensemble in adiabatic

mechanical loading, we get [13]:

1T
T

=
1ω

ω0

=
gF
k

. (21)

In the low excitation (temperature) region, adiabatic

invariant should be considered as a medium degree of oscil-

lator excitation 〈J〉 because quantum transition probability

in adiabatic loading tends to zero [15]. Substituting

E = N~ω
(

〈J〉 +
1

2

)

(22)

to (17) and taking into account also that according to (16)

β0 =
2

~ω
arccth(2〈J〉 + 1), (23)

we find the temperature of the isolated ensemble of

harmonic oscillators at low excitations 〈J〉:

kBT =
~ω

2

[

arccth(2〈J〉 + 1) −
(2〈J〉 + 1)

(2〈J〉 + 1)2 − 1

]

−1

. (24)

Note that at zero oscillator excitation (〈J〉 = 0), the

ensemble temperature is equal to zero as for the Gibbs

ensemble. Dependence of temperature on loading is fully

defined by the frequency dependence (20), so classical

equation (21) is maintained also at low temperatures. This

result differs from that in [16], where thermoelastic effect at

low temperatures is discussed using the Gibbs distribution.

Here, we discussed the thermoelastic effect in the first or-

der perturbation theory with respect to cubic anharmonicity,

where adiabatic approximation was sufficient. High order

anharmonicity and perturbation theory should be considered

by expanding the power exponent into power series in (9).

5. Conclusion

As expected initially, the isolated body temperature deter-

mined using equation (11) is
”
not much“ different from the

Gibbs ensemble temperature. For the harmonic oscillator

ensemble, this difference is defined by the second term in

square brackets in (24). In the classical high excitation

region, this difference disappears, but is considerable at low

temperatures:

How to measure the isolated body temperature? Tradi-

tional thermometry methods may be used in the classical

region. At low excitations according to (24), some macro-

scopic properties of a thermometric body shall explicitly

depend on the degree of body excitation 〈J〉.
Another question — what energy is the isolated body

temperature associated with? If this body is in the force

field F , it is deformed and has statistical potential energy

V (q0), where q0 is the static equilibrium atom configuration.

This energy is obviously not associated with the isolated

body temperature and shall be subtracted from the full

internal energy. Moreover, if the anharmonic body is excited

(heated), it is also deformed, and there is a corresponding

contribution to energy. However, these continuous contri-

butions to energy occur automatically when integrals (9)
and (10) are calculated by the saddle-point method, and

for the Laplace transform (7), they are also automatically

subtracted from the full energy E . This justifies separation

of macroscopic deformation potential energy from the full

body energy [17] and simultaneously makes it superfluous

in the proposed formalism.
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