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Density matrix and temperature of an isolated body
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The density matrix for an isolated body is defined as the Laplace transform of the density matrix of the Gibbs
statistical ensemble. On this basis, the temperature of an isolated body is determined as a function of its energy.
The temperature of an isolated ensemble of harmonic oscillators is determined, which is in accordance with the
law of equipartition of energy. The thermoelastic effect under mechanical loading of anharmonic oscillators is
considered as a consequence of their parametric excitation using adiabatic invariants..
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1. Introduction

The Gibbs distribution cannot be used without isolated
body corrections because it predicts non-zero energy fluc-
tuations, while the isolated body energy is constant by
default [1]. Certainly, in equilibrium for small subsystems
of a large body, this distribution is implemented to a high
degree of accuracy. Nevertheless, searching for an adequate
replacement for the Gibbs distribution is a matter of prin-
ciple. This search will be based on close coupling between
the nonrelativistic quantum mechanics and statistical Gibbs
distribution. It implies that the parabolic equation for
statistical operator (density matrix) is
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where 8 =1/(kgT) is derived from the Schrodinger
non-steady-state equation through transition to imaginary
time [2]:

(1)

t=—ihg. (2)

Therefore, possible distribution modification can be also
seen. Modification of statistical partition for the isolated
body by transition to a covariant quantum theory formalism
was proposed in [3]. Covariance is based on the fact that
there is no concept of thermostat-defined external temper-
ature or external time for the isolated body. However,
the transition to covariant formalism was performed with
excessive details that hindered calculations. Unlike [3], this
work addresses equation

C(p,q) =H(p,a) —E=0 (3)
as the main, rather than supplementary, dynamic equation

of constraints or covariant mechanics.
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2. Covariant quantum mechanics
of the isolated body

Stationary Schrodinger equation is the main equation of
»~motion“ in the quantum mechanics of isolated body

HW = EV, (4)
and will be addressed herein as the equation of constraints
in the covariant quantum theory. For this, we will start from
a covariant form of classical mechanics, whose canonical
action is written as

|:/dr[p(r),q(r)—N(r)C(p(T),Q(T))L (5)

0

where N(7) is an arbitrary Lagrange multiplier; a point
indicates a derivative with respect to 7. Selection of path
parameterization here is arbitrary and therefore quantization
shall be covariant. Transition to the covariant quantum
theory is now feasible by writing the propagator for the
Schrodinger equation (4) as an invariant functional integral.
This theory is generally formulated in the Batalin—Fradkin—
Vilkovyssky (BFV) theorem [4,5]. However, in the simplest
case of the reparametrization-invariant theory when (5) is
applicable, the resulting expression for invariant propagator
is derived in the same easy way [6]: solution of the equation

L0 _
B
— density matrix p(q, q';8, E), satisfying the initial con-

dition p(q, q;8,E) =8(gq—q’) shall be integrated with
respect to B € [0, ool:

(H-E)p (6)

oo

D(a.9%E) = / dBe(9,d';8, E).

0

(7)
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The obtained result may be formulated otherwise:
D(q, q'; E) is the Laplace transform [7] of the density matrix
p(g, 9’;8) — solution of equation (1) corresponding to the
Gibbs distribution, or the operator resolvent H [8]. This
quantity depending on E, is assumed as the density matrix
of the isolated body. Elaborating the form of the initial

Lagrange function of the body,

1 ..
L= 5 Mk Gk -V(q), (8)

p(q, ’; B) is written as a functional Feynman integral [9]:
/ 1
p@.dip) = [Daexp{- [ar[3maacrv]f. ©)
0

As for the initial density matrix, D(q, g; E) is supposed
to be equal to the density of probability that the system will
be identified in the vicinity of point q of the configuration
space, and

2(E) = / dqD (g, o; E) (10)

is the partition function for the isolated body. Now, the
isolated body temperature is defined as [10]:
1 dlnZ(E
= ni() (11)
kgT JE
We are based here on the fact that statistical partition for

the isolated body doesn’t differ a lot from the Gibbs distri-
bution that is a function of dimensionless ratio E/(kgT).

3. Temperature of an isolated ensemble
of harmonic oscillators

It should be clarified here that, as we assume, thermody-
namic equilibrium in the isolated ensemble is established by
means of weak anharmonic oscillator interaction that will
be neglected in calculations. We use a density matrix for
harmonic oscillator in the Gibbs distribution case [2]:

11D)
/. _
Mw
X exp{—m [(q +q')ch(2f) — 2qq’} } (12)
where f = hwf/2. Partition function of the oscillator
ensemble:

2up) = [ TTdar(ae aap) = sh ). (13
k

Partition function of the isolated ensemble is found using
the Laplace transform:

o0

Zu(E) = / dBZn(B) exp(EB)
0

o0

— /dﬂexp(—NlnShf + EB). (14)

0
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Integral is calculated approximately in (14) by the saddle-
point method [11]:

ZN(E) ~ 4/ ZWJT % shfoexp(—NlInsh fo+Epy), (15)

where fq is defined as follows

2E

cthfo = 7N (16)

Note that this relation associates the ensemble tempera-
ture with the mean oscillator energy in the statistical Gibbs
mechanics assuming that E/N = (E) [2]. This is exactly
the desired definition of temperature for a large isolated
oscillator ensemble. However, we find a correction to
the ensemble’s intrinsic temperature associated with the
ensemble finitrness. According to equation (11), the isolated
ensemble temperature with the pe-defined full energy is

equal to
ch? fo\ !
kBT_<0— EO) . (17)
With high oscillator excitation energy
E
kBT X m, (18)

which corresponds to the law of equipartition of energy at
high N. Note that for low N such definition of temperature
deviates from the law of equipartition of energy, and is not
applicable at all to one oscillator. This is explained by the
fact that the intrinsic temperature of the body (ensemble)
is set by energy partitioning within the body, rather than in
equilibrium with a thermostat.

4. Thermoelastic effect

The initial target of search for statistical partition for
the isolated body was a thermoelastic effect [12] meaning
that the body temperature varies a little when adiabatic
mechanical loading is applied. It is clear that body isolation
is an important precondition here. ~Anharmonic nature
of this effect is also obvious. If we limit ourselves to
the first order perturbation theory with respect to cubic
anharmonicity, adiabatic approximation , where the system
energy varies parametrically, will be sufficient to explain the
thermoelastic effect (see [13]). In a classical high excitation
(temperature) region, the law of equipartition of energy (18)
and mechanical adiabatic invariant will be used [14]:

J=E/w, (19)

where the oscillator frequency depends on the external
force F —
29F

- (20)

w = woi/ 1
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and k, g are harmonic and anharmonic constants of poten-
tial. Hence, for the isolated oscillator ensemble in adiabatic
mechanical loading, we get [13]:

AT Ao gF

T wo k (21)

In the low excitation (temperature) region, adiabatic
invariant should be considered as a medium degree of oscil-
lator excitation (J) because quantum transition probability
in adiabatic loading tends to zero [15]. Substituting

E = Nho((3) + %) (22)

to (17) and taking into account also that according to (16)
Bo = 2 th(2(J) + 1) 23
0 = 5 arcc ( , (23)

we find the temperature of the isolated ensemble of
harmonic oscillators at low excitations (J):

I+ 17!

owrip-1 -

kpT = % {arccth(Z(J) +1) -

Note that at zero oscillator excitation ((J) =0), the
ensemble temperature is equal to zero as for the Gibbs
ensemble. Dependence of temperature on loading is fully
defined by the frequency dependence (20), so classical
equation (21) is maintained also at low temperatures. This
result differs from that in [16], where thermoelastic effect at
low temperatures is discussed using the Gibbs distribution.

Here, we discussed the thermoelastic effect in the first or-
der perturbation theory with respect to cubic anharmonicity,
where adiabatic approximation was sufficient. High order
anharmonicity and perturbation theory should be considered
by expanding the power exponent into power series in (9).

5. Conclusion

As expected initially, the isolated body temperature deter-
mined using equation (11) is ,,not much“ different from the
Gibbs ensemble temperature. For the harmonic oscillator
ensemble, this difference is defined by the second term in
square brackets in (24). In the classical high excitation
region, this difference disappears, but is considerable at low
temperatures:

How to measure the isolated body temperature? Tradi-
tional thermometry methods may be used in the classical
region. At low excitations according to (24), some macro-
scopic properties of a thermometric body shall explicitly
depend on the degree of body excitation (J).

Another question — what energy is the isolated body
temperature associated with? If this body is in the force
field F, it is deformed and has statistical potential energy
V(qo), where qp is the static equilibrium atom configuration.
This energy is obviously not associated with the isolated
body temperature and shall be subtracted from the full

internal energy. Moreover, if the anharmonic body is excited
(heated), it is also deformed, and there is a corresponding
contribution to energy. However, these continuous contri-
butions to energy occur automatically when integrals (9)
and (10) are calculated by the saddle-point method, and
for the Laplace transform (7), they are also automatically
subtracted from the full energy E. This justifies separation
of macroscopic deformation potential energy from the full
body energy [17] and simultaneously makes it superfluous
in the proposed formalism.
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