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Изучена возможность получения механически когерентных пленок (прекурсоров для последующего

деформационного упрочнения) из реакторных порошков сверхвысокомолекулярного полиэтилена (СВМПЭ),
синтезированных на металлоценовом и на нанесенном модифицированном циглер-наттовском катализаторах.

Варьировалось давление компактирования при комнатной температуре, а также температура спекания

компактов. Проведено комплексное исследование тонкой структуры порошков, их теплофизических свойств,

молекулярной подвижности в приповерхностных нанослоях и изменения при монолитизации в различ-

ных температурно-силовых условиях. Показано, что в найденном оптимальном режиме компактирова-

ния/спекания порошки СВМПЭ, синтезированные на металлоценовом катализаторе, лучше компактируются

и спекаются, чем порошки СВМПЭ, синтезированные на катализаторе циглер-наттовского типа. Обсужда-

ются структурно-кинетические критерии пригодности реакторных порошков к монолитизации.
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1. Введение

Сверхвысокомолекулярный полиэтилен (СВМПЭ)
представляет собой очень перспективный материал,
благодаря сочетанию уникальных физических свойств
(высокой износостойкости, устойчивости к агрессивным
средам, низкому коэффициенту трения, высокой ударной
вязкости, гидрофобности, низкой температуре хрупко-
сти, а также возможности получения из него высоко-
прочных высокомодульных волокон, которые использу-
ются в средствах бронезащиты). В то же время, вязкость
расплава СВМПЭ ηo, которая подчиняется известному

степенному закону ηo = M
3/4
w [1] и на 2−3 порядка выше,

чем у расплава обычного полиэтилена низкого давления,
делает невозможным переработку расплава СВМПЭ
с Mw > 106 g/mol традиционными методами, такими, как
плунжерная экструзия или горячее прессование.
Для получения сверхпрочных высокомодульных во-

локон СВМПЭ в 1980-х гг. в Голландии был раз-
работан и коммерциализован метод гель-технологии,
в котором прядение волокон осуществлялось из сла-
бо концентрированного раствора СВМПЭ в декалине

с последующим деформационным упрочнением гель-
закристаллизованных волокон [2]. Ввиду его дороговиз-
ны и экологической небезопасности в настоящее время в
мире активно разрабатывается безрастворный (

”
сухой“)

метод получения сверхпрочных высокомодульных пле-
ночных нитей непосредственно из продуктов синтеза
СВМПЭ, т. н. реакторных порошков (РП), заключа-
ющийся в спекании порошка при температуре ниже
температуры плавления полимера с последующей ори-
ентационной вытяжкой монолитизованного материала.
Первоначальная идея создания наиболее подходящих

условий для сухой переработки РП была сформулирова-
на P. Smith et al., который показал, что если проводить
синтез ПЭ при низкой температуре, то получается
полимер с низкой плотностью молекулярных зацеплений
(entanglements), который потом можно растянуть до
высоких значений ориентационной вытяжки и получить
ориентированную пленочную нить с механическими ха-
рактеристиками, не уступающими гель-волокнам [3,4].
Отсюда возникло представление о РП такого на-

сцентного ПЭ, как о порошке из кристаллов с вы-
прямленными цепочками (КВЦ). Хотя эта работа была
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только демонстрацией возможностей синтеза, далекая от

практики, но она сработала как триггер, запустивший

работу химиков-синтетиков по всему миру в поисках

.правильного. катализатора и реальных условий синтеза,

при которых получается хороший РП, пригодный для

монолитизации и последующего эффективного ориен-

тационного упрочнения. Фирме Tejin-Aramid (Нидер-
ланды) уже в 2012 г. удалось освоить твердофазный

способ переработки РП СВМПЭ в достаточно высоко-

прочные и высокомодульные ленты Endumax, несколько

уступающие, однако, по прочности σ (σ = 2.5GPа)
волокнам Dyneema (σ = 3.6GPа), производимым по

гель-технологии фирмой DSM (Нидерланды) и Spectra

(Honeywell, США). В лабораторных же условиях, как за

рубежом [5,6], так и в России [7–11], из РП СВМПЭ,

синтезированных на пост-металлоценовых катализато-

рах, были получены ориентированные нити СВМПЭ

с гораздо лучшими механическими характеристиками.

Прочность пленочных нитей достигала 4.0 GPa, а мо-

дуль упругости — 200GPa. Близкие результаты были

получены и для пленочных нитей из РП СВМПЭ,

синтезированных на катализаторах, модифицированных

соединениями Mg [11].
В последующих работах предположение о низкой

плотности зацеплений РП из КВЦ было подвергнуто

критике. Было найдено, что в большинстве РП, син-

тезированных на самых разных, как нанесенных, так

и металлоценовых катализаторах, наблюдается сложная

иерархическая надмолекулярная структура, элементар-

ной морфологической единицей в которой являются ла-

мели. Было установлено, что очень важную роль играют

также такие параметры РП, как форма частиц, размеры

частиц, распределение частиц по размерам, насыпная

плотность порошка и морфологические образования,

формирующиеся при синтезе [9,12].
В то же время, как показала практика, достижение

высоких прочностных характеристик зависит не только

от структуры частиц РП, оптимальной для ориентацион-

ного вытягивания, но и от возможности создания проч-

ных когезионных связей между частицами, препятству-

ющих преждевременному разрыву образца в процессе

вытяжки до достижения предельно возможной степени

удлинения.

Несмотря на огромное количество работ по сухой

переработке СВМПЭ в прочные пленочные нити, ме-

ханизм спекания частиц еще недостаточно исследован,

и определенного алгоритма приготовления прекурсоров

из РП не существует. При этом важным является

сохранение минимального количества зацеплений, су-

ществовавших в исходной структуре. Число их зависит

от температуры полимеризации, типа катализатора и

многих других условий синтеза [12–14].
Целью настоящей работы являлось сравнительное

исследование физико-механических свойств прекурсоров

для деформационного упрочнения, полученных в разных

условиях из РП СВМПЭ, синтезированных на разных

катализаторах.

2. Экспериментальная часть

2.1. Материалы

Исследования проводились на:

1. РП СВМПЭ (Оz4838) синтезированном в лабо-

раторных условиях на металлоценовом катализаторе

путем суспензионной полимеризации в толуоле по ме-

тодике, описанной в [6], и любезно предоставленном

нам проф. А.Н. Озериным (Институт синтетических

полимерных материалов, Москва).
2. РП СВМПЭ (М3659), синтезированном на мо-

дифицированном титан-магниевом катализаторе (ТМК)
циглер-наттовского типа, любезно предоставленном нам

проф. М.А. Мацько (Новосибирск, Институт катализа

им. А.А. Борескова).
Молекулярная масса РП Оz4838 составляла

Mw = 4.4 · 106 g/mole, Tpolym = 40 ◦C, насыпная

плотность (green density) ρgd = 0.083 g/cm3, фракция

250 < d < 850 µm. Такой порошок для исследований

был выбран на основании литературных данных,

свидетельствующих о формировании структуры РП

СВМПЭ, пригодной для твердофазной переработки [6].
Молекулярная масса РП М3659 = 3.5 · 106 g/mol,

насыпная плотность ρgd = 0.158 g/сm3.

2.2. Приготовление образцов

Образцы для исследования готовили по принципу

порошковой металлургии, давно применяемой в про-

мышленности при переработке тугоплавких металлов,

керамики и нерастворимых и неплавких полимеров типа

политетрафторэтилена, полибензимидазола и др.

Схема приготовления исходных образцов (прекурсо-
ров) для последующего ориентационного упрочнения из

РП СВМПЭ включает два этапа:

1. Компактирование (уплотнение) РП при комнатной

температуре для создания наиболее плотного контакта

между поверхностями ближайших соседних частиц РП

СВМПЭ и увеличения адгезионной прочности компакта

за счет максимально возможного уменьшения свободно-

го объема и изгнания
”
пойманного“ воздуха.

2. Спекание полученного компакта с целью создания

наибольшего количества когезионных связей между ис-

ходными частицами РП, обеспечивающих механическую

прочность прекурсора, позволяющую в дальнейшем осу-

ществлять деформационное упрочнение прекурсора пу-

тем высокотемпературной многостадийной ориентаци-

онной вытяжки без преждевременного разрыва ориенти-

руемого образца по границам частиц до достижения им

предельных ориентационных удлинений. Спекание осу-

ществляется при одновременном воздействии давления

и температуры, не превышающей Tmelt исходного РП.

2.2.1. Компактирование

Первый этап, компактирование РП, осуществлялся

методом холодного прессования (при комнатной темпе-

ратуре) при использовании специально изготовленной
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закрытой цилиндрической пресс-формы с внутренним
диаметром 20mm и с двумя тщательно подогнанными по
диаметру пуансонами. Торцевые поверхности плоскопа-
раллельных пуансонов полировались до шероховатости
менее 1 µm.
Для компактирования между пуансонами помещали

навеску порошка СВМПЭ весом 30−35mg и устанав-
ливали пресс-форму в гидравлический пресс. Компак-
тирование проводили при комнатной температуре под
давлением P ≈ 50 или 95MPa в течение 15min. Затем
давление на прессе сбрасывалось. В результате полу-
чали исходные компактированные пленки диаметром
d = 20mm и толщиной h1 = 0.10−0.18mm.
Оба порошка СВМПЭ (О4838 и М3659) после

компактирования становятся механически целостными,
несмотря на то, что компакты М3569 остаются непро-
зрачными (т. е. имеют микро-неоднородности с размера-
ми, сопоставимыми с длиной волны света). Компакты
О4838 неоднородны: есть прозрачные и непрозрачные
места, по-видимому, потому, что не удается равномерно
распределить порошок в пресс-форме.

2.2.2. Спекание

Второй этап, спекание компактированных РП, прово-
дили при давлении 95MPa в различных температурных
условиях.
Пленку помещали в разогретую до необходимой тем-

пературы пресс-форму, поднимали давление до 95MPa
и выдерживали при этих условиях 30min. После чего
сбрасывали давление, извлекали пленку и быстро охла-
ждали до комнатной температуры.

2.3. Дифференциальная сканирующая
калориметрия

Исследования образцов методом дифференциальной
сканирующей калориметрии (ДСК) проводились при ис-
пользовании калориметра ДСК-500

”
Спецприбор“ (Рос-

сия), в атмосфере азота. Сканирование осуществляли
со скоростью 1K/min. Для уменьшения методических
погрешностей минимизировалось термосопротивление
образцов и калориметрических капсул за счет исполь-
зования малой массы образцов (1−3mg) и малой массы
калориметрических капсул (16mg).

2.4. Сканирующая электронная микроскопия

Структуру РП, компактов и спеченных монолитных
пленок и их криосколов исследовали в растровом элек-
тронном микроскопе SUPRA 55VP 32-49. Для предот-
вращения скапливания заряда на поверхности частиц
последние помещались на специальные проводящие
подложки и покрывались тонким слоем Pt (не более
10 nm) путем катодного распыления. Для уменьшения
деградирующего воздействия на полимерные образцы
электронов сканирующего электронного зонда иссле-
дования проводились при ускоряющем напряжении не
более 5 kV. Разрешающая способность микроскопа при
таком напряжении не менее 5 nm.

2.5. Плазмо-индуцированная
термолюминесценция

Молекулярную подвижность в приповерхностных

нанослоях компактированных и спеченных образцов

СВМПЭ изучали при использовании недавно сконстру-

ированного в ФТИ им. А.Ф. Иоффе и запатентованного

прибора нанолюминографа [15,16].
Образцы исследуемых порошков крепились в вакуум-

ной камере к цилиндрическому держателю, охлаждае-

мому жидким азотом. После вакуумирования камеры

до давления 1.33 · 10−4 Pa и охлаждения образца до

77K в камеру напускали аргон до давления 13.3 Pa

и на 1 s зажигали высокочастотный тлеющий разряд

(13.56MHz), служивший источником активирования по-

верхности. Для минимизации модифицирующего дей-

ствия плазмы на образец мощность разряда в экспери-

ментах была уменьшена до величины 4± 0.1mW/cm3.

Камеру вновь откачивали до давления 13.3 Pa и сначала

регистрировали при помощи фотоэлектронного умножи-

теля (ФЭУ) изотермическую люминесценцию, а после

спада ее интенсивности до уровня шумов ФЭУ включали

нагрев держателя и записывали зависимости интен-

сивности люминесценции от температуры (т. н. кривые
свечения). Использовали ФЭУ Hamamatsu R-6095 (Япо-
ния), работающий в режиме счета одноэлектронных

импульсов, с максимумом чувствительности в диапазоне

от 400 до 600 nm. Для уменьшения интенсивности

шумов ФЭУ охлаждали до 5 ◦C при помощи элемента

Пельтье. Запись кривых свечения осуществляли в интер-

вале температур от 77 до 300K при линейном нагреве

образца со скоростью 10K/min.

Для предотвращения загрязнения поверхности иссле-

дуемых образцов парами масла от форвакуумного насоса

откачку камеры осуществляли безмасляным турбомоле-

кулярным насосом (НСube-80, Pfeiffer, Германия). Для
всех образцов условия проведения эксперимента были

одинаковыми.

2.6. Механические испытания

Из-за небольшого размера спеченных пленок (около
20mm в диаметре) не представлялось возможным из-

готавливать обычные двусторонние лопатки, используе-

мые для определения по ГОСТу механических характе-

ристик в разрывных машинах. Для измерения прочности

прекурсоров полученные спеченные пленки разрезались

на миллиметровые полоски при помощи специального

приспособления, и прочность их измерялась на японской

разрывной машине Shimadzu при комнатной температу-

ре при скорости раздвижения зажимов 10 cm/min.

3. Результаты и обсуждение

3.1. Дифференциально сканирующая
калориметрия

Анализ термограмм исследуемых компактов РП ну-

жен в первую очередь для определения температуры,

Физика твердого тела, 2025, том 67, вып. 8
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Рис. 1. ДСК-термограммы компактов РП a) М3659 и b) О4838.
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Рис. 2. ДСК-термограммы образцов, спеченных при 130 ◦C из компактов РП a) М3659 и b) О4838.

при которой можно производить спекание без изменения
их внутренней структуры (по идее, не выше темпе-

ратуры отклонения базовой линии от горизонтали).
Термограммы записывали при одной и той же скорости
нагревания v = 1K/min. Сравнивали характеристики эн-

дотермического пика у исследуемых образцов — значе-

ния температуры в максимуме пика плавления, ширину
пика плавления и форму эндотермического

”
плеча“,

примыкающего к пику плавления со стороны низких

температур.
На рис. 1 представлены термограммы компактирован-

ных пленок.

Видно, что температуры плавления исследованных
РП СВМПЭ (140−141 ◦C) выше равновесной темпе-

ратуры плавления обычного полиэтилена (135 ◦C), что
свидетельствует, по мнению многих авторов, о малой
плотности зацеплений в полимере [17]. Известно, что

спекание образца при температуре выше температуры

плавления приводит к переплавке исходной структу-
ры с образованием складчатых кристаллов и потере

способности к достижению высоких ориентационных

удлинений.
В термограммах обоих компактированных порошков

отклонение базовой линии от горизонтали начинается

при температуре 127 ◦C; при температуре 130 ◦C начи-
нают плавиться дефектные или очень мелкие кристал-

литы, а при 135 ◦C, по-видимому, тоже дефектные, но

более крупные кристаллиты. Однако пленки, спеченные
при 127 ◦C, оказались довольно хрупкими, и дальнейшая

работа с ними была прекращена. Поскольку термо-

граммы образцов, спеченных при 130 ◦C под давлением
95MPa, практически не изменились (рис. 2), а значит,

нежелательной перестройки исходной структуры в этих

условиях не происходило, все дальнейшие эксперименты
проводились в основном с образцами СВМПЭ, спечен-

ными при 130 ◦C, 95MPа в течение 30min.
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Рис. 3. Микрофотографии частиц РП a) О4838 и b) М3659.
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Рис. 4. Криосколы компактов из РП М3569, полученных под давлением a) 50MPa и b) 95MPa.

Выбор достаточно высокой температуры спекания

РП СВМПЭ обусловлен желанием интенсифицировать

микроброуновское движение молекул на границах меж-

ду частицами, что позволит, казалось бы, увеличить

прочность межчастичных границ, поскольку механизм

залечивания заключается во взаимодиффузии молеку-

лярных сегментов на границах частиц. В то же вре-

мя существенную роль в залечивании границ может

играть сдвиговая пластическая деформация. Измерение

прочности спеченных образцов (прекурсоров) позволит

нам оценить степень залечивания межчастичных границ

прекурсоров, поскольку предположительно именно эти

области должны разрушаться в первую очередь.

3.2. Сканирующая электронная микроскопия

На микрофотографиях отдельных частиц, сделанных

при больших увеличениях, видно, что они имеют слож-

ную внутреннюю структуру и состоят из различных

морфологических единиц: ламеллярных глобул, соеди-

ненных фибриллярными тяжами, ламеллярных стопок,

отдельных фибрилл,
”
шиш-кебабов (shish-kebabs)“ и др.

Однако размеры, количество, степень связанности, це-

лостность и взаимное расположение этих морфологиче-

ских образований в разных РП различаются.

РП О4838 (рис. 3, a) демонстрирует сложную иерар-

хическую надмолекулярную структуру, состоящую из

отдельных протяженных ламелей, ламеллярных кри-

сталлов, фибрилл и шиш-кебабов; структура рыхлая,

неоднородная.

В РП М3659 (рис. 3, b), наблюдается довольно плот-

ная структура из ламеллярных глобул, связанных между

собой немногочисленными фибриллярными тяжами.

Для получения сведений о взаимодействии частиц РП

при холодном прессовании и при спекании проводили

исследование структуры поверхности сколов частиц,

полученных при разломе при температуре жидкого

азота −196 ◦С.

На рис. 4 представлены микрофотографии криосколов

исследованных компактов.

Из приведенных микрофотографий, видно, что в ком-

пактах РП М3569, полученных при 50MPa, никаких
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Рис. 5. Криосколы компактов из РП О4838, полученных под давлением a) 50MPa и b) 95MPa.
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Рис. 6. Криосколы спеченных при 130 ◦C образцов, a) М3659 и b) О4838.

связей между морфологическими образованиями прак-

тически не возникло (рис. 4, a). В то же время в

компактах, полученных под давлением 95MPa, между

ламеллярными глобулами видны фибриллярные тяжи,

которые, по-видимому, образовались при разломе ком-

пакта (рис. 4, b), а значит, между глобулами под дав-

лением могли образовываться когезионные связи под

действием сдвиговых усилий.

В компактах РП О4838 с хлопьеобразными частица-

ми при компактировании образовалось намного больше

связей, что заметно по оборванным фибриллярным обра-

зованиям в местах разлома даже при компактировании

при давлении 50MPa (рис. 5, a). В криосколах образ-

цов, компактированных под давлением 95MPa, видны,

однако, при больших увеличениях места, в которых

прослеживается структура исходных частиц. Это, по-

видимому, места, в которых на прозрачной пленке видны

белые включения, свидетельствующие о неоднородном

компактировании.

Если обратиться к микрофотографиям криосколов

РП, спеченных в одинаковых условиях (T = 130 ◦С,

P = 95MPa, время спекания 30min), то также наблю-

дается явная разница в структуре изломов (рис. 6).
После спекания компактов О4838 образовалась сло-

истая структура, местами сохранившая морфологию

компакта, а у спеченного компакта М3659 сфериче-

ские частицы стали менее гладкими и уплотнились без

образования слоистых впадин, в отличие от спеченно-

го РП О4838.

Важно отметить, что приведенные снимки не являют-

ся непосредственным отображением внутренней струк-

туры РП. Они представляют собой результат взаимо-

действия растущей трещины с внутренней структурой

образца при изломе. Возможен различный механизм

образования рельефа поверхности скола за счет за-

тупления и торможения трещины вследствие локаль-

ного пластического деформирования материала. Нако-

пив энергию, трещина может прорасти на некоторое

расстояние, затем снова затормозиться. В результате

этого на поверхности разрушения могут образовываться

”
валики“, то есть вершины трещины. В отдельных случа-

ях скорость распространения трещины может достигать
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скорости звука, при которой происходит достаточное

выделение энергии для переплавки поверхности излома

образца [18]. Поэтому к интерпретации микрофото-

графий криосколов надо подходить с осторожностью.

Пока с уверенностью можно утверждать только то, что

прорастание магистральной трещины происходит по-

разному, что, по-видимому, обусловлено существенной

разницей структуры в объеме монолитизированных РП,

синтезированных на разных каталитических системах.

3.3. Плазмо-индуцированная
термолюминесценция

Как ранее упоминалось, метод термолюминесценции

позволяет получать уникальную информацию о мо-

лекулярной подвижности (релаксационных переходах)
в приповерхностных нанослоях полимеров. Очевидно,

что от молекулярной подвижности зависит возможность

создания качественной механически когерентной пленки

из РП СВМПЭ.

На рис. 7 представлены кривые свечения РП СВМПЭ

О4838 и М3659, скомпактированных при разных давле-

ниях.

Видно, что увеличение давления компактирования

в 2 раза мало изменяет общую светимость компакта

(площадь под кривой свечения) РП М3659 с плотной

глобулярной структурой (кривые 3 и 4), тогда как

молекулярная подвижность в приповерхностных нано-

слоях РП О4838 с хлопьевидной рыхлой гетерогенной

надмолекулярной структурой при увеличении давления

компактирования заметно уменьшается. Кроме того, все

кривые свечения имеют сложный профиль, что заставля-

ет предполагать наложение нескольких релаксационных

процессов, причем соотношение между интенсивностя-

ми низко- и высокотемпературных пиков зависит от типа

РП и давления компактирования. Изменения профилей
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Рис. 7. Кривые свечения компактов, полученных при давлении

50MPa (РП О4838, кривая 1, и РП М3659, 3) и при давлении

95MPa (РП О4838, 2, и РП М3659, 4).
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Рис. 8. Кривые свечения прекурсоров, спеченных при дав-

лении 95MPa в течение 30min при 130 ◦C из компактов,

приготовленных при разных давлениях: О4838 (кривая 1 —

50MPa; 3 — 95MPa) и М3659 (2 — 50MPa; 4 — 95MPa).

кривых свечения наблюдаются и при исследовании спе-

ченных компактов в зависимости от типа РП и условий

приготовления компакта (рис. 8).
Заметим, что общая светимость спеченных образцов

меньше по сравнению со светимостью компактирован-

ных. Это свидетельствует о том, что спекание приводит

к уменьшению количества дефектов на поверхности

прекурсоров.

Известно, что низкотемпературные пики в ПЭ в обла-

сти 90−130K соответствуют размораживанию торсион-

ных колебаний участков цепочек в масштабе двух-трех

мономерных единиц, локализованных вблизи дефектов в

кристаллитах или в неупорядоченных областях. Релак-

сационные переходы в области температур 140−220K

относят к квазинезависимому движению сегментов мо-

лекул (порядка десятка мономерных единиц), сравнимых
в полиэтилене с сегментом Куна (β-релаксация), а пере-

ходы в области 240−310K соответствуют уже коопера-

тивному движению таких участков (α-релаксация) [19].
Как уже говорилось, сложный характер кривых све-

чения исследуемых образцов позволяет предположить,

что экспериментальные кривые являются наложением

нескольких релаксационных процессов, в ходе которых

происходит опустошение электронных ловушек. Разло-

жение экспериментальных кривых на элементарные пи-

ки позволило бы получить сведения об энергетических

характеристиках этих
”
элементарных“ процессов и до-

полнительную информацию относительно молекулярной

динамики поверхностных слоев насцентных частиц ис-

следуемых реакторных порошков. Вопрос о разложении

кривой свечения на элементарные пики весьма сложен.

В известной мере разложение есть достаточно волюн-

таристская процедура, поскольку, в конечном счете,

неизвестно, сколько же элементарных релаксационных

процессов происходит в изучаемом температурном диа-

пазоне.
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Рис. 9. Разложение кривой свечения прекурсора, спеченного

под давлением 95MPa при 130 ◦C в течение 30min из компакта

О4838, полученного холодным прессованием под давлением

95MPa, на релаксационные переходы: γ1 (кривая 1), γ2 (2),
β1 (3), β2 (4), α1 (5), α2 (6).

Все кривые свечения, полученные от компактирован-

ных и спеченных образцов исследованных РП СВМПЭ,

могли быть разложены на пять-шесть максимумов с

помощью программы Fityk 1.0 с коэффициентом корре-

ляции не менее 0.99.

На рис. 9 приведен пример одного из разложений.

Ранее было показано, что разгорание люминесцен-

ции при линейном нагреве образцов, наблюдаемое в

отдельных температурных областях, совпадает с релак-

сационными переходами в материале, регистрируемыми

другими методами [18].
В процессе релаксационных переходов происходит

разрушение электронных ловушек тепловым движени-

ем и высвобождение из них
”
пойманных“ электронов.

Освобожденные электроны мигрируют вдоль цепочки,

пока не рекомбинируют с родительским или иным

противоионом, что приводит к возбуждению молекулы

и испусканию кванта света при ее возврате на основной

энергетический уровень.

Из анализа разложений кривых свечения следует, что

температуры всех α-, β-, γ-релаксационных переходов

в данных спеченных образцах практически одинаковы

(рис. 10).
Единственное исключение составляет спеченный об-

разец О4838, который демонстрирует дополнительный

высокотемпературный α2-переход. Это может быть свя-

зано с наличием протяженных проходных молекул, во-

влекаемых в кооперативное движение при разморажи-

вании. По-видимому, в порошках О4838 есть доста-

точно большое количество более длинных молекуляр-

ных сегментов, например, в центральной части шиш-

кебабов, подвижность которых размораживается при T

выше 300K. Шиш-кебабные образования в РП М3659

отсутствуют. В принципе, зная температуру разрушения

электронной ловушки, можно рассчитать длину сегмен-

тов её образующих, что будет проделано в дальнейшем.

Однако, несмотря на одинаковость температур ре-

лаксационных переходов, вклад подвижности отдель-

ных элементов структуры в общую светимость образца

может быть различным. Отношение площади каждого

элементарного пика к общей площади кривой свечения

позволяет оценить вклад соответствующего релаксаци-

онного перехода в общую светимость образца. Мы про-

вели эту оценку для образцов, компактированных при

разных давлениях (рис. 11), и для спеченных образцов

(рис. 12).
Анализ результатов показывает, что вклад в общую

светимость порошков М3659, компактированных при
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Рис. 10. Сравнение температур релаксационных переходов в

прекурсорах, спеченных под давлением 95MPa при 130 ◦C в

течение 30min: РП О4838 (кривая 1, красная) и М3659 (2,
зеленая). Релаксационные переходы обозначены цифрами на

оси Х: 1 (γ1), 2 (γ2), 3 (β1), 4 (β2), 5 (α1), 6 (α2).
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Рис. 11. Вклад релаксационных процессов в молекулярную

подвижность в приповерхностных нанослоях РП О4838 (зе-
леные столбцы) и М3659 (красные), компактированных

при 95MPa.
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Рис. 12. Вклад релаксационных процессов в молекулярную

подвижность в приповерхностных нанослоях образцов РП

М3659 (красные столбцы) и О4838 (зеленые), компактирован-
ных под давлением 95MPa и спеченных под тем же давлением

при 130 ◦C.

95MPa, в области γ-перехода меньший, а в области α- и

β-переходов больший, чем у компактов O4838.

После спекания соотношения между этими пиками

меняется (рис. 12). У спеченных образцов М3659 воз-

растает вклад γ релаксации β .

На первый взгляд это наблюдение кажется удиви-

тельным. Возникает вопрос, почему спекание приводит

к увеличению самых мелких дефектов на поверхности

(концов молекул и отдельных атомных групп), хотя,

казалось бы, спекание должно приводить к более со-

вершенному состоянию поверхности полимера. В то же

время похожие наблюдения были получены нами при

сравнительном исследовании поверхности ПЭ, закри-

сталлизованного в течение длительного времени при

температуре, близкой к температуре плавления ПЭ и

ПЭ, закаленного из расплава. Было обнаружено, что

поверхность длительно закристаллизованного ПЭ со-

держит большее количество дефектов, чем поверхность

закаленного образца. Было высказано предположение,

что при длительной кристаллизации происходит вы-

талкивание дефектов на поверхность (расстекловыва-
ние поверхности). По-видимому, похожий эффект имеет

место и в данном случае. В то же время вклад γ-

релаксации в общую светимость у образца О4838 по-

сле спекания, напротив, уменьшается, как и вклад α-

релаксации, тогда как вклад β-релаксации растет. Однако

сейчас затруднительно сказать, какие характеристики

релаксационных переходов и соотношение их вкладов

в общую подвижность поверхности образца обеспечат

высокие ориентационные удлинения и, соответственно,

рекордные механические характеристики конечного про-

дукта. Ответ на этот вопрос будет получен только после

проведения деформационного упрочнения прекурсоров,

которое планируется провести при использовании ме-

тода многостадийной ориентационной зонной вытяжки.

В настоящий момент проведены только сравнительные

измерения прочности прекурсоров, спеченных в течение

30min под давлением 95MPa при 127 и 130 ◦C.

3.4. Механические испытания

Измерить прочности прекурсоров, спеченных

при 127 ◦C, не удалось, т. к. они рвались в зажимах. Были

измерены только прочности прекурсоров, спеченных

при 130 ◦C под давлением 95MPa в течение 30min.

Усреднение проводилось по 5−8 образцам. Прочность

прекурсоров О4838, из РП, синтезированного на

металлоценовом катализаторе, оказалась несколько

выше (23.9 ± 0.9MPa), чем прочность М3659 из

РП, синтезированного на модифицированном ТМК

циглеровского типа (21.5 ± 2.0MPa), что может быть

объяснено наличием большего количества концов

цепочек и коротких молекулярных сегментов в

приповерхностных нанослоях прекурсора М3659.

Наблюдаемая разница в прочности невелика и требует

более надежного статистического подтверждения.

Оценку структурных и механических характеристик

прекурсоров, влияющих на свойства конечного

продукта, можно будет дать в дальнейшем после

проведения ориентационного упрочнения.

4. Заключение

Проведено комплексное исследование процессов мо-

нолитизации реакторных порошков (РП) сверхвысоко-

молекулярного полиэтилена (СВМПЭ), синтезирован-

ных на катализаторах циглер-наттовского и металло-

ценового типов. Основное внимание уделено изучению

влияния условий компактирования и спекания на струк-

турные, термические и механические свойства получа-

емых прекурсоров для последующего деформационного

упрочнения.

Результаты исследования показали, что РП СВМПЭ,

синтезированные на металлоценовом катализаторе, де-

монстрируют лучшую способность к компактированию

и спеканию по сравнению с порошками, полученны-

ми на модифицированном титан-магниевом катализато-

ре (ТМК). Это подтверждается более высокой проч-

ностью прекурсоров (23.9MPa против 21.5MPa) после

спекания при оптимальных условиях (130 ◦C, 95MPa,

30min). Анализ методом дифференциальной сканиру-

ющей калориметрии показал, что выбранные темпера-

турные режимы спекания не приводят к нежелательной

перестройке исходной структуры полимера.

Исследования с помощью сканирующей электронной

микроскопии выявили различия в морфологии частиц

порошков: порошки, синтезированные на металлоце-

новом катализаторе, имеют хлопьеобразную форму и

состоят из разнообразных морфоз, что, как мы полагаем,

способствует более интенсивной сдвиговой деформа-

ции при монолитизации порошка, сопровождающейся

образованием когезионных связей, по сравнению с РП
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М3659 на основе ТМК, частицы которого состоят из

плотно упакованных глобул.

Особый интерес представляют данные, полученные

методом плазмо-индуцированной термолюминесценции,

который позволил детально изучить молекулярную по-

движность в приповерхностных нанослоях полимера.

Разложение кривых свечения (R2 ≥ 0.99) с помощью

программы Fityk показало, что в РП на основе ТМК

(М3659) преобладает вклад β-релаксации, тогда как в

металлоценовых порошках (О4838) наблюдается допол-

нительный α2-переход (∼ 307K), что может быть свя-

зано с бо́льшим разнообразием морфологических струк-

тур. После спекания интенсивность свечения снижается,

что свидетельствует об уменьшении количества дефек-

тов в материале. При этом соотношение вкладов γ-, β-

и α-переходов меняется, что указывает на перераспреде-

ление молекулярной подвижности в приповерхностных

нанослоях.

Окончательный вывод относительно пригодности РП

для твердофазной переработки можно будет сделать

только после результатов ориентационного упрочнения.

На основании анализа полученных данных можно будет

сформулировать научно обоснованный режим изготовле-

ния прекурсоров для ориентационного упрочнения.

Финансирование работы

Госбюджет. 29.19.04: Структура твердых тел, 29.19.13:

Механические свойства твердых тел.
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