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Electric dipole moment of the W- boson at the quark-gluon level
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The electric dipole moment (EDM) of the W - boson in a three-loop approximation at the quark-gluon level is

investigated. The violation of combined CP- symmetry is introduced through a complex phase in the Cabibbo–
Kobayashi–Maskawa matrix, which characterizes the flavor structure of the quark loop. For the first time, an

estimate for the EDM of the W - boson is obtained taking into account the Glashow–Iliopoulos–Maiani mechanism:

dW ∼ 10−41 ecm. It is known that at the quark-gluon level, the EDM of the W - boson can induce both the EDM

of the electron and the EDM of the neutron. Thus, from experimental constraints on the EDM of these fermions,

obtained through various spectroscopic methods, one can derive a constraint on the EDM of the W - boson. It is

shown that this constraint exceeds the predictions of the Standard Model for the EDM of the W - boson obtained

in this work by many orders of magnitude.
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1. Introduction

The nature of interactions non-invariant with respect to

time reversal (T) still remains a mystery. One of the

most widely discussed manifestations of such effects is the

presence of a non-zero electric dipole moment (EDM) of

particles that are not truly neutral (i.e., do not transform

into themselves when charge conjugation operation C is

applied). Indeed, according to the Wigner–Eckart theorem,

the EDM of a particle must be directed along its spin. This

proportionality automatically ensures the violation of both

T- and P-symmetries (P is spatial parity). According to the

fundamental CPT-theorem, the violation of T-symmetry is

equivalent to the violation of combined CP-parity. The first

CP-odd effects have been discovered in decays of neutral

kaons [1] and, later, other exotic mesons [2–5]. The first

direct observation of T-invariance violation has also been

performed in meson physics [6]. However, the existence of

EDM of particles may be indicative of the universal nature

of interactions that violate T-symmetry.

The search for T-odd effects has been initiated ap-

proximately 75 years ago in [7], where the possibility

of observing the neutron EDM (nEDM) by magnetic

resonance was discussed. The tightest constraint on the

value of nEDM (dn) has been reported recently in [8]:
dn < 1.8 · 10−26 ecm. Here, ecm is elementary charge e
multiplied by cm. As for the search for the EDM of

other particles, the most advanced experiments were those

focused on the EDM of an electron (eEDM). The search

for eEDM began with the publication of [9]. The author

of this study suggested that the observation of a non-zero

EDM of a paramagnetic atom (i.e., associated with an

unpaired electron spin) may be regarded as a manifestation

of eEDM. Several different experimental designs employing

various atomic and molecular systems have been proposed

since then [10–16]. The tightest constraint on eEDM:

de < 4.1 · 10−30 ecm [12].

Theoretical predictions of the EDM of various particles

within the Standard Model (SM) are quite uncertain

and lie far from current experimental constraints. For

example, the estimate for nEDM is dn ∼ 10−32 ecm [17].
The estimates for eEDM at the quark-gluon level are

de ∼ (10−44
−10−50) ecm [18–20]. At the hadron level,

the SM yields an estimate of de ∼ 10−39 ecm [19]. Note

also that both the eEDM effect and the effect of T,

P-odd interaction of an electron with a nucleus are present

in experiments on the search for T, P-odd effects in

paramagnetic atomic and molecular systems [21,22]. Gen-

erally speaking, one may distinguish these two effects by

performing several experiments with different atomic and/or

molecular systems, since these interactions have different

dependences on nucleus charge Z [23]. The latter interaction
is usually expressed in terms of equivalent eEDM deqv

e . Sev-

eral mechanisms of T, P-odd electron–nucleus interaction

have been proposed [18,24,25]; the largest predicted value

was reported in [25], deqv
e ∼ 10−35 ecm. At the same time,

the interest in searching for
”
new physics“ beyond the SM,

where larger EDM values may be predicted [26], remains

high.

Not only fermious, but also bosons, can possess an

electric dipole moment. It is theoretically possible to

measure the EDM of a W - boson (WEDM) directly in,
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e.g., high-energy scattering experiments [27]. However,

as far as we know, no such experiments focused on the

WEDM have been performed. The study of mechanisms

of this effect is not of purely methodological interest. It

turns out that the WEDM may induce both the eEDM
and the nEDM within the SM at the quark-gluon level.

Thus, a constraint on the WEDM may be derived from

experimental constraints on the EDM of the mentioned

fermions. However, it should be noted that the restrictions

obtained this way are model-dependent (i.e., they depend on

the specific mechanism within the SM) and, consequently,

may be nondominant. The possibility of existence of

W -EDM has been first discussed in [28–30]. Since a phase

in the Cabibbo–Kobayashi–Maskawa (CKM) matrix is the

source of CP(T)-invariance violation in the SM, a quark

loop is needed. To extract this phase, four changes of

quark flavors from up-type to down-type and vice versa are

needed; accordingly, four W - boson-quark vertices in the

loop are required. Therefore, the WEDM could potentially

emerge in a two-loop approximation. An estimate with the

Glashow–Iliopoulos–Maiani (GIM) mechanism taken into

account in the two-loop approximation was made in [31];
however, it was demonstrated soon afterward in [32] that

the WEDM does not arise in the two-loop approximation.

The author of [33] has made an attempt to obtain an

estimate in the three-loop approximation with the addition

of gluon exchange in the quark loop. The estimate was

derived by analyzing the infrared region of integration in the

three-loop integral. However, various estimates of similar

loops for the eEDM have been presented in recent decades,

and it has been demonstrated that the main contribution

to the integral is produced by the ultraviolet region of

integration (with account for cancelations associated with

the use of the GIM mechanism) [18–20]. In view of this,

the present study is focused on estimating the WEDM at

the quark-gluon level in the three-loop approximation with

account for the GIM mechanism. We also compare our SM

predictions for this quantity with constraints that may be

derived from spectroscopic experiments on the search for

eEDM and nEDM.

The following units are used in the text: ~ = c = 1 (~ is

the Planck constant and c is the speed of light) and fine

structure constant α = e2/(4π).

2. Estimation of the three-loop integral
for WEDM

The interaction of the WEDM with an external electric

field violating T, P-parities may be presented in the form

of the following effective Lagrangian:

LW = i2mW dW F̃αβW †
αWβ, (1)

where mW and dW are the mass and the EDM of a W -

boson, respectively; Wα is the field of a W - boson; and

F̃αβ = (1/2)εγδαβFγδ is a tensor dual to electromagnetic

tensor Fγδ . Owing to its relative smallness, the contribution

W
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Three-loop Feynman diagram characterizing the interaction of the

WEDM with constant uniform electric field E. The 4-momenta

of particles are also indicated. Solid lines correspond to different

quarks q. Wavy lines correspond to W - bosons. The curved line

corresponds to gluon g, and the dashed line with a cross denotes

the interaction with the external field.

from derivatives with respect to the W - boson field was

neglected in Eq. (1).

As was noted in the Introduction, the first non-zero

contribution to the WEDM arises in the three-loop approx-

imation at the quark-gluon level (see the figure). In the

figure, uniform constant electric field E must be coupled

either to one of the quark propagators or to the internal

W - boson line. The W - boson energy shift in a uniform

constant (arbitrarily weak) electric field is determined by

the amplitude of the process illustrated in the figure and is

given by

1E = −dWEE. (2)

Notably, the amplitude is considered for a process without

a change in energy of a particle at rest (according to the

definition of EDM). The expression for amplitude may be

written in accordance with standard Feynman rules. We do

not present it here, since only the region of large 4-momenta

circulating in the loops is relevant to the purpose of this

study (namely, to estimating the multiloop integral with

account for the GIM mechanism). Let us note certain

features characteristic of the discussed problem. The figure

shows the 4-momenta of all particles. We formally introduce

the classical 4-potential of a constant external electric field

into the Feynman diagram technique as Aµ(t) = (0,−EEt)t .

Integration over the time variable at the
”
quark–external

field“ vertex then leads to the emergence of a delta

function derivative. In other words, one of the quark

propagators Sq(p) should be substituted with its energy

derivative ∂Sq(p)/∂ p0. The following obvious identity may

Optics and Spectroscopy, 2025, Vol. 133, No. 4



320 D.V. Chubukov, I.A. Aleksandrov

be used for the quark propagator derivative:

∂Sq(p)

∂ p0

= −Sq(p)γ0Sq(p). (3)

Since asymptotically

lim
p→∞

Sq(p) =
1

p
, (4)

we have

lim
p→∞

∂Sq(p)

∂ p0

= −
1

p2
. (5)

The second characteristic feature is related to the W -

boson propagator:

DW
µν =

−1

p2 − m2
W + i0

[
gµν +

(ξ − 1)pµpν

p2 − ξm2
W

]
, (6)

where ξ is a gauge parameter. The Feynman and Landau

gauges correspond to ξ = 1 and ξ = 0, respectively, and

ξ = ∞ in the unitary gauge [34]. We choose the unitary

gauge, since it obviates the need to include the interaction

with Faddeev–Popov scalar ghosts. In the unitary gauge, the

ghost propagators turn to zero [34]. The W - boson in the

unitary gauge is then written in the following form:

DW
µν,unit =

−1

p2 − m2
W + i0

(
gµν −

pµ pν

m2
W

)
. (7)

Note that asymptotically in the unitary gauge,

lim
p→∞

DW
unit(p) =

1

m2
W

, (8)

which is why individual amplitude terms may diverge more

strongly in loop integrals. However, this is not a problem,

since this divergence normally becomes less significant due

to cancellations induced by the GIM mechanism (Section 3).
Being essentially the Green’s function of a massless

boson, the gluon propagator has the standard asymptotics:

lim
p→∞

Dg(p) =
1

p2
. (9)

Taking all of the above into account and switching from∫
d4k to

∫
k3dk , we may rewrite the dimensionless three-

loop integral corresponding to the figure in the asymptotic

regime as follows:

I ∼
1

m2
W

∫
d p1d p2d p3p2

(p3 + p2)(p1 + p2)
. (10)

This expression contains ultraviolet divergences. This

indicates that the typical momenta circulating in the loop

are quite large (specifically, p ∼ mW (mt), where mt is the

mass of a heavy t- quark). If we introduce cutoff energy 3,

the integral will have the following estimate:

I ∼
32

m2
W

. (11)

Note also that constant g = e/ sin θW , where θW is the Wein-

berg angle (free SM parameter), corresponds to each vertex

of the W–q interaction, and sin2 θW ≈ 0.22. Each of the two

W–q loops then acquires factor α/(π sin2 θW ), where π is

the standard factor assigned to the loop. The estimate used

here for the quark-gluon loop is (αs/π)CF ∼ αs/π, where

αs is the coupling constant in quantum chromodynamics,

which is approximately equal to 1 for large momenta p ∼ mt

circulating in the loop, and factor CF = 4/3 arises as a

result of summation over quark colors. Finally, making use

of the fact that, according to Eq. (1), the effective operator

is
”
confined“ between two wave functions of a W - boson at

rest, we find that W †
αWβ ∼ 1/mW .

Collecting all the factors, we obtain the following estimate

of WEDM:

dW ∼ e
32

m3
W

α2αs

π3 sin4 θW

RGIM, (12)

where coefficient RGIM includes suppression both due to the

GIM mechanism and due to the CP-odd factor originating

from the CKM matrix. This coefficient is estimated in the

next section.

3. GIM mechanism for the quark loop

The complex phase in the CKM matrix is the source of

CP(T)-symmetry violation in the SM. This phase becomes

non-trivial (i.e., impossible to eliminate by any quark

rotations) if one takes into account three generations of

quarks. The CP-odd flavor structure of the quark loop

may presented in the following form [32]:

U ∼ 2iJ[t(dus − sud + bud − dub − bus + sub)

+ u(dcs − scd + scb − bcs + bcd − dcb)

+ c(dts − std + stb − bts + btd − dtb)]. (13)

The standard parameterization for Jarlskog invariant J [35],
which is specified by the product of four elements of the

CKM matrix Vi j [36], is used here:

J = Im (VusVtdV ∗
udV ∗

ts) ≈ 3.2 · 10−5. (14)

Letters u, d, c, s, t, b in expression (13) denote the propa-
gators of the corresponding quarks. Only the imaginary part

of product Vi j in expression (14) contributes to CP-odd ef-

fects. Each product of quark propagators in Eq. (13) admits

cyclic permutations such as tdus = dust = ustd = stdu.
Let us start by positioning, e.g., an s - quark at the

top of the figure (i.e., coupling the external field to it).
Distributing the remaining quarks along the loop in all

possible configurations and using the CKM matrix, we

obtain the following amplitude flavor structure:

Us ∼ 2iJ(sAss)(uudc − ccdu + ccbu − uubc + ccdt

− ttdc + ttbc − ccbt + ttdu − uudt + uubt − ttbu).
(15)
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Here, sAs denotes the interaction with the external electric

field. Without loss of generality in light of relation (3),
one may assume that sAs ∼ Qs s3, where Qs is the charge

of an s - quark and s3 ≡ sss . Next, we introduce cutoff

energy 3 once again for all momenta in the loop and rewrite

expression (15) as follows:

Us ∼2iJ(Qs s4)(d − b)(uuc − ccu + cct − ttc + ttu − uut).
(16)

All terms here differ only in quark masses mq in the prop-

agators. If one assumes the quark masses to be negligible

compared to the quark momenta in the propagators, the

result is exactly zero. A nonzero result is obtained only if

the propagators are expanded in (mq/3)2 and corrections

are taken into account. In addition, the mass terms in

numerators of the propagators may be neglected in the GIM

estimate (since mq ≪ 3). Note that certain mass terms

in numerators of the propagators provide zero contribution,

since they are
”
confined“ between two W–q vertices.

Expanding the denominators in Eq. (16) in terms of

small parameter m2
q/3

2 (assuming that 3 ≫ mt and keeping

only the leading-order terms in view of mt ≫ mc ≫ mu and

mb ≫ md), we then obtain the following dimensionless GIM

factor:

Rs
GIM ∼ J

m2
cm2

bm4
t

38
. (17)

After that, expression (16) needs to be summed over all

down-type quarks (which corresponds to coupling of the

field to d and b- quarks). Let us also take into account that

Qs = Qd = Qb = −1/3. Denoting

F(u, c, t) = uuc − ccu + cct − ttc + ttu − uut

in Eq. (16), we find the following flavor structure for the

WEDM:

UWEDM
∼ iJQs [s

4(d − b)+b4(s − d)+d4(b − s)]F(u, c, t).
(18)

The obvious expansion of expression (18) yields the

following dimensionless GIM factor:

RGIM ∼ J
m2

cm2
s m4

bm4
t

312
. (19)

Generally speaking, one should also consider the coupling

of the external electric field to up-type quarks (with a

different coefficient Qt = 2/3). However, the result will

evidently be the same as in expression (19). This is

attributable to symmetry inherent in Eq. (19): the masses

of the two heaviest up-type and down-type quarks (t and

b) are raised to the fourth power, while the masses of the

other two quarks (c and s) are squared.

Using Eqs. (12) and (19) and setting 3 → mt , we obtain

the following parametric estimate for the WEDM in the

three-loop approximation at the quark-gluon level:

dW ∼ eJ
m2

s m2
cm4

b

m3
W m6

t

α2αs

π3 sin4 θW

∼ 10−41 ecm. (20)

Additional numerical factors and the possible logarithmic

amplification, which may scale the result up by a couple

orders of magnitude, are neglected in this estimate. Note

also that the quark loop shown in the figure is essentially

identical to the one that contributes to the eEDM and

was estimated earlier. That said, our GIM estimate of

the quark loop differs from those reported earlier in [18]
and [19]. Compared to [18], it includes additional small

factor m4
b/m4

t ∼ 3 · 10−7; compared to [19], it features

additional factor m2
b/m2

t ∼ 6 · 10−4 .

As was noted in the Introduction, the WEDM may induce

the eEDM and the nEDM at the quark-gluon level. Let us

derive a constraint on the WEDM from the experimental

constraints on the EDM of an electron and a neutron. To

do that, we use the relations between these EDMs and the

WEDM obtained in [30,37]:

de ∼
α

π sin2 θW

me

mW
dW (21)

and

dn ∼
α

π sin2 θW

mn

mW
dW . (22)

The following constraint is then obtained from [8] and

Eq. (22):
dW < 2 · 10−22 ecm. (23)

The data from [12] and Eq. (21) yield the constraint

dW < 6 · 10−23 ecm. (24)

Comparing Eqs. (20) and (24), we conclude that the current
best experimental constraints on the WEDM value are very

far from the SM predictions at the quark-gluon level.

4. Conclusion

An estimate of the EDM of a W - boson has been obtained

for the first time in the three-loop approximation at the

quark-gluon level with account for the GIM mechanism.

The resulting value dW ∼ 10−41 ecm is many orders of

magnitude smaller than the current experimental constraints

that may be extracted from experiments on the search for

the EDM of an electron and a neutron. The examination of

mechanisms contributing to the EDM of a W - boson at the

hadron level is an important direction for future research.

There are reasons to believe that certain mechanisms

produce a greater contribution than the estimate obtained

here at the quark-gluon level.
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