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Пленочные образцы лазерно-индуцированного графена (ЛИГ) синтезировались на поверхности полии-

мидной пленки построчным сканированием сфокусированного пучка непрерывного углекислотного лазера.

Исследовались структура и химический состав приповерхностного слоя синтезируемого материала в

зависимости от скорости сканирования v пучка лазера. Установлено, что при уменьшении v с 400 до 10mm/s

происходит увеличение концентрации азота более чем в 11 раз. При оптимальной мощности лазера 0.55W

и v = 10mm/s концентрация азота достигает 5.7 at.%. Показано, что увеличение концентрации азота при

уменьшении v происходит за счет пиридиновой и пиррольной конфигураций азота в нанокристаллической

структуре графита и сопровождается существенным уменьшением поверхностного сопротивления ЛИГ.

Полученные результаты коррелируют с установленным ранее многократным возрастанием электроемкости

ЛИГ при уменьшении v .
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1. Введение

Первая четверть XXI в. ознаменовалась бурным разви-

тием нанотехнологий, приведшим, в частности, к откры-

тию графена и других наноуглеродных материалов, об-

ладающих большим потенциалом для практических при-

менений. Одним из таких материалов является лазерно-

индуцированный графен (ЛИГ), впервые синтезирован-

ный на полиимидной пленке методом лазерного пироли-

за ее приповерхностного слоя на воздухе при обычных

условиях с помощью импульсно-периодического угле-

кислотного лазера [1]. ЛИГ представляет собой высо-

копористую электропроводящую пленочную структуру,

состоящую из нанокристаллитов турбостратного гра-

фита, спектр комбинационного рассеяния света (КРС)
которого напоминает спектр КРС графена с дефекта-

ми [2]. Благодаря технологической простоте синтеза пле-

ночные структуры ЛИГ представляют большой интерес

для самых различных приложений и нашли широкое

применение в разработке и создании разнообразных

электронных устройств различного назначения, всевоз-

можных датчиков и сенсоров. К ним относятся датчики

различных газов [3–5], фотодетекторы [6–8], гибкие

носимые на теле человека различные биосенсоры [9,10],
микросуперконденсаторы [11–15] и др.

В качестве прекурсора для синтеза ЛИГ можно

использовать различные углеродосодержащие материа-

лы [16–20]. Известно получение ЛИГ на поверхности

органических материалов, например, на дереве, хлебе

и на поверхности плода кокоса [21]. Однако широко

распространенным прекурсором для синтеза ЛИГ явля-

ется полиимидная пленка [22–24], выпускаемая в про-

мышленных масштабах. Она обладает превосходной эла-

стичностью и термостойкостью, что позволяет получить

гибкие пленочные структуры ЛИГ на ее поверхности

для создания различных электронных устройств.

ЛИГ на полиимидной пленке можно синтезировать

с помощью импульсно-периодических [1,4] или непре-

рывных CO2-лазеров [6,13,25] с длиной волны 10.6µm,

а также с применением импульсно-периодических ко-

ротковолновых диодных лазеров с длиной волны 405

и 450 nm [10,26,27], излучение которых хорошо погло-

щается полиимидной пленкой [28]. Для синтеза ЛИГ

на поверхности полиимидной пленки используются и

другие лазеры, например, фемтосекундные, работающие

на других длинах волн [29].
ЛИГ, синтезированный на поверхности полиимидной

пленки, можно использовать в качестве электродов

для производства гибких микросуперконденсаторов. Для

изготовления таких ЛИГ-электродов хорошо подходят

непрерывные CO2-лазеры мощностью до нескольких де-

сятков ватт, выпускаемые промышленностью для резки

дерева и пластика. При мощности на уровне всего

нескольких ватт они позволяют синтезировать ЛИГ

со значительно большей производительностью, чем в

случае применения импульсно-периодических диодных

лазеров.

Известно, что электрическая емкость электродов ЛИГ,

синтезируемых при построчном сканировании пучка

лазера по поверхности полиимидной пленки, существен-
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но зависит от их толщины, удельной поверхности и

электрических свойств. На эти параметры ЛИГ, в свою

очередь, оказывают влияние режимы синтеза, такие как

мощность лазера P, диаметр сфокусированного пучка d,

скорость движения пучка v при построчном сканиро-

вании, расстояние между строками [13,30,31]. Электри-
ческая емкость ЛИГ может быть увеличена также за

счет легирования углеродного каркаса гетероатомами,

такими как N, B, S и P [32,33]. Из перечисленных

элементов, атомы N содержатся в составе самой по-

лиимидной пленки (исходного прекурсора для синтеза

ЛИГ), состоящей из имидных и ароматических групп

(см., например, [34]). При лазерном пиролизе полиимид-

ной пленки разрушаются ковалентные связи C−N, C−O

и С=O; в результате выделяются низкомолекулярные

газы, происходит изменение и перестройка атомной

структуры приповерхностного слоя пленки с образо-

ванием графеноподобного материала. При этом атомы

азота могут встраиваться в кристаллическую структуру

углеродного материала, что наблюдалась во многих

работах по синтезу ЛИГ на поверхности полиимидной

пленки [32,35–37]. На процесс формирования и элемент-

ный состав ЛИГ — в частности, на концентрацию N —

могут оказывать режимы лазерного синтеза. Однако за

исключением отдельных работ [16,37], где изучалось

влияние лазерной мощности на элементный состав ЛИГ,

такие исследования отсутствуют.

Недавно нами было показано, что электрическую ем-

кость ЛИГ-электродов, синтезированных на поверхности

полиимидной пленки, можно во много раз увеличить за

счет уменьшения скорости сканирования пучка непре-

рывного CO2-лазера и подбором мощности лазера [38].
Обнаруженный эффект объяснялся увеличением толщи-

ны и удельной поверхности синтезируемого наноугле-

родного материала. Однако другим существенным фак-

тором, приводящим к увеличению электроемкости ЛИГ,

может являться изменение концентрации атомов азота в

синтезируемом материале. В связи с этим представляет

интерес исследование влияния скорости сканирования

лазерного пучка на элементный и химический состав

ЛИГ при его синтезе, что является целью настоящей

работы.

2. Объекты и методы исследований

Пленочная структура ЛИГ формировалась на по-

верхности полиимидной пленки Kapton H. толщи-

ной h = 200µm, приобретенной в ООО
”
Эстро-

ком“, г. Москва (ТУ 6-19-102-78 с изм. 1−3, партия

№ П1826С). Пленка является полупрозрачным мате-

риалом, имеющим характерный насыщенный красно-

коричневый цвет. Спектральные зависимости оптиче-

ских констант исследуемой пленки, найденные в диапа-

зоне длин волн 240−2500 nm, приведены в [28]. Синтез
ЛИГ осуществлялся с помощью непрерывного CO2-

лазера (10.6µm) на воздухе построчным сканированием

Режимы синтеза исследуемых образцов ЛИГ

Условное Условия синтеза

обозначение
Скорость v , mm/s Мощность Popt, Wобразцов

v_10_P_0.55 10 0.55

v_20_P_0.69 20 0.69

v_30_P_0.8 30 0.8

v_60_P_1.2 60 1.2

v_120_P_2.0 120 2

v_220_P_3.1 220 3.1

v_400_P_4.5 400 4.5

сфокусированного пучка диаметром 120µm. Построчное

движение пучка лазера по поверхности полиимидной

пленки осуществлялось с помощью двух отражающих

зеркал, установленных на автоматизированном двухко-

ординатном столике. Мощность лазера в относительных

единицах (определяемая в процентах от максимальной

мощности) Pper, скорость движения пучка v вдоль стро-

ки и расстояние между строками (25µm) задавались

программным способом на блоке управления работой

лазера. Фактическая мощность P излучения лазера,

падающая на полиимидную пленку, определялась по

заранее измеренной калибровочной зависимости P(Pper).
Скорость v движения лазерного пучка варьировалась

в диапазоне от 10 до 400mm/s. Верхняя граница ско-

рости 400mm/s ограничивалась параметрами системы

сканирования лазерного пучка, а при v < 10mm/s из-

за сильного коробления полиимидной пленки получе-

ние качественных пленок ЛИГ было затруднительно.

В экспериментах образцы ЛИГ размером 10× 10mm

синтезировались при разных P и v . При этом для каждой

фиксированной скорости v выбиралась такая мощность

P = Popt, при которой электроемкость пленочной струк-

туры ЛИГ, синтезированной при данной скорости v ,

была максимальной [38]. В результате для проведения

исследований при квазипостоянных условиях лабора-

тории (в течение одного рабочего дня) на воздухе

были изготовлены семь пар образцов ЛИГ, условные

обозначения и режимы синтеза которых представлены

в таблице.

Исследования химического состава приповерхност-

ного слоя ЛИГ проводились методом рентгеновской

фотоэлектронной спектроскопии (РФЭС) на модерни-

зированном спектрометре ЭС-2401. Для возбуждения

фотоэлектронов использовалось рентгеновское излуче-

ние MgKα с энергией квантов 1253.6 eV. Энергетическая

шкала спектрометра откалибрована по энергиям связи

электронов Au 4f7/2 (84.0 eV) и Cu 2p3/2 (932.8 eV).
Значение полной ширины на полувысоте (параметр
FWHM) пика Au 4f7/2 составляет 1.0 eV. Полученные

спектры РФЭС обрабатывались с применением про-

граммного пакета CasaXPS (версия 2.1.34). При этом

определение концентрации элементов осуществлялось

Физика твердого тела, 2025, том 67, вып. 8
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Рис. 1. Фотографии шести образцов ЛИГ, синтезированных на

одном куске полиимидной пленки при скоростях сканирования

a — 10, b — 30, c — 60, d — 120, e — 220 и f — 400mm/s

при оптимальных мощностях 0.55, 0.8, 1.2, 2, 3.1 и 4.5W

соответственно.

с относительной погрешностью ±3%. При проведении

РФЭС исследований в качестве эталона был использо-

ван образец высокоориентированного пиролитического

графита (ВОПГ). Для проведения РФЭС исследований

пленочные структуры ЛИГ синтезировались на полии-

мидной пленке, закрепленной на стеклянной подложке с

помощью двустороннего углеродного скотча.

Синтезированные образцы ЛИГ также исследовались

с помощью спектрометра КРС (HORIBA HR800). Воз-
буждение спектров КРС осуществлялось излучением

He-Ne лазера на длине волны λex = 632.8 nm. При этом

использовался объектив с увеличением ×50. Результиру-

a b c

d e f

 = 10 mm/s, P  = 0.55 Wopt

 = 120 mm/s, P  = 2 Wopt

 = 30 mm/s, P  = 0.8 Wopt

 = 220 mm/s, P  = 3.1 Wopt

 = 60 mm/s, P  = 1.2 Wopt

 = 400 mm/s, P  = 4.5 Wopt

10 µm

10 µm

10 µm

10 µm

10 µm

10 µm

Рис. 2. РЭМ-изображения шести образцов ЛИГ, синтезированных при скоростях сканирования a — 10, b — 30, c — 60, d — 120,

e — 220 и f — 400mm/s при оптимальных мощностях 0.55, 0.8, 1.2, 2, 3.1 и 4.5W соответственно.

ющий спектр находился усреднением спектров, записан-

ных в разных точках поверхности ЛИГ в количестве не

менее пяти. Для получения увеличенного изображения

поверхности ЛИГ применялся растровый электронный

микроскоп (РЭМ) (Thermo Fisher Scientific Quattro S).
Поверхностное сопротивление пленок измерялось четы-

рехточечным методом (JG ST2258C) с измерительны-

ми электродами, расположенными вдоль одной линии.

Измерение поверхностного сопротивления проводилось

при ориентации линии электродов перпендикулярно и

параллельно направлению сканирования лазерного пуч-

ка по поверхности полиимидной пленки.

3. Результаты и их обсуждение

На рис. 1 приведены фотографии шести образцов ЛИГ,

полученных при различных совокупных параметрах (v ,
Popt) лазерного синтеза на одном куске полиимидной

пленки. Видно, что цветовая гамма образцов зависит

от режимов синтеза. Наиболее насыщенным черным

цветом обладает образец v_400_P_4.5, синтезирован-

ный при наибольшей скорости сканирования лазерного

пучка v = 400mm/s. РЭМ-изображения этих же образ-

цов ЛИГ представлены на рис. 2. Из него следует,

что ЛИГ является губчатым материалом, и он состоит

из переплетенных сетей открытых полостей разнооб-

разной формы и различного размера. На поверхности

ЛИГ также видны пластинчатые образования различной

пространственной ориентации. Такая структура является

характерной для ЛИГ, синтезированного на поверхности

полиимидной пленки, и наблюдалась во многих работах

(см., например, [6,39,40]). Структура ЛИГ, полученная

при больших скоростях v (рис. 2, f), отличается наличи-

Физика твердого тела, 2025, том 67, вып. 8
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Рис. 3. a — спектр КРС ЛИГ, синтезированного при

v = 60mm/s, Popt = 1.2W (штриховой линией указана аппрок-

симация 2D-полосы функцией Лоренца); b — зависимости

отношений IsD/IsG, I2D/IG и 1ω2D, характеризующих спектры

КРС, от скорости сканирования пучка лазера.

ем сети углеродных волокон. Подобные волокна ранее

были получены на поверхности полиимидной пленки

при ее пиролизе импульсным [41] и непрерывным [30,42]
излучением CO2-лазера.

Типичный спектр КРС наноуглеродной пленочной

структуры, синтезированной при v = 30−400mm/s, при-

веден на рис. 3, a. Он включает хорошо известные D-,

G-, D′- и 2D-полосы рассеяния с частотными сдви-

гами 1330, 1583, 1616 и 2653 cm−1 соответственно.

Такой спектр КРС является характерным для ЛИГ, и

он описан в большом количестве работ (см., напри-

мер, [17,23,38,43]). В спектре рассеяния также имеется

полоса D+D′ с частотным сдвигом 2923 cm−1, которая

является комбинацией D- и D′-полос [44,45]. В целом,

такой спектр КРС также характерен для углеродных

нановолокон [46]. Известно, что спектры КРС дефектных

графена и графита содержат все перечисленные полосы

рассеяния. Однако их спектры существенно отличают-

ся от представленного на рис. 3, a спектра по сле-

дующим характеристикам 2D-полосы: 1) спектральная

форма полосы; 2) значение 1ω2D полуширины на по-

лувысоте; 3) частотный сдвиг ω2D. Полоса 2D одно-

слойного графена описывается одной лоренцевой кривой

с 1ω2D = 25 cm−1, а 2D-полоса графита описывается

двумя лоренцевыми кривыми, заметно отличающимися

по частотным сдвигам. Увеличение количества слоев

графена приводит к отклонению от лоренцевой оги-

бающей 2D-полосы с одновременным увеличением ее

частотного сдвига ω2D с 2640 cm−1 до 2688 cm−1 при

λex = 632.8 nm [47]. Из рис. 3 следует, что 2D-полоса

синтезированного нами материала с ω2D ≈ 2653 cm−1

описывается одной лоренцевой кривой. При этом в

зависимости от скорости сканирования 1ω2D принимает

значения от 73 до 120 cm−1. Отсюда следует, что спек-

тральные характеристики 2D-полосы ЛИГ существенно

отличаются от таковых для графена и графита. С другой

стороны, из литературных данных известно, что 2D-

полоса турбостратного графита с ω2D = 2663 cm−1 (при
λex = 632.8 nm) [48] описывается одной лоренцевой кри-

вой с 1ω2D ≈ (50−60) cm−1 [47,49]. На основе этого и

данных, полученных в других работах по микроскопии

высокого разрешения (см., например, [1]), можно счи-

тать, что при лазерном пиролизе полиимидной пленки

синтезируется углеродный материал, состоящий из на-

нокристаллитов турбостратного графита.

Важными параметрами спектров КРС являются ин-

тегральные характеристики IsG и IsD, представляющие

собой площади под кривыми зависимостей интенсив-

ности полос G и D соответственно, от частотного

сдвига. В соответствии с [50], интегральные харак-

теристики IsG и IsD можно использовать для оценки

размеров нанокристаллитов La вдоль графеновых сло-

ев по формуле La [nm] = (2.4 · 10−10)λ4ex(I
s
D/IsG)−1. Из

рис. 3, b следует, что в широком диапазоне изменений

v отношение IsD/IsG не претерпевает значительных из-
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зированных при различных v и Popt.
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C2 — 285.3 eV (C−N), C3 — 286.7 eV (C−O), C4 — 288.5 eV (C=O), C5 — 290.6 eV (π−π∗), C6 — 287.2 eV, C7 — 291.2 eV. На

вставке приведена зависимость отношения µ площади под C2 (второй составляющей) SC-N с Eb = 285.3 eV к полной площади SC1s

спектра C1s от v .

менений и принимает минимальные и максимальные

значения 2.2 и 2.8 при v = 60 и 30mm/s соответ-

ственно, откуда следует, что при изменении скоро-

сти v от 10 до 400mm/s La меняется в небольшом

диапазоне 13−17 nm. Однако из рис. 3, b следует, что

отношение I2D/IG (где I2D и IG интенсивности пи-

ков I2D и IG соответственно) остается практически

неизменным при v ≥ 60mm/s, но существенно умень-

шается при v < 60mm/s и обращается в нуль при

v = 10mm/s. В соответствии с [51], исчезновение 2D-

полосы в спектре КРС свидетельствует о существен-

ном увеличении концентрации дефектов в нанокри-

сталлитах графита. В то же время, в соответствии с

рис. 1 и 2, ЛИГ, синтезированный при v = 10mm/s,

по морфологии своей поверхности мало отличается

от ЛИГ, синтезированного, например, при v = 30mm/s,

а его электрическая емкость в несколько раз боль-

ше электрической емкости ЛИГ, синтезированного при

v = 30mm/s [38].

На рис. 4 приведены обзорные спектры РФЭС для

пяти образцов ЛИГ, синтезированных при различных ре-

жимах. Видно, что на всех спектрах, кроме линий угле-

рода С1s, наблюдаются линии кислорода O1s. В спектрах

образцов v_10_P_0.55 и v_30_P_0.8, синтезированных

при скоростях v = 10 и 30mm/s, также отчетливо видны

линии азота N1s, но они практически не проявляются у

образцов v_120_P_2 и v_220_P_3.1, синтезированных

при v = 120 и 220mm/s соответственно.

На рис. 5 приведены C1s-спектры РФЭС для эталон-

ного образца ВОПГ и трех образцов ЛИГ, синтезиро-
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ванных при v = 10, 60 и 120mm/s. На рис. 6 и 7 пред-

ставлены спектры кислорода O1s и азота N1s для четы-

рех образцов ЛИГ, синтезированных при v = 10, 30, 60

и 120mm/s.

Из рис. 5, d следует, что C1s-спектр ВОПГ имеет мак-

симум при энергии связи Eb = 284.4 eV. Эта спектраль-

ная линия соответствует связям C−C атомов графита,

т. е. sp2-гибридизации (см., например, [52,53]). Асиммет-
рия пика на полувысоте составила 1.6 : 1. В соответствии

с [54] асимметрия C1s спектра обусловлена наличием

поверхностных дефектов. Кроме этой основной ком-

поненты, C1s-спектр ВОПГ включает дополнительную

компоненту при Eb = 290.8 eV (связь π−π∗, сателлит

shake-up), которая по энергии связи удалена на 6.4 eV от

основного пика. Она соответствует пику потерь слабо

связанных π-электронов и характеризует графитовый

материал [55]. Третий слабоинтенсивный пик с энер-

гией связи 286.7 eV может быть обусловлен влиянием

следовых количеств кислорода, адсорбированного на

поверхности и взаимодействующего с углеродом [56].
Анализ полученных РФЭС-спектров показывает, что

пиковые интенсивности С1s спектров всех образцов

ЛИГ, синтезированных при разных скоростях, также

соответствуют энергии связи 284.4 eV.

Однако форма линий С1s спектров ЛИГ, синтезиро-

ванных при разных условиях, заметно отличаются друг

от друга по полной ширине, измеренной на половине

высоты, 1EC1s. Это хорошо видно из рис. 8, a, пока-

зывающего уменьшение 1EC1s с увеличением v . При

увеличении скорости сканирования 1EC1s приближается

к значению 1.35 eV, полученного для С1s-спектра ВОПГ.

Таким образом, при уменьшении v спектр С1s уши-

ряется. С1s-спектр образца v_10_P_0.55, полученного

при самой маленькой скорости v = 10mm/s, может быть

разложен на пять составляющих (рис. 5, a), максимумы
которых соответствуют следующим значениям Eb (хи-
мическим связям): 284.4 eV (С−С, sp2), 285.3 eV (C−N),
286.7 eV (C−O), 288.5 eV (C=O), 290.6 eV (π−π∗).
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пиридиновой (N1), пиррольной (N2) и графитоподобной (N3) конфигураций азота от скорости сканирования.

Энергии связи первых из этих четырех пиков совпадают

с данными, полученными в работах [32,57]. Примеча-

тельно, что отношение µ площади SC-N под C2 (вто-
рой составляющей) с Eb = 285.3 eV к полной площади

SC1s спектра C1s стремительным образом уменьшается

при увеличении v (рис. 5, a, вставка), так что в C1s-

спектре образца v_120_P_2.0, синтезированного при

v = 120mm/s, эта составляющая отсутствует (рис. 5, c).
Из рис. 6 следует, что O1s-спектр образца

v_10_P_0.55 может быть разложен на три составляю-

щие (O1, O2 и O3) с энергиями связи 531.4, 532.2 и

533.2 eV. Согласно [58–60], пики O1, O2 и O3 могут быть

отнесены к связям карбонильного кислорода хининов,

O=C и O−C соответственно. В разложении O1s-спектра

образца v_30_P_0.8 содержится дополнительный пик

O4 с энергией связи 537.0 eV, который можно отнести к

связям С−Н2О [61]. Образец v_60_P_1.2 характеризу-

ется пиком O1 и тремя другими пиками O5, O6 и O7, с

энергиями связи 532.0, 532.8 и 533.8 eV соответственно.

Согласно [62], пик O7 может быть связан с адсор-

бированной влагой. O1s-спектр образца v_120_P_2.0

может быть разложен на четыре составляющие — O1,

O5, O6 и O8, с максимальным значением последней

при энергии связи 535.7 eV. Точная идентификация всех

перечисленных выше пиков затруднена, так как значения

энергии связи одного и того же типа химической связи

многих авторов из известных литературных источников

отличаются друг от друга на 0.1 eV и более. Однако

рис. 6 наглядно показывает, что скорость сканирования

лазерного пучка при его синтезе сложным образом

влияет на спектр O1s.

Из рис. 7 следует, что N1s-спектр образца

v_10_P_0.55 может быть разложен на три азотные

составляющие, N1, N2 и N3, с пиковыми значениями

энергии связи 399.0, 400.1 и 401.5 eV, соответствующие

пиридиновой (pyridinic N), пиррольной (pyrrolic N) и

графитоподобной (graphitic N) [53,63–65] конфигура-

циям соответственно. Они относятся к атомам азота,

находящимся в различных конфигурациях кристалличе-

ской структуры дефектного графена [63]. В N1s-спектрах

образцов v_60_P_1.2 и v_120_P_2.0 имеются допол-

нительные пики с энергией связи азота N4. Он соот-

ветствует 402.9 eV, которую согласно [66] можно при-

писать окисленному азоту пиридиновой конфигурации

(N+−O−), т. е. атому азота, связанному с двумя атомами

углерода и одним атомом кислорода. Примечательно,
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что энергии связи четырех перечисленных конфигура-

ций азота, приведенных выше, совпадают со значениями,

полученными в [66,67]. N1s-спектр образца v_30_P_0.8

отличается наличием в его разложении пика с энергией

связи 403.9 eV, соответствующей нитриту NO−

2 [68,69].
Обработка C1s-, O1s- и N1s-спектров синтезирован-

ных образцов позволила определить влияние скорости

сканирования на концентрации nC, nO и nN в них угле-

рода, кислорода и азота соответственно (рис. 9). Видно,
что возрастание концентрации кислорода и азота при

уменьшении скорости сканирования v сопровождается

уменьшением концентрации углерода. При уменьшении

v во всем диапазоне ее варьирования уменьшение и

увеличение концентраций углерода и кислорода состав-

ляют 1.15 и 1.68 раз соответственно. В то же время

из полученных данных следует, что концентрации азота

в приповерхностном слое ЛИГ, синтезированного при

v = 10mm/s, Popt = 0.55W и v = 400mm/s, Popt = 4.5W

составляют 5.7 и 0.5 at.% соответственно. Это означает,

что за счет уменьшения скорости сканирования лазер-

ного пучка с 400 до 10mm/s и подбором лазерной мощ-

ности можно увеличить концентрацию азота в синтези-

руемом углеродном материале более чем в 11 раз. При

этом в соответствии с данными, представленными на

вставке рис. 9, c, концентрации nN1, nN2 и nN3 различных

форм азота N1, N2 и N3 соответственно зависят от v по

отличающимся закономерностям. Видно, что существен-

ное возрастание суммарной концентрации азота при

уменьшении скорости v происходит за счет увеличения

концентраций пиридиновой и пиррольной конфигураций

азота. Примечательно, что удельная концентрация всех

атомов азота в нанокристаллической структуре углерода

монотонно возрастает с уменьшением v (рис. 9, d).
Таким образом, при синтезе ЛИГ происходит его са-

модопирование азотом, причем чем меньше скорость

сканирования, тем больше концентрация азота. Допиро-

вание углеродного материала азотом должно приводить

к уменьшению его электрического сопротивления, что

и наблюдается в эксперименте (рис. 10, a). Из рисунка

видно, что действительно при уменьшении v с 400

до 10mm/s значения поверхностного сопротивления

образцов, синтезированных при P = Popt, уменьшаются

в несколько раз. Следует отметить, что самодопирование

азотом синтезируемого материала при малых v является

лишь одной из причин уменьшения поверхностного

сопротивления. При уменьшении v заметно возрастают

толщина пленочной структуры ЛИГ (рис. 10, b) и ее

плотность [2], что также способствует уменьшению его

поверхностного сопротивления.

Вышеприведенные результаты исследований состава

пленочной структуры ЛИГ относятся к его приповерх-

ностному слою. Между тем, известно, что состав ЛИГ

может быть неоднородным по глубине, о чем свиде-

тельствуют отличающиеся спектры КРС, записанные

на различных точках среза пленочной структуры ЛИГ,

находящихся на различных глубинах [14]. Исследование

изменения состава и свойств ЛИГ в зависимости от его

глубины представляет собой отдельную нетривиальную

задачу и может служить предметом дальнейших иссле-

дований.

4. Заключение

Исследовано влияние скорости построчного сканиро-

вания сфокусированного пучка непрерывного углекис-

лотного лазера на химический состав наноуглеродной

пленочной структуры, синтезированной на поверхности

полиимидной пленки при ее лазерном пиролизе. Для

образцов ЛИГ, синтезированных в диапазоне скоростей

сканирования v от 10 до 400mm/s и мощностях, обес-

печивающих максимальную их электрическую емкость,

получены спектры РФЭС. В синтезированных образцах

ЛИГ обнаружены пики C1s, O1s и N1s, соответствующие

атомам углерода, кислорода и азота соответственно.

Показано, что при увеличении скорости v происходит
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существенное уменьшение ширины C1s-спектра. Раз-

ложение N1s-спектра образца ЛИГ, полученного при

v = 10mm/s, показывает, что атомы азота в нанокри-

сталлической структуре графитового материала нахо-

дятся в пиридиновой, пиррольной и графитоподобной

конфигурациях, концентрации первых двух из которых

монотонно уменьшаются с увеличением v . При умень-

шении скорости сканирования с 400 до 10mm/s концен-

трация азота в приповерхностном слое ЛИГ возрастает

в 11.4 раза и составляет 5.7 at.%, тогда как концентрация

углерода уменьшается в 1.15 раза, с 89.8 до 78 at.%.

Увеличение концентрации азота в синтезируемом пле-

ночном материале сопровождается уменьшением его

поверхностного сопротивления и находится в согласии

с ранее установленной закономерностью о существен-

ном возрастании электроемкости ЛИГ при уменьшении

скорости построчного сканирования при его синтезе

до 10mm/s.
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