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Изучена возможность использования трехэлектродной системы
”
полупроводник-газовый разряд“ в каче-

стве микрореактора для плазмохимической обработки поверхности полупроводниковых материалов. Система
состоит из двух разрядных промежутков, разделенных металлической сеткой, которая является общим
электродом. В первом промежутке формируется самостоятельный стационарный таунсендовский разряд.
Заряженные частицы разряда проходят сквозь ячейки сетки и двигаются в электрическом поле второго
промежутка. Обработка поверхности образца происходит во втором промежутке в результате взаимодействия
потока заряженных частиц c полупроводником. Эксперименты проводились в трехэлектродной системе, за-
полненной аргоном. В качестве образца использовался GaAs. Изменения свойств поверхности определялось
с помощью метода спектральной эллипсометрии. Показано, что облучение полупроводника ионами аргона
Ar+ приводит к очистке поверхности от слоя окисла и образованию измененного приповерхностного слоя
толщиной 5−20 nm. Состав слоя представляет собой смесь кристаллического и аморфного GaAs.

Ключевые слова: газовый разряд, полупроводник GaAs, модификация свойств поверхности, эллипсометрия.

DOI: 10.61011/JTF.2025.10.61354.462-24

Введение

Методы плазмохимической обработки находят приме-
нение в самых различных областях науки и техники,
начиная от обеззараживания пищевых продуктов [1] и
заканчивая плазменной обработкой графена [2]. К пер-
спективным технологиям относятся методы, где исполь-
зуются малые интенсивности плазмохимического воз-
действия на обрабатываемый объект. Одним из способов
модификации свойств поверхности материалов является
обработка полупроводников стационарным таунсендов-
ским разрядом (low-energy DC Townsend discharge). Та-
кой разряд возникает в системе

”
полупроводник-газовый

разряд“ (semiconductor-gas-discharge system) (SGD) [3,4].
Эта система представляет собой тонкий газоразрядный
промежуток, один из электродов которого изготовлен из
высокоомного фоточувствительного полупроводниково-
го материала — полуизолирующего (SI) GaAs.

При приложении к электродам газоразрядного проме-
жутка относительно высокого напряжения ∼ 300−500V,
в SGD-системе возникает стационарный таунсендовский
разряд с пространственно-однородным распределением
тока. При типичных значениях длины газоразрядного
промежутка d1≈50−200µm и концентрации ионов на ка-
тоде разряда ∼ 0.02−2.0 · 109 cm−3 искажение электри-
ческого поля пространственным зарядом ионов незначи-
тельное. Поэтому при всех значениях плотности тока,
которые использовались в экспериментах, напряжение
поддержания разряда оставалось постоянным.

В газовом разряде могут развиваться различные типы
неустойчивостей, которые в системах с металлическими
электродами приводят к колебаниям или к образованию
нитей тока [5,6]. В газоразрядной системе с высоко-
омным электродом рост флуктуаций тока и развитие
неустойчивостей подавляется. Это связано с локаль-
ным падением напряжения на распределенном сопро-
тивлении электрода и возникновением отрицательной
обратной связи между током и напряжением в проме-
жутке. Такой

”
стабилизированный“ разряд при малых

межэлектродных расстояниях обладает всеми призна-
ками стационарного таунсендовского разряда: объем-
ное горение и независимость напряжения поддержания
разряда от тока. Разряд существует в широком диапа-
зоне давлений газа p ≈ 10− 500 hPa и плотностей тока
J ≈ 10− 500µА/cm2 . Полупроводниковый электрод при
этом должен иметь достаточно высокое удельное сопро-
тивление ρ > 106 �·cm. При меньших значениях сопро-
тивления электрода в SGD-системе возникают неустой-
чивости в виде колебаний тока или пространственно-
временных структур [7].
В работах [8–10] сообщалось о применении SGD

микроразрядных устройств для получения слоев окислов
с толщиной в несколько нанометров на поверхности
полупроводниковых соединений, таких как GaAs, InAs
и InAlAs. Обрабатываемый образец использовался в
качестве одного из электродов SGD-системы. В экспери-
ментах полярность приложенного к электродам системы
напряжения была выбрана так, что образец служил ано-
дом разрядной области, и окисление поверхности полу-
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проводника происходило за счет воздействия электронов
и продуктов таунсендовского разряда. В случае обратной
полярности [8] образец являлся катодом разрядного
промежутка, и облучение поверхности полупроводника
происходило ионами газового разряда. В результате
взаимодействия ионов с полупроводником происходили
структурные изменения поверхностного слоя материала.
Требование высокого удельного сопротивления об-

разца, который обрабатывается в SGD-системе, огра-
ничивает возможности применения данного метода.
В работе [11] была предложена трехэлектродная кон-
струкция микрореактора, в которой обеспечивается
пространственно-однородная обработка образцов в слу-
чае их высокой проводимости. Такая система состоит
из двух разрядных промежутков, которые имеют общий
электрод в виде металлической сетки. В первом про-
межутке реализуется самостоятельный таунсендовский
разряд с устойчивым пространственно-однородным со-
стоянием. Эта область устройства возбуждает во втором
промежутке несамостоятельный разряд, который под-
держивается потоком заряженных частиц, прошедших
сквозь сетку. Обработка образца в этой области мик-
рореактора происходит за счет продуктов газового раз-
ряда. В результате устойчивость работы устройства не
зависит от сопротивления обрабатываемого образца, что
представляет несомненные преимущества по сравнению
с описанным выше двухэлектродным SGD-устройством.
Отметим, что подобные трехэлектродные планарные
системы использовались ранее для исследования фото-
графического процесса в AgBr [12] и преобразователе
инфракрасных (ИК) изображений [13].
Настоящая работа посвящена исследованию возмож-

ности применения трехэлектродной системы, предло-
женной в [11], для обработки полупроводникового ма-
териала ионами газового разряда. Целью настоящей
работы также является изучение нейтрализации ионов
с малой кинетической энергией на поверхности полу-
проводника и определение состава нарушенного (моди-
фицированного) приповерхностного слоя, который обра-
зуется в результате этого процесса.
Эксперименты проводились в трехэлектродной систе-

ме при возбуждении таунсендовского разряда в аргоне
Ar при давлениях газа p = 20 − 200 hPa. Изучались
особенности горения разряда с сетчатым катодом и
формирование потока ионов в области микрореактора,
где происходила обработка полупроводника. Свойства
приповерхностного слоя образца изучались методом
спектральной эллипсометрии.

1. Методика эксперимента и
результаты измерений

Схема трехэлектродной системы показана на рис. 1.
Первый промежуток 1 сформирован отверстием в ди-
электрической прокладке 6, помещенной между по-
лупроводниковым электродом 4 и металлической сет-

Spacers

Anode Grid

Electrode

1 2

34

5

6 7

IR

R1 R2

U1 U2

Рис. 1. Схема трехэлектродной SGD-системы: 1 — газораз-
рядный промежуток, в котором возбуждался таунсендовский
разряд, 2 — второй промежуток, 3 — сетка, 4 — полупро-
водниковый электрод, 5 — электрод второго промежутка, 6,
7 — диэлектрические прокладки, U1 — источник напряжения
газового разряда. U2 — источник напряжения, IR — поток ИК
излучения.

кой 3. Электрод изготовлен из фоточувствительно-
го полуизолирующего (SI) GaAs. Область спектраль-
ной чувствительности такого материала составляет
λ = 0.8− 1.7µm. На внешней поверхности электрода
сформирован прозрачный электрический контакт путем
термического напыления в вакууме металла (Ni). GaAs-
электрод освещался источником инфракрасного ИК из-
лучения, что позволяло регулировать его сопротивление
с помощью изменения интенсивности света.
Второй промежуток 2 образован отверстием в ди-

электрической прокладке 7, помещенной между сеткой
и электродом 5. В качестве электрода применялась
стеклянная пластина с проводящим покрытием SnO2.
Сопротивление такого электрода составляло ∼ 100�.
В экспериментах по обработке полупроводникового ма-
териала ионами газового разряда в качестве электрода
использовался образец GaAs с низким удельным сопро-
тивлением.
Электрод 3 изготовлен из плетеной металлической

сетки c пространственным периодом 15 l/mm и расстоя-
нием между центрами квадратных ячеек a = 66µm. Диа-
метр проволоки d составлял 18 µm. Размер свободного
пространства —

”
апертуры“ — в ячейке сетки равнялся

∼ 48× 48µm.
Устройство питалось двумя источниками напряжения

в полярностях, показанных на рис. 1. Сопротивления R1
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и R2 служили для измерения тока разряда в первом
промежутке 1 и тока заряженных частиц во втором
промежутке 2 соответственно.
Трехэлектродная SGD-система помещалась в гермети-

ческую камеру с оптическими окнами для освещения
электрода и наблюдения пространственной однородно-
сти горения разряда. Изображение газового разряда
регистрировалось CCD-камерой PIEPER. В качестве ис-
точника света использовалась лампа накаливания. Каме-
ра заполнялась Ar при давлении газа p = 20 − 200 hPa.
Между электродом 4 и сеткой 3 приложено положи-
тельное напряжение +U1. При значении U1, превыша-
ющем напряжение пробоя газа, в первом промежутке
формируется самостоятельный таунсендовский разряд
с пространственно-однородным распределением плот-
ности тока J1. Ток разряда определялся давлением
газа, приложенным напряжением U1 и сопротивлением
электрода 4, которое зависело от интенсивности осве-
щения полупроводника. Питание системы осуществля-
лось источником постоянного напряжения High Voltage
Power Supplies PS300 Stanford Research Systems. Для
поддержания постоянного значения J1 источник напря-
жения работал в режиме стабилизации тока. Почти во
всех экспериментах плотность тока газового разряда в
промежутке 1 поддерживалась равной J1 = 50µA/cm2.
В случае измерений, проведенных при другом значе-
нии J1, в соответствующем месте текста будет дано
необходимое пояснение. Кроме того, все эксперименты
данного исследования проводились в SGD-системе, дли-
ны газоразрядных промежутков в которой составляли:
первого d1 = 200µm и второго d2 = 120µm. Площади
первого и второго промежутков составляли S1 = 2 cm2

и S2 = 1 cm2 соответственно.
Полярность приложенного к электродам первого про-

межутка напряжения U1 в экспериментах была выбрана
так, что сетка являлась катодом газового разряда, и ток
в области сетки был обусловлен потоком ионов. Часть
заряженных частиц проходила сквозь ячейки сетки и по-
падала в промежуток 2. При этом в цепи сетка — элек-
трод 5 — источник напряжения — сопротивление R2

возникал электрический ток J2. Значение тока опреде-
лялось как падение напряжения на сопротивлении R2.
Напряжение измерялось вольтметром KEITHLEY 2000
с высоким входным сопротивлением > 10G�. Величина
и полярность напряжения U2 определяли вид вольт-
амперной характеристики (ВАХ) промежутка 2.
На рис. 2 представлена типичная ВАХ промежутка 2,

электродом которого была стеклянная пластина с прово-
дящим покрытием. Как видно из рисунка, при нулевом
напряжении U2 = 0 в промежутке 2 протекал ток J0,
обусловленный ионами, инжектированными из разряда
в промежутке 1. Значение тока J0 отмечено на графике
горизонтальной стрелкой.
На рис. 3 показано изображение излучения разряда в

первом промежутке при значении U2 = 0. Светлое изоб-
ражение соответствует свечению разряда, которое видно
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Рис. 2. Зависимость плотности тока в промежутке (2) от
напряжения. Давление газа p = 50 hPa. Плотность тока разряда
J1 = 50 µA/cm2 . Пояснения в тексте.

Рис. 3. Изображение излучения разряда в первом промежутке.
Диаметр темного кольца соответствует размеру отверстия
в прокладке (6), которая формирует газоразрядную область.
Светлый диск — изображение разряда, которое видно сквозь
сетку и второй промежуток.

сквозь сетку и ограничено размером отверстия в диэлек-
трической прокладке 7. Диаметр отверстия в проклад-
ке 6, которое формирует газоразрядную область, боль-
ше, чем диаметр области второго промежутка. Часть
изображения разряда видна сквозь сетку и прокладку 7,
изготовленную из слюды. Поэтому изображение в этой
области более темное. Разряд имеет объемную форму
горения с пространственно-однородным распределением
тока. Инжектированные из разряда во второй проме-
жуток ионы также имеют пространственно-однородное
распределение.
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При отрицательном значении приложенного к элек-
троду 5 напряжения U2 ионы во втором промежутке
ускоряются (ion drift), что приводит к увеличению
ионного тока J2. Такой режим использовался при работе
трехэлектродной SGD-системы в качестве микрореакто-
ра для обработки полупроводниковых материалов. При
взаимодействии потока ионов во втором промежутке
с полупроводником происходит изменение свойств по-
верхности образца. Пространственно-однородное рас-
пределение потока ионов обеспечивает однородность
изменения свойств поверхности.
При положительном значении напряжения U2 про-

исходит торможение ионов (retardation), прошедших
сквозь сетку (рис. 2). Плотность тока J2 уменьшается, и
при некотором значении напряжения U2 ток становится
равным нулю. При дальнейшем увеличении U2 проис-
ходит смена знака тока и наблюдается отрицательная
ветвь ВАХ. Ток в этой области, по-видимому, связан
с электронами, которые образуются в результате фо-
тоионизации атомов газа излучением разряда в первом
промежутке.
ВАХ (рис. 2) по форме напоминает ВАХ ленгмю-

ровского зонда. По аналогии значение напряжения U f ,
при котором ток ионов J2 становится равным нулю,
можно определить как плавающий потенциал (floating
potential). Это значение отмечено на графике вертикаль-
ной стрелкой.
Как выяснилось в ходе экспериментов, значение то-

ка J2 при U2 = 0 зависело от величины сопротивле-
ния R2. Для изучения такой особенности работы систе-
мы эксперименты проводились без источника питания
второго промежутка. Для этого сопротивление R2 под-
ключалось непосредственно между сеткой 3, находящей-
ся при нулевом потенциале, и электродом 5. В качестве
электрода использовалась стеклянная пластина. Падение
напряжения на сопротивлении R2 соответствовало по-
тенциалу электрода 5.
На рис. 4, a представлена зависимость потенциала

U(R2) электрода 5 от величины сопротивления R2,
построенная в двойном логарифмическом масштабе. На
рис. 4, b — зависимость плотности тока инжектирован-
ных ионов J2(R2) = U(R2)/R2. Данные показаны для
трех давления p = 20, 50 и 150 hPa. Длина газоразряд-
ного промежутка 1 составляла d1 = 200µm. При таких
параметрах системы значения p · d1 разряда соответ-
ствовали минимуму и правой ветви кривой Пашена.
При значениях сопротивления нагрузки, меньших

105 �, наблюдается линейная зависимость U(R2), а при
дальнейшем увеличении сопротивления напряжение на
электроде 5 достигает предельного значения U0. При
малых значениях сопротивления нагрузки плотность
тока J2 остается практически постоянной и уменьшается
с увеличением R2.
Такую зависимость напряжения U и плотности тока J2

от сопротивления R2 можно объяснить, рассмотрев экви-
валентную схему электрической цепи, которая состоит
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Рис. 4. a — зависимость напряжения U на электроде (5)
от сопротивления R2; b — плотность тока инжектированных
ионов во втором промежутке J2 . Символы соответствуют
значениям, измеренным при давлениях газа p = 20, 50 и
150 hPa. Сплошные кривые — расчет по формуле (1), в
качестве подгоночных параметров использовались U0 и RD2.

из источника питания U0 с внутренним сопротивлени-
ем RD2 и сопротивления нагрузки R2. Напряжение на
нагрузке U , в этом случае равно

U =
U0R2

RD2 + R2
. (1)

Значение тока J = U/R2 в такой цепи зависит от
соотношения внутреннего сопротивления источника на-
пряжения RD2 и сопротивления нагрузки R2. Так, при
сопротивлении нагрузки, значительно меньшем RD2, ток
мало зависит от сопротивления R2 и равен J ≈ U0/RD2.
Как видно из графика, такое значение тока сохраняется в
пределах изменения величины нагрузочного сопротивле-
ния до R2 ≈ 105 − 106 �. С увеличением сопротивления
нагрузки при R2 > RD2 ток резко уменьшается и стре-
мится к значению J = U0/R2.
Сплошными линиями на рис. 4 показаны зависимости

U(R2) и J2(R2), рассчитанные по формуле (1). Подго-
ночными параметрами были U0 и RD2. В табл. 1 при-
ведены значения U0, RD2 и J0, полученные в результате
обработки экспериментальных данных для давлений газа
p = 20− 150 hPa.
Измерения ВАХ второго промежутка (рис. 2)

проводилось при значении сопротивления нагрузки
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Таблица 1. Значения U0, RD2 и J2(R2 = 100�), измеренные для давлений газа p = 20− 150 hPa

d2, µm Данные
p, hPa

150 100 75 50 35 20

U0, V 1.1 1.2 1.3 1.5 1.62 2

120 RD2, � 5 · 106 3.2 · 106 2.0 · 106 1.2 · 106 7 · 105 5.0 · 105

J2(100), µA/cm2 0.2 0.4 0.7 1.3 2.2 4.0
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Рис. 5. Зависимость напряжения U0 и
”
плавающего потенциа-

ла“ Uf от давления газа. На вставке — зависимость плотности
тока JR=100 от давления, измеренная при R2 = 100� и U2 = 0.

R2 = 12 k�. Таким образом, значение J0, отмеченное
стрелкой на рис. 2, соответствует постоянному значе-
нию J2 и может служить одним из параметров состояния
системы.
Ток второго промежутка при значении U2 = 0 связан

с диффузионно-дрейфовым движением ионов в слабом
электрическом поле, которое вызвано искажением по-
тенциала в ячейках сетки. Как было отмечено выше,
размер свободного пространства (апертуры) в ячейке со-
ставлял ∼ 48× 48µm. Длина промежутка d2 = 120µm
сравнима с размером ячейки сетки. При таком соотно-
шении параметров системы возможно сильное искаже-
ние потенциала в ячейках сетки и проникновение элек-
трического поля разряда во второй промежуток [14,15].
Усредненный потенциал в 2 можно сопоставить с напря-
жением источника питания эквивалентной схемы U0, а
RD2 — с сопротивлением второго промежутка, которое
определяется потоком ионов.
Приложение к электроду 5 положительного напря-

жения U2 при измерении ВАХ (рис. 2) вызывает по-
явление дополнительного электрического поля во вто-
ром промежутке, которое тормозит ионы и приводит к
уменьшению тока. Нулевое значение тока ионов J2 = 0
достигается в случае, когда электрическое поле U f /d2

компенсирует поле, вызванное искажением потенциала
в ячейках сетки. Таким образом, напряжение источника
питания U0 эквивалентной схемы и плавающий потенци-
ал U f по физическому смыслу близки друг к другу. На
рис. 5 показана зависимость потенциала U0 от давления
газа. Данные построены в двойном логарифмическом
масштабе. Увеличение давления приводит к уменьше-
нию потенциала электрода 5. На графике также показа-
ны значения U f , измеренные при тех же давлениях. Как
видно, U0 и U f имеют примерно одинаковые значения
при относительно малых давлениях и различаются при
p > 70 hPa.
Зависимость плотности тока JR=100(p) от давления

газа, измеренная при значении R2 = 100� и U2 = 0
(рис. 4, b), показана на вставке рис. 5. Увеличение
давления газа приводит к уменьшению плотности тока.
Уменьшение значений напряжения U0 и тока JR=100 с
ростом давления, по-видимому, можно объяснить изме-
нением электрической прозрачности сетки.
На рис. 6, a показаны ВАХ второго промежутка,

измеренные при отрицательных значениях напряжения
на электроде U2 и давлениях газа p = 50, 75 и 100 hPa.
При такой полярности напряжения инжектированные
из разряда в первом промежутке ионы ускоряются в
электрическом поле второго промежутка. При значениях
напряжения U2 ≈ 0− 10V наблюдается нелинейность
тока, а при бóльших напряжениях зависимость тока
становится почти линейной. Значение концентрации
ионов Nion можно вычислить из величины дифференци-
ального сопротивления второго промежутка:

Nion(U2) =
1J2d2

1U2qµ(p)
, (2)

где 1J2 и 1U2 — изменения плотности тока
и напряжения соответственно, q — заряд элек-
трона, µ(p) = 1444/p cm2

· V−1
· s−1 (p измеряется в

mmHg) — подвижность ионов [16].
Зависимости концентраций ионов Nion(U2), рассчитан-

ные по формуле (2) для давлений газа p = 50, 75 и
100 hPa, показаны на рис. 6, b сплошными линиями. Сим-
волы соответствуют значениям концентрации ионов на
катоде разряда в первом промежутке — сетке 3. Концен-
трации рассчитаны для указанных давлений газа и плот-
ности тока J1 = 50µA/cm2 как Ncathode = J1d1/(qµUS).
Напряжение поддержания разряда составляло US = 207,
227, 250V для соответствующих давлений газа.
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Рис. 6. a — зависимость плотности тока J2 от напряжения
на втором промежутке U2 при давлениях газа p = 50, 75 и
100 hPa; b — концентрация ионов во втором промежутке в
зависимости от напряжения U2, определенная из ВАХ для
разных давлений газа. Символами показаны значения концен-
трации ионов на катоде разряда в первом промежутке Ncathode .

При нулевом и относительно малом напряжении U2

концентрация ионов в промежутке 2 Nion, как следует
из рисунка, больше чем концентрация ионов на като-
де Ncathode . По-видимому, поток инжектированных из
разряда ионов больше, чем поток ионов, дрейфующих
в слабом поле второго промежутка. При увеличении
поля скорость потока ионов увеличивается, и уже при
U2 > 10V концентрация Nion становится меньше, чем на
катоде. При таких условиях Nion во втором промежутке
ограничивается в основном током разряда J1 и элек-
трической прозрачностью сетки. ВАХ приближается к
линейной зависимости. Нелинейности ВАХ при малых
напряжениях связаны, таким образом, с избыточной кон-
центрацией ионов во втором промежутке по сравнению
c концентрацией ионов на сетке 3 — катоде разряда в
первом промежутке Ncathode .

2. Пример обработки полупроводника
ионами

В экспериментах по обработке поверхности полупро-
водника ионами газового разряда использовался обра-
зец n-GaAs с удельным сопротивлением ρ ≈ 1�·cm.
Исходные пластины GaAs диаметром 28mm и тол-
щиной 0.56mm были механически отполированы. За-

тем поврежденный приповерхностный слой толщиной
около 50µm был удален с образца методом химико-
механической полировки с использованием 5−8% вод-
ного раствора NaOCl. После соответствующей обра-
ботки пластина GaAs была помещена в микрореактор
(рис. 1).
Облучение проводилось при длине газоразрядного

промежутка d1 = 200µm, d2 = 120µm и давлении га-
за Ar p = 50 hPa. Плотность тока газового разряда
устанавливалась на уровне J1 = 200µA/cm2 . Плотность
тока J2 определялась величиной напряжения U2, а доза
облучения Q = J2 · t — плотностью тока и временем
процесса t .
Для оценки структурных изменений поверхностного

слоя полупроводника использовался метод спектраль-
ной эллипсометрии (SE). Измерения проводились до
и после обработки ионами поверхности GaAs образца
с помощью эллипсометра SEMILAB SE2000 при угле
падения света ϕ0 = 70◦ в диапазоне энергий фотонов
E = 1.5− 5.0 eV. Изменение поляризации света после
отражения от поверхности образца определялось как
комплексное число ρ, равное отношению коэффициен-
тов отражения с параллельной RS и перпендикуляр-
ной RP к плоскости падения поляризацией:

ρ =
RP

RS
= tan9ei1, (3)

где 9 и 1 — поляризационные углы, которые измеряют-
ся эллипсометром в процессе эксперимента.
Структура и толщина поверхностного слоя были по-

лучены путем сравнения SE-данных с модельным рас-
четом. Использовалась трехслойная модель, состоящая
из GaAs-подложки, поверхностного слоя и вакуума (воз-
духа). Диэлектрическая функция слоя соответствовала
выбранному материалу, либо определялась в приближе-
ние эффективной среды Брюггемана (effective medium
approximations EMA). Реальный поверхностный слой
в этом приближении заменялся слоем, состоящим из
разных материалов и имеющим эффективную диэлек-
трическую функцию среды [17]. Параметры модели, со-
ответствующие толщине и составу слоя, варьировались
для минимизации ошибки между экспериментальными
и расчетными спектральными зависимостями поляри-
зационных углов 9, 1. Использовалось программное
обеспечение эллипсометра.
Комплексная псевдодиэлектрическая функция (PD)

ε = ε1 + i · ε2 была рассчитана в модели отражения
света от однородной полубесконечной среды [18]. Эта
функция непосредственно связана с электронной струк-
турой полупроводника и определяет оптические свой-
ства поверхности.
На рис. 7 показаны зависимости мнимой части ε2(E)

PD функции от энергии фотонов, определенные для
различных доз облучения образца ионами Ar+. Данные
соответствуют образцу с необработанной поверхностью
и образцу, облученному ионами с дозой Q = 0.5C/cm2.
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Рис. 7. Спектр мнимой части псевдодиэлектрической функ-
ции. Символы соответствуют экспериментальным значениям
ε2(E), полученным из SE данных для образцов GaAs с разными
дозами облучения ионами Ar+ − Q = 0 и 0.5 C/cm2 . Сплошные
линии — расчетные зависимости в ЕМА модели поверхностно-
го слоя. Спектр PD функции кристаллического c-GaAs также
показан на графике.

На графике также показана зависимость ε2(E) PD функ-
ции кристаллического c-GaAs. Спектр содержит пики
при энергиях E1, E1 + 11 (hν = 2.91 и 3.14 eV) и E2

(4.77 eV), которые соответствуют межзонным перехо-
дам в критических точках кристаллической структуры
GaAs [19,20].
Спектральная зависимость мнимой части PD для

образца с необработанной поверхностью отличается
от PD кристаллического c-GaAs. Основные изменения
наблюдаются в спектральной области ∼ 4.5− 5 eV. Глу-
бина проникновения света при таких энергиях фотонов
минимальна, значения ε2 PD в этой спектральной обла-
сти наиболее чувствительны к состоянию поверхности.
Как показали XPS (X-ray photoelectron spectroscopy —
рентгеновская фотоэлектронная спектроскопия) измере-
ния [6], на поверхности образцов GaAs присутствует
слой окисла — Ga2O3 и As2O3. Наиболее устойчивым
является соединение Ga2O3. Поэтому в SE расчетах ис-
пользовалась модель слоя с диэлектрической функцией
этого материала. Толщина слоя, полученная в результате
сравнения расчетa с экспериментом, составила 3 nm.
Сплошной линией на графике показана расчетная зави-
симость ε2(E).
Облучение поверхности образца ионами Ar+ при-

водит к уменьшению амплитуды максимумов спектра
и небольшому сдвигу энергий дублетов E1, E1 + 11

в область меньших энергий. Аналогичные изменения
в спектрах диэлектрической функции образцов GaAs
наблюдались в [8,21,22] при обработке поверхности
полупроводника ионами газового разряда и ионной
имплантации. Изменение оптических свойств поверх-
ности полупроводника авторы этих работ связывали

с образованием области материала с поврежденной
кристаллической структурой. Накопление структурных
дефектов в решетке приводит к образованию аморфных
слоев на поверхности полупроводника. Определение ди-
электрической функции слоев с нарушенной структурой
обычно проводится в предположении, что материал
представляет собой физическую смесь кристаллического
и аморфного GaAs, и используется EMA приближение
эффективной среды.
Измерения профиля химического состава образцов,

проведенные в [8] XPS- методом, не выявили изменения
состава полупроводникового материала и появления
оксидов в результате облучения полупроводника иона-
ми N+

2 . В цитируемой работе предполагалось, что моди-
фицированный слой состоит из смеси c-GaAs, a -GaAs и
Void. Материал

”
Void“ имеет диэлектрическую функцию

вакуума, и включение в состав слоя такого элемента
физически означает либо шероховатость поверхности,
либо пористость материала.
Сплошными линиями на рисунке показаны зависимо-

сти мнимой части PD ε2, полученные путем подгонки
экспериментальных SE и расчетных данных в модели
модифицированного c-GaAs, a -GaAs, Void слоя. Про-
центное соотношение материалов и толщина слоя для
разных доз облучения Q = 0.023 − 0.5С/cm2 приведены
в табл. 2. В таблице также указано значение толщины
слоя Ga2O3 окисла на необработанной поверхности
полупроводника.
На рис. 7 видно, что модель GaAs с природным

оксидным слоем хорошо описывает оптические свойства
необработанной поверхности. Для образца, облученного
ионами Ar+, к сожалению, не наблюдается такого сов-
падения расчетной и экспериментальной зависимостей
ε2(E). Как отмечали авторы [22], модель EMA не всегда
способна правильно описать поведение спектра диэлек-
трической функции при переходе от кристаллического
материала к аморфному. Лучшего результата можно
достичь в приближении, в котором диэлектрическая
функция представляется в виде суперпозиции гармони-
ческих осцилляторов. Тем не менее для анализа эффекта
облучения поверхности GaAs ионами мы ограничились
рассмотрением модели EMA, которая позволяет опреде-
лить толщину нарушенного слоя.
На рис. 8 показана толщина нарушенного слоя

в зависимости от дозы облучения образца ионами
Q = J2 · t C/cm2. Как было отмечено выше, на необрабо-
танной поверхности GaAs имеется слой окисла Ga2O3

толщиной ∼ 3 nm. Облучение полупроводника Ar+ с ма-
лой дозой Q = 0.025 C/cm2 приводит к незначительным
изменениям SE данных по сравнению с необработанной
поверхностью. Удовлетворительное совпадение теорети-
ческих и экспериментальных зависимостей 9, 1 удалось
получить путем включения в модель модифицированно-
го слоя вместе с Ga2O3 небольшого количества аморф-
ного a -GaAs (табл. 2). При увеличении дозы облучения
оксидный слой исчезает, и на поверхности образуется
нарушенный слой, состав которого указан в табл. 2.
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Таблица 2. Параметры модели модифицированного слоя GaAs образцов с разной дозой облучения ионами Ar+, полученные в
результате сравнения экспериментальных и расчетных SE данных

Доза, C/cm2
Модифицированный GaAs-слой

Толщина, nm
Ga2O3, % c-GaAs, % a-GaAs, % Void, %

0 100 3.2

0.025 92 − 8 − 2.9

0.056 67 12 21 6.88

0.1 67 20 13 12.6

0.3 67 20 13 14.5

0.5 63 27 10 15.7
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Рис. 8. Зависимость толщины нарушенного слоя от дозы
облучения GaAs ионами Ar+.

Состав слоя незначительно меняется с увеличением
дозы облучения. Зависимость толщины слоя от дозы
имеет нелинейный характер.

Заключение

В работе исследуется инжекция положительно заря-
женных ионов из самостоятельного таунсендовского раз-
ряда, которые при взаимодействии с поверхностью полу-
проводниковых материалов изменяют их свойства. Эф-
фект изучается в планарной трехэлектродной структуре,
в которой металлическая сетка является общим электро-
дом. Устойчивость пространственно-однородного состо-
яния газоразрядных процессов в устройстве обеспечива-
ется тем, что один из электродов области самостоятель-
ного разряда выполнен из полупроводника с высоким
удельным сопротивлением. Малая плотность объемного
заряда в промежутках дает возможность интерпрети-
ровать наблюдаемые закономерности с привлечением

простых представлений физики газового разряда. С экс-
периментальной точки зрения исследуемая структура
интересна также тем, что позволяет исследовать процес-
сы инжекции в газовую среду положительных ионов, а
также изучать стационарные состояния несамостоятель-
ных разрядов.

В трехэлектродной SGD-системе проведена экспе-
риментальная обработка полупроводникового GaAs-
образца ионами аргона при разных дозах облучения
Q = 0.025− 0.5С/cm2. Удельное сопротивление образца
составляло ∼ 1�·cm. Показано, что взаимодействие Ar+

с поверхностью GaAs приводит к удалению окисла и
образованию слоя материала с нарушенной структурой,
состоящей из смеси кристаллического и аморфного
GaAs. Средняя кинетическая энергия движения ионов в
экспериментах ненамного превышала энергию теплово-
го движения атомов газа. Возникновение структурных
изменений в приповерхностной области кристалла, воз-
можно, связано с механизмом нейтрализации заряжен-
ных частиц на поверхности полупроводника. Нейтра-
лизация ионов происходит в результате оже-процесса,
в котором электрон валентной зоны полупроводника
туннелирует в основное состояние иона [23]. Энергия,
высвобождающаяся при нейтрализации иона, передается
электронной подсистеме полупроводника и может при-
водить к возникновению структурных дефектов.

Мы полагаем, что рассматриваемый в работе способ
инжекции ионов с малой кинетической энергией может
быть использован — при соответствующем составе
газов — для плазмохимической обработки конденсиро-
ванных сред как диэлектрических, так и проводящих.
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