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The responses of sub-holograms self-formed as part of a multiplex hologram when recording superimposed

holograms forming it in a 4 f Fourier holography scheme with angular multiplexing of plane reference waves on

a recording medium with quadratic nonlinearity of the exposure characteristic are considered. The sub-holograms

implement a model of correlation restoration of the images described by the complex-valued amplitudes hetero-

associative memory. The model can be related to the concept of Ghost Imaging: the response of each sub-hologram

is described by convolution of the reference image used to record a superimposed hologram with the function of

correlation of the input field with the reference image of another superimposed hologram. The inversion by the

sub-holograms of the specific weights of the reference images in the responses relative to their ratio when recording

the superimposed holograms is shown. An analysis of the correlation mechanism of amplification in the response

of the amplitude of the restored reference image under its size decreasing in relative to the constant size of another

reference image is given. The theoretical conclusions are confirmed by numerical simulation.
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Introduction

The progress of holography is inextricably linked to the

implementation of correlation models of data processing; of

note here are holographic correlators [1], associative mem-

ory based on them [2], and regression models [3]. A signifi-

cant number of current studies in the field of optoinformatics

are focused on the so-called
”
ghost“ models and methods.

Research in this direction, which relies on mutual correlation

of two wave fields, was initiated in quantum optics [4–6]
in experiments with pairs of correlated photons generated

during spontaneous parametric down-conversion [7] and

then extended to classical optics of fields and sources with

thermal statistics [8–11]. It covers a wide range of current

problems in image transmission and restoration (ghost
imaging) [8–14]: endoscopy of three-dimensional spatially

transparent objects [12,13] with the use of spatiotemporal

correlations [14], polarimetry [15,16], remote sensing [17],
cryptography [18–20], microscopy [21,22], etc.
The practical appeal of ghost methods often lies in the

possibility of using an integrating sensor instead of an

imaging one at the first stage (recording of the original

image) [12–14]. However, since ghost models are based

on correlation (quantum or classical), one has to pay the

price of high computational costs at the image restoration

stage to compensate for instrumental gain at the imaging

stage. Therefore, methods of operational calculus with

natural parallel processing of two-dimensional data arrays,

of which holography is an example, are relevant here [1–
3]. In addition, conceptually important is the analogy in

the presence of two data (images, fields, beams) arrays in

both ghost models and holography: a reference array and

a signal one. It should be stressed here that classical ghost

optics operates with intensity correlation, while holography

deals with correlation of fields of complex amplitudes.

The latter aspect is what makes holography relevant in

phase contrast imaging, which is common in biological and

medical research [12–14,21,22].
One may tentatively distinguish two scenarios of ap-

plication of holography in ghost models: (a) its use for

introduction of phase masks, which are needed to obtain

the required amplitude field in the plane of the studied

object in computational ghost imaging [16,20], into the

circuit by means of space-time light modulators; (b) ghost

holography [21,22]. In the latter case, the optical circuit is

complicated by the addition of a third random field, which

acts as a reference field for hologram recording, to two

beams of the ghost diffraction arrangement (signal and ref-

erence ones) [21]. However, these implementations do not

solve the topical problem of computational complexity, since

they include stages of conventional digital calculations [22].
The application of holographic methods within correlation

models is largely based on linear recording of holograms.

However, the exposure characteristics (ECs) of holographic

recording media (HRM) are nonlinear. Important in

this context is the study of V.V. Orlov [23], who has

demonstrated theoretically that when superimposed holo-

grams are recorded with angular multiplexing of reference

beams on an HRM with quadratic nonlinearity of the

EC, sub-holograms relating the wave fields recorded on
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different superimposed holograms are formed in a multiplex

hologram at the stage of its development. This result, which

represents a special case of emergence of combination

frequencies in a nonlinear system [24], was updated to the

4 f Fourier holography scheme and verified experimentally

in [25].

In furtherance of this approach, we demonstrate below

that quadratic sub-holograms in a multiplex Fourier holo-

gram implement the model of correlation image restoration

that may be associated with the concept of ghost images.

The mechanism of inversion of specific weights of patterns

restored by sub-holograms relative to template ones is

illustrated with a focus on the scenario of preference for

various possible applications: constancy of the specific

weight of the reference template at the stage of recording

and reduction of the restored one.

1. Approach and model

1.1. Optical circuit

Figure 1 shows the classical 4 f Fourier holography

scheme with a multiplex hologram formed by two su-

perimposed holograms recorded sequentially with spatial

separation of point off-axis reference sources (angular

multiplication of reference beams with a plane wave front).

In what follows, the term
”
pattern“ denotes a field of

complex amplitudes in the corresponding plane.

When superimposed holograms are recorded in the

arrangement presented in Fig. 1, the following intensity

distributions recorded sequentially on the HRM form in

Fourier plane H (the rear focal plane of the first Fourier-

transform lens L1):

IA(νx , νy) ∝
[

DA exp( j2πνx xA) + ℑ(A(x , y))
]

×
[

DA · exp( j2πνx xA) + ℑ(A(x , y))
]

∗

,

IB(νx , νy ) ∝
[

DB exp( j2πνx xB) + ℑ(B(x , y))
]

×
[

DB · exp( j2πνx xB) + ℑ(B(x , y))
]

∗

,

where ν is the spatial frequency, j is the imaginary

unit, DA and DB are the real amplitudes of plane wave

fronts proportional to the amplitudes of the corresponding

point reference sources characterized by delta functions

δA(x − xA, y) and δB(x − xB , y), xA and xB are their

coordinates, and ℑ and an asterisk denote Fourier transform

and complex conjugation, respectively.

If a latent image in the HRM is developed after the

recording of all superimposed holograms and the nonlinear

HRM EC may be approximated by the first two terms of

its expansion in a power series, the dependence of local

diffraction efficiency of the hologram in amplitude on spatial

frequency takes the form

H(νx , νy) = H1(νx , νy) + H2(νx , νy )

= h1

{

[DA · exp( j2πνx xA) + ℑ(A(x , y))]

× [DA · exp( j2πνx xA) + ℑ(A(x , y))]∗

+ [DB · exp( j2πνx xB) + ℑ(B(x , y))]

× [DB · exp( j2πνx xB) + ℑ(B(x , y))]∗

}

+ h2

{

[DA · exp( j2πνx xA) + ℑ(A(x , y))]

× [DA · exp( j2πνx xA) + ℑ(A(x , y))]∗

+ [DB · exp( j2πνx xB) + ℑ(B(x , y))]

× [DB · exp( j2πνx xB) + ℑ(B(x , y))]∗

}2

. (1)

where superscripts 1 and 2 denote linear and quadratic ex-

pansion terms and h1 and h2 are the coefficients depending

on the EC and the conditions of HRM development. The

expansion of the quadratic term in (1) (elementary but

rather cumbersome calculations are omitted here) yields,

among other things, two terms, each of which characterizes

the interference of reference patterns A(x , y) and B(x , y)
that do not interfere in reality:

HB2(νx · νy) = h2DADBℑ∗(A(x , y))ℑ(B(x , y))

× exp( j2πνx (x
A − xB)), (2.1)

HB2(νx · νy ) = h2DADBℑ(A(x , y))ℑ∗B(x , y)

× exp(− j2πνx (x
A − xB)). (2.2)

In what follows, we call these components of multiplex

hologram (1) quadratic sub-holograms; for brevity, the

definition
”
quadratic“ is also omitted by default.

When pattern In(x , y) is presented in input plane P1 of

the circuit in Fig. 1, sub-holograms form two responses in

output plane P2 that are positioned symmetrically relative

to the principal optical axis at distances (xA − xB) and

−(xA − xB) from it:

BR(1x , 1y) = h2DADBℑ
[

ℑ(In(x , y))ℑ∗(A(x , y))

×ℑ(B(x , y)) exp( j2πνx (x
A − xB))

]

= h2DADB
{

B(x , y) ∗ [In(x , y) ⊗ A(x , y)] ∗ δ(xA − xB)
}

∝ B(x , y) ∗ [In(x , y) ⊗ A(x , y)],
(3.1)
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Figure 1. 4 f -Fourier holography scheme for two superimposed holograms: A, B, In — patterns: reference image ones and the input

pattern, which are presented one after the other in input plane P1 (short arrows represent the flat wave front illuminating the transparencies

with patterns); δA and δB — point reference sources shifted by xA and xB relative to the principal optical axis, respectively; L1, L2 —
the first and second Fourier-transform lenses with focal lengths f ; H — Fourier hologram plane; and P2 — response plane. Dashed lines

trace the path of rays diffracted by superimposed hologram HA and restoring the image of reference source δRA in plane P2, while dotted

lines trace the path of rays diffracted by quadratic sub-holograms HB2 and HA2, which formed due to the quadratic nonlinearity of the

HRM EC, and restoring patterns BR and AR , respectively.

AR(1x , 1y) = h2DADBℑ
[

ℑ(In(x , y))ℑ(A(x , y))

×ℑ∗(B(x , y)) exp(− j2πνx (x
A − xB))

]

= h2DADB
{

A(x , y) ∗ [In(x , y) ⊗ B(x , y)] ∗ δ(xA − xB)
}

∝ A(x , y) ∗ [In(x , y) ⊗ B(x , y)],
(3.2)

where R in superscripts stands for
”
restored,“ 1x and

1y are the coordinates in plane P2, and ∗ and ⊗ denote

the convolution and correlation operations, respectively.

Responses (3.1) and (3.2) of each of the quadratic sub-

holograms (2.1) and (2.2) are essentially convolutions of

one of the reference image with the correlation function of

patterns (in square brackets): the input pattern and the other

reference image, which, within this description, is defined

formally (since reference image A(x , y) and B(x , y) do not

interfere physically) as a reference. The reference image

restored by a sub-hologram is also formally called a signal

one. This distinction between signal and reference image

is a matter of convention and is relevant only to a specific

sub-hologram; the definitions for the second sub-hologram

should be swapped.

1.2. Analysis of the model

Bulk HRM. Owing to the angular selectivity of a thick

hologram, the correlation functions in (3.1) and (3.2)

are reduced to the global maxima (GM) of the autocor-

relation functions (ACFs) representing diffraction-limited

images of point reference sources; their amplitudes are

characterized by the scalar products of input and reference

patterns: 〈In(x , y)A(x , y)〉 instead of correlation function

[In(x , y) ⊗ A(x , y)] in (3.1) and 〈In(x , y)B(x , y)〉 instead

of [In(x , y) ⊗ B(x , y)] in (3.2). Accordingly, the convolu-

tions in (3.1) and (3.2) are reduced to the multiplication of

reference images by these scalars

BR(1x , 1y ) ∝ B(x , y) · 〈In(x , y)A(x , y)〉, (4.1)

AR(1x , 1y) ∝ A(x , y) · 〈In(x , y)B(x , y)〉, (4.2)

Thus, owing to the angular selectivity of a thick hologram,

quadratic sub-holograms restore undistorted references, but

with a loss of resolution due to additional filtering caused

by the limited dynamic range and nonlinearity of the HRM

EC [26,27].

Let us take the scalar product as a measure, introduce

relation

k =
〈A(x , y)A(x , y)〉
〈B(x , y)B(x , y)〉 ,

and, taking (4.1) and (4.2) into account, determine the ratio

of absolute amplitudes of reference image patterns (restored
by the sub-holograms and the original ones) at the stage of
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recording the superimposed holograms:

|BR(x , y)|
|B(x , y)| ∝ 〈In(x , y)A(x , y)〉 = k·〈In(x , y)B(x , y)〉

= k · 〈B(x , y)B(x , y)〉 + k〈B(x , y)B(x , y)〉,
(5.1)

|AR(x , y)|
|A(x , y)| ∝ 〈In(x , y)B(x , y)〉 =

1

k
·〈In(x , y)A(x , y)〉

=
1

k
· 〈A(x , y)A(x , y)〉 +

1

k
〈A(x , y)A(x , y)〉,

(5.2)
where A(x , y) and B(x , y) are the complements of each

of the reference images to input field In(x , y). It follows

from (5.1) and (5.2) that if one of the reference images, e.g.

A(x , y)

〈A(x , y)A(x , y)〉 > 〈B(x , y)B(x , y)〉,

was dominant in scalar product as a measure when super-

imposed holograms were recorded, the ratio of amplitudes

of the restored patterns in responses of sub-holograms (3.1)
and (3.2) is inverted relative to the reference image pat-

terns: the amplitude of dominant reference image AR(x , y)
restored by sub-hologram (2.2) is suppressed (5.2), while

the amplitude of weaker pattern BR(x , y) in response (4.1)
formed by sub-hologram (2.1) is, on the contrary, en-

hanced (5.1).
Thin HRM. The above analysis is also valid for a thin

hologram. However, owing to its angular invariance, the

restored patterns are characterized not by multiplication by

a scalar (4.1) and (4.2), but by convolutions of reference

images with full correlation functions, which include both

the ACF GM and lateral maxima: auto- and cross-

correlation functions represented by the second terms in

(5.1) and (5.2). Owing to the internal correlation of the

pattern, the ACF GM is not a delta function in the general

case, but is characterized by a non-zero radius. Both

these factors reduce the restored image quality: a non-zero

correlation radius entails a loss of resolution, and lateral

maxima form a background that is both superimposed on

the restored reference image and surrounds it. To improve

the quality of the restored pattern and increase its contrast

against the background, one needs to maximize the signal-

to-noise ratio (i.e., the ratio of the ACF GM amplitude to

the average amplitude of lateral maxima of the correlation

function) and reduce the correlation radius [28] (e.g., by

means of spatial-frequency filtering [26,27] or by introducing

orthogonalizing masks in input plane P1 [29]).
Efficiency of separating the reference image from the

back-ground. Let us introduce an estimate of efficiency

of separating reference image BR(x , y) from background

BR(x , y) in restored field (4.1). This estimate characterizes

the contrast (in amplitude) of the reference image against

the background:

KB =
M|BR(x , y)|
M|BR(x , y)|

, (6)

where M|BR(x , y)| is the absolute amplitude of the restored

reference image averaged over its area and M|BR(x , y)| is
the area-average absolute background amplitude.

If the patterns may be characterized by realizations of a

homogeneous isotropic centered random field,

〈A(x , y)A(x , y)〉 = σ 2SA, (7)

where σ 2 is the field variance and SA is the area of

reference image A(x , y) [28]. It follows from (7) that the

dominance in scalar product is specified by two equivalent

factors: variance σ 2 of the pattern (or its average absolute

amplitude related to the variance) and its area S. The latter

factor (i.e., the scenario where the reference images and

input field In(x , y) are essentially realizations of the same

homogeneous isotropic random field) is the one of principal

interest for, e.g., cryptography. It is evident from (7)
that estimate KB depends directly on area SA of reference

reference image A(x , y) (but is not proportional to it due

to the presence of cross-correlation components in (5.1)).
The dependence (allowed by (5.1), but not characterized

by (7)) of ratio (6) on area SB of the signal reference image

at constant SA is less obvious. Its mechanism is examined

below.

Let us present response (3.1) in the form

BR(1x , 1y) ∝ B(x , y) ∗ [A(x , y) ⊗ A(x , y)]

+ B(x , y) ∗
[

A(x , y) ⊗ A(x , y)
]

. (8)

The first term here characterizes two components:

(1.1) signal pattern restored by the ACF GM B(x , y):
B(x , y) ∗ 〈A(x , y)A(x , y)〉;

(1.2) superimposed halo formed

by the lateral ACF maxima

B(x , y) ∗ [A(x , y) ⊗ A(x , y)] − B(x , y) ∗ 〈A(x , y)A(x , y)〉.
(2) The second term in (8) characterizes the back-

ground, which is formed by the cross-correlation compo-

nent, that surrounds BR(x , y) and is superimposed on it:

B(x , y) ∗ [A(x , y) ⊗ A(x , y)].

To estimate the dependence of the average absolute

amplitude of component (1.1) (restored signal reference

image B(x , y)) on r , we characterize the dependence of the

integral diffraction efficiency of sub-hologram HB2 on SB as

the dependence of the absolute amplitude of response in

plane P2 when the hologram is illuminated by a beam of

unit amplitude with a plane wave front:

|OutB2(1x , 1y)| = |ℑ(HB2(νx , νy ))|

∝ |B(x , y) ⊗ A(x , y)| ∗ δ(xA − xB).

Since the reference images are assumed to be uncor-

related, the ensemble-average absolute response amplitude

is the average amplitude of the cross-correlation field and,

according to [28], the dependence of interest to us may be
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estimated as follows:

ηB(SB) ∝ M|B(x , y) ⊗ A(x , y)|

=
√
κSBσ 4SCorr ∝

√
SB =

√

SA

r
, (9)

where M is the expectation symbol, κ is a coefficient

depending on the field ACF type, σ 4 is its variance squared,

SCorr is the correlation area, and r = SA

SB is the ratio of

reference image areas.

With decreasing SB , the following is the limiting case of

existence of response B(x , y) = δ(x − xB , y − yB):

|OutB2(1x , 1y )| ∝ |δ(x − xB , y − yb) ⊗ A(x , y)|

∗ δ(xA − xB) = |A(x + (xA − xB), y)|,

therefore, the sought-for dependence of the average absolute

amplitude of restored reference image B(x , y) on its area or,

equivalently, on ratio r of reference image areas (if area SA

of the reference reference image remains unchanged) takes

the form

MB(r) = M|BR(x , y)| ∝ ηB(r) ∝ a + b · r−0.5, (10)

where a and b are parameters specified by the character-

istics of reference images A(x , y) and B(x , y), respectively.
We are interested not in the absolute values of diffraction

efficiency, but only in its dependence on r ; normalizing it

to its value at r = 1, we obtain a + b = 1.

The contribution of component (1.2) is determined by the

ratio of the GM and the lateral maxima of the ACF, which

depends both on the ACF type, which specifies correlation

area SCorr , and on the ratio of areas of the reference ref-

erence image and the correlation �A =
SA

SCorr
, which is an

information estimate of pattern A(x , y) [28]. This factor has
the above-discussed mechanism of dependence on SB with

one significant refinement: as was demonstrated in [26,28],
the ratio of amplitudes of the GM and the lateral maxima of

the ACF depends on the correlation area non-monotonically.

As the area decreases, this ratio increases and, accordingly,

the contribution of the component decreases, but when the

correlation radius becomes approximately 2–3 times larger

than the resolution element (pixel), the lateral maxima start

to grow rapidly, reflecting the destruction of the internal

correlation of the reference image and, accordingly, the

enhancement of contribution of component (1.2) to the

background component of the restored field.

To estimate the dependence of the average absolute

amplitude of background M|B r(x , y)| formed by the second

term in (8) on r , we postulate that the area of background

A(x , y) in the input pattern is no smaller than the area

of reference reference image A(x , y). When the average

amplitude of cross-correlation field
∣

∣A(x , y) ⊗ A(x , y)
∣

∣ is

estimated, reference reference image A(x) then acts as

a reference image, and, in accordance with [28], we

find that the average amplitude of cross-correlation field

∣

∣A(x , y) ⊗ A(x , y)
∣

∣ does not depend on SB or, equivalently,

on the ratio of reference image areas r :

M
∣

∣A(x , y) ⊗ A(x , y)
∣

∣ =
√
κSAσ 4SCorr ∝

√
SA.

Applying the same approach [28] to the second term

in (8) as a whole (i.e., considering the convolution as

a correlation of B(x , y) with |A(x , y) ⊗ A(x , y)|, which

is valid within the adopted field model), we obtain the

dependence of the area-averaged absolute amplitude of

background M|BR(x , y)| on the area of signal reference

image SB or the ratio of reference image areas r :

MN(r) = M
∣

∣

∣
B(x , y) ∗

[

A(x , y) ⊗ A(x , y)
]∣

∣

∣

=
√
κSBσ 4SCorr ∝

√
SB ∝ c

r0.5
, (11)

where c is a parameter.

Assuming that information measure �A of the reference

reference image is sufficiently high, we obtain an approxi-

mate dependence for the estimated efficiency of separating

the reference image from the background by the introduced

criterion of the ratio of the their average absolute amplitudes

(contrast (6)):

K(r) =
MB(r)

MN(r)
∝ r0.5

c
(a + b · r−0.5)

=
1

2
(a · r0.5 + b) =

1

c
(1 + a(r0.5 − 1)).

(12)

2. Numerical modeling

The responses of sub-holograms (2.1) and (2.2) were

modeled for the thin HRM design, which is of greatest

practical interest. A random centered field with a normal

amplitude distribution within the [−0.5, 0.5] interval was

used as input pattern In(x , y) (see the example in Fig. 2, a).
The field variance was σ 2 = 0.083, and the correlation

radius at the zero level was 1 pixel; i.e., the field was delta-

correlated. The dimensions of input pattern In(x , y) set

the aperture size in input plane P1 and were varied; the

maximum size was 512× 512 pixels (SIn = 2.62144 · 105).
Non-overlapping fragments of the field were used as

reference images A(x , y) and B(x , y). The areas of

reference image A(x , y) were SA = 1
16

SIn and SA = 1
4
SIn,

and the dimensions of reference image B(x , y) were varied

and set by the value of parameter r = SA

SB . For illustrative

purposes, letters A and B were also used as reference

images. Their outline was filled with field (Fig. 2, b), and
the maximum area of the outline of the dominant reference

image was SA = 2.613 · 104 ≈ 0.1 · SIn.

The dimension of sub-holograms was determined using

the discrete Fourier transform as the dimension of the

Fourier image of the aperture in input plane P1. The

geometric dimensions of the response field corresponded

to the dimensions of the input aperture.
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a b

Figure 2. Examples of an input pattern containing both reference images A(x, y) and B(x, y): with background fill (a) and with just

the A(x, y) and B(x, y) reference images filled (b).
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Figure 3. Dependences of the average absolute amplitude of the

field fragments in Fig. 2, a restored by the quadratic sub-hologram

(reference image pattern B(x, y) (1 and 2) or the background (3
and 4)) on the ratio of reference image areas corresponding to the

cases with only the reference reference image A(x, y) (1 and 3) or
the complete field In(x, y) (2 and 4) presented in the input plane.

It follows from (2.1) and (2.2) that sub-holograms record

mutual shift (xA − xB) of the point reference sources rather

than their absolute shifts xA and xB. According to (3.1)
and (3.2), with a thin HRM, this shift is equivalent to the

mutual displacement of reference images within the input

aperture. The mutual shift of the reference images is exactly

the parameter that was modeled (see Figs. 2, b and 5).

Figure 3 shows the dependences of the average absolute

amplitudes of restored reference image B(x , y) and the

background normalized to the value of MB(1) for an input

pattern 512× 512 pixels in size and reference reference

image A(x , y) 256 × 256 present in it (Fig. 2, a) on the

ratio of reference image areas r . The measured values were

approximated by model (10).

5 10 15 20 3025
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Figure 4. Dependences of the ratio of the average absolute

amplitudes of the restored reference image and the background

surrounding it on the ratio of reference image areas: 1 and 2 — for

restored reference image pattern B(x, y); 3 and 4 — for restored

reference image pattern A(x, y); with (1 and 3) only reference im-

ages A(x, y) and B(x, y) or (2 and 4) the complete In(x, y) field

(Fig. 2, a) presented in the input plane; points — measured values,

curves — approximation (10): 1 — KB (r) = 2.502 · r0.5
− 0.986,

δK = 0.005; 2 — KB (r) = 1.052 · r0.5 + 0.206, δK = 0.004.

The dependences for reference reference image A(x , y)

128× 128 and reference image letters were similar in nature

(with the obvious difference that the spread of measured

values relative to the approximating curve increased as

the reference images grew smaller). The table lists the

parameter values of model (10) and relative approximation

errors δMB for two reference image pattern sizes.

It is evident from the table that the values of parameter a
for the input pattern with solid fill in Fig. 2, a (curves 3
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a b

c d

Figure 5. Sub-hologram responses: HB2 — left panels (a and c) and HA2 — right panels (b and d) for reference image area ratios

r = 1 — top row and r = 31 — bottom row.

Parameter values and relative errors of approximation of the

experimental data in Fig. 3 by model MB (r) = a + b · r0.5 (10)

Parameter Size (pix) � of the curve in Fig. 3

1 2 3 4

a 256× 256 0.837 0.683 0.004 −0.023

128× 128 0.845 0.655 — −0.014

b 256× 256 0.167 0.29 0.337 0.766

128× 128 0.164 0.324 — 0.709

Error 256× 256 0.003 0.009 0.011 0.024

δMB 128× 128 0.006 0.007 — 0.015

and 4) are within the relative approximation error; i.e., one

may be neglect them and use the approximate model of

background amplitude (11).

Figure 4 shows the dependences of the estimated effi-

ciency of separating a reference image from the background

(ratio (6) of average absolute amplitudes of the restored

reference images and the background) on ratio r of the

reference image areas for an input pattern 512× 512 pixels

in size with a constant size of reference reference image

A(x , y) SA = 256 × 256.

Dependences K(r) for other reference reference image

A(x , y) sizes had a similar shape. Experimental depen-

dences 3 and 4 for response AR(x , y) (i.e., the reference

image that was dominant during recording) are shown for

illustrative purposes and were not approximated.

Figure 5 presents the examples of responses of sub-

holograms HB2 (2.1) and HA2 (2.2) for r = 1 and r = 31

with the input field shown in Fig. 2, a and the reference

images from the input pattern in Fig. 2, b (it bears

reminding that reference images are presented separately

and sequentially (each for its own superimposed hologram)
when superimposed holograms are recorded). For visual
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clarity, all the patterns (Figs. 2 and 5) were normalized

within the dynamic range of [0, 255] in conversion to the

bmp format.

Conclusion

Thus, the responses of sub-holograms forming inde-

pendently during the development of a multiplex Fourier

hologram made up of superimposed holograms, which

are recorded sequentially in the 4 f scheme with angular

multiplication of reference beams with a plane wave front on

a holographic recording medium with quadratic nonlinearity

of the exposure characteristic, are characterized by a model

of correlation image restoration. Viewed this way, the

model represents hetero-associative memory and may be

associated with the concept of ghost imaging (with a num-

ber of differences and specific features that are significant

both at the conceptual level and in terms of its hardware

implementation, which includes digital implementation).
(1) Just as the ghost imaging method, the presented

model relies on correlation of two patterns. However, unlike

the classical approach of ghost imaging, the model does not

require mutual correlation of signal and reference patterns,

since restoration of the signal pattern is provided by the

autocorrelation component of the correlation function of the

input pattern and the reference reference image.

(2) A connection between signal and reference patterns

arises as a result of nonlinear processing of the sum of

superimposed holograms (1); physically, this is a diffraction

grating that emerges when the latent image of a multiplex

hologram is revealed. Therefore, for the model to be

implemented using digital holography methods, one needs

to introduce a separate stage simulating the nonlinear devel-

opment of the latent image as sum (1) of all superimposed

holograms into the calculation algorithm.

(3) A connection between two independent patterns is

formed by nonlinear processing of the sum of superimposed

holograms in any holographic scheme [23]. However, the

correlation mechanism of pattern restoration is characteristic

exactly of the 4 f Fourier holography scheme, since the

correlation function in it is (not only a physically real

field of amplitudes in the 1st order of diffraction of each

superimposed hologram, but also the function included

in analytical descriptions (3.1) and (3.2) of the responses

of quadratic sub-holograms) is constructed by means of

two successive Fourier transforms. Multiplex holograms

recorded using other holographic schemes (Fresnel, focused
images, lensless Fourier holography, etc.) will also generate

responses, but these responses are characterized by other

models that warrant separate study.

In practical terms, it is important for a number of

applications, such as remote sensing and cryptography,

that, owing to the correlation mechanism of restoration,

both reference images may be realizations of the same

homogeneous random field (i.e., have the same variances

(average absolute amplitudes)). Therefore, when a message

is transmitted, they will not stand out visually from the

surrounding background neither in amplitude (intensity) nor
in structure (see Fig. 2, a). An essential feature of the

examined model is the inversion of specific weights of the

restored patterns relative to the reference image ones in the

responses of sub-holograms: the amplitude of the weaker

(by the scalar product criterion) reference image is amplified

in the response, while the amplitude of the dominant one is

suppressed. This phenomenon may be of practical interest in

the context of detection and imaging of small-sized objects

against complex structure-like backgrounds.
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