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Исследовано влияние способа введения ионов Sm3+ (стехиометрия, сверхстехиометрия, введение избытка

после кальцинации) и режима синтеза (одностадийный, двустадийный) на параметры керамического

твердого раствора 0.36(Bi1−xSmx )ScO3-0.64PbTiO3 (BSSPT), где x = 0.022, 0.038, 0.056. Проведено иссле-

дование кристаллической структуры, элементного состава и диэлектрических свойств, а также измерение

пьезоэлектрического модуля d33 . Показано, что BSSPT является однофазным и имеет тетрагональную

(P4mm) структуру перовскита. Исследование элементного состава всех вариантов синтезированных образцов

керамики BSSPT демонстрирует практически одинаковое содержание самария, включая возможность

введения ионов Sm3+ в подрешетку A керамики структуры перовскита ABO3 после кальцинации. Величина

диэлектрической проницаемости в максимуме εm и соответствующая ей температура Tm уменьшаются

с увеличением концентрации ионов Sm3+ . Получено максимальное значение d33 , равное 536 pC/N, что

превышает d33 = 525 pC/N для немодифицированного 0.36BiScO3-0.64PbTiO3 .
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1. Введение

Высокотемпературная пьезоэлектрическая керамика

востребована в различных областях науки и техни-

ки при эксплуатации в экстремальных температур-

ных условиях. Одним из возможных применений яв-

ляется использование таких материалов при разработ-

ке пьезоэлектрических двигателей в рамках проекта

ИТЭР (International Thermonuclear Experimental Reactor).
В этом случае условия работы активных элементов

включают присутствие термоядерной плазмы с флюен-

сом нейтронов, превышающим 1019 n/cm2, и энергией

выше 0.1MeV при температуре 250−300 ◦C. Таким

требованиям удовлетворяет высокотемпературная пье-

зокерамика 0.36BiScO3-0.64PbTiO3 (BSPT), расположен-
ная вблизи морфоторопной фазовой границы (МФГ).
BSPT имеет одну из самых высоких температур Кюри

(∼ 450 ◦C), что определяет диапазон рабочих темпе-

ратур до ∼ 300 ◦C [1,2]. Кроме того, эта керамика

демонстрирует необходимое для эффективной работы

пьезодвигателя высокое значения пьезоэлектрического

модуля d33 вплоть до 525 pC/N [3]. Последние исследо-

вания пьезокерамики BSPT после воздействия радиации,

моделирующей условия в ИТЭР, свидетельствуют о ее

радиационной устойчивости [4,5].

К настоящему времени синтезированы и исследованы

твердые растворы с замещением ионов, как в A-,

так и в B -положении в решетке перовскита ABO3.

Вскоре после синтеза BSPT были осуществлены

многочисленные исследования модификации этой

пьезокерамики c заменой как Sc, так и Ti (B -положение

в решетке перовскита), что нашло свое отражение

в многочисленных публикациях. Были синтезированы

различные составы керамики на основе твердых рас-

творов как Bi(Sc,Me)O3-PbTiO3, так и BiScO3-PbMeO3:

Bi(Ga,Sc)O3-PbTiO3 [6], Bi(Mg,Sc)O3-PbTiO3 [7],
Bi(Fe,Sc)O3-PbTiO3 [8], BiSc-Pb(Bi,Ti,Zn) [9],
BiScO3-Pb(Mn,Ti)O3 [10], BiScO3-Pb(Zn,Nb,Ti)O3 [11]
и др.; были исследованы их пьезоэлектрические

свойства. Полученные результаты показали, что

большинство синтезированных составов демонстрируют

величины пьезомодуля d33 и температуры Кюри

TC, значительно уступающие немодифицированному

составу BSPT [12]. В частности, при замещении

в B -положение пьезомодуль d33 и температура Кюри

находятся в обратно пропорциональной зависимости,

а именно, при увеличении температуры Кюри

пьезомодуль снижается, а при увеличении пьезомодуля

TC падает [12]. Например, после введения ионов

Zn2+ в керамику BSPT величина d33 увеличилась до

490 pC/N, а TC уменьшилась до 328 ◦C [9]; в случае

введения в эту керамику мультивалентных ионов Mn

(Mn4+ → Mn3+ → Mn2+) значение TC увеличилось

с 450 до 468 ◦C, а d33 уменьшилась до 270 pC/N [10].
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A-положение в составах со структурой перовскита

обычно занято ионами с относительно большим ион-

ным радиусом, в частности, ионами редкоземельных

элементов (РЗЭ). Как показано в [13–15], РЗЭ могут

вносить случайные поля или связи, изменяющие степень

упорядоченности катионов. В результате легирование

редкоземельными элементами свинец-содержащей пье-

зокерамики приводит к увеличению диэлектрической

проницаемости ε, пьезомодуля d33, коэффициента элек-

тромеханической связи kp, упругих констант S. Однако

по той же причине для любой модифицированной РЗЭ

свинец-содержащей пьезокерамики наблюдается сниже-

ние температуры Кюри [16–19]. Эйтель с сотрудниками

впервые провели модификацию BSPT ионами ланта-

на [20]. По мнению авторов, донорная примесь La3+

заменяла Pb2+ в A-положении, то есть была синтези-

рована керамика состава BSPLT. Результаты легирова-

ния BSPT лантаном в этой работе показали сниже-

ние температуры Кюри почти на 100 ◦C (до 365 ◦C)
без значимого улучшения пьезоэлектрических свойств

(d33 = 465 pC/N). В работе [21] описан синтез керамики

состава 0.38(Bi1−xLax )ScO3-0.62PbTiO3 (BLSPT), где ион
La3+ замещает в A-положении, по утверждению авторов,

не ион свинца Pb2+, а ион висмута Bi3+, что представ-

ляется более вероятным. И в этом случае модификация

ионами La3+ приводит к смещению TC у BLSPT в сторо-

ну низких температур (440 ◦C при x = 0.02 и 395 ◦C при

x = 0.06), при этом максимальная величина пьезомодуля

составляла 245 pC/N). Исследование модификации кера-

мики BSPT редкоземельными элементами не ограничи-

валось ионами лантана. В работе [22] изучена возмож-

ность легирования этой керамики церием. Синтезиро-

ванная керамика состава 0.36(Bi1−xCex)ScO3-0.64PbTiO3

демонстрировала стабильность фазы перовскита моди-

фицированной керамики лишь для низких значений

x = 0.01−0.02. Частичная замена иона Bi3+ на ион Се

с валентностью от 2+ до 4+ [22] также сдвигает TC

в сторону более низких температур.

Значительный интерес вызвало легирование свинец-

содержащей пьезокерамики самарием. В работе [16]
было показано, что при легировании пьезокерамики

состава PbZrTiO3 (PZT) ион Sm3+ замещает Pb2+

в A-положении с образованием Pb1−xSmxZT (PSZT). При

содержании самария x = 0.06 пьезомодуль увеличивал-

ся от 125 до 172 pC/N, при этом температура Кюри

снижалась от 313 до 274 ◦C. Недавно интерес к моди-

фикации керамики самарием резко активизировался, т. к.

в работах [17,23] было продемонстрировано увеличение

пьезомодуля d33 в полтора-два раза в легированной сама-

рием свинец-содержащей керамике PMN-PT. По мнению

авторов, этот эффект обусловлен тем, что добавление

иона Sm3+ в керамику PMN-PT создает в ней полярные

области, гетерогенность и структурную нестабильность,

приводящие к неизбежной деформации решетки. В ре-

зультате более высокая степень локальной структурной

гетерогенности может привести к улучшению пьезоэлек-

трических и диэлектрических характеристик.

В недавней работе [24] успешно проведено ле-

гирование керамики 0.36BiScO3-0.64PbTiO3 самарием

в A-положение с заменой иона Bi3+ на ион Sm+ . Были

получены сравнительно высокие значения эффективного

пьезомодуля (718 pC/N) для неполяризованной керами-

ки, измеренные при приложенном поле 45 kV/cm. Одна-

ко полученный результат не соответствует требованиям

Стандарта IEEE, предъявляемым к параметрам пьезоке-

рамики [25]. В работе[26] исследовалось влияние на фа-

зовый переход и электрофизические свойства текстури-

рованной керамики (1− x)(Bi0.97Sm0.03)ScO3−xPbTiO3.

Однако все исследования в этой работе были проведены

для одного и того содержания самария и были посвя-

щены поиску оптимального соотношения компонентов

твердого раствора x , который оказался равен 0.62.

Важным фактором, влияющим на свойства свинец-

и висмут-содержащей керамики, является эффект по-

тери Bi2O3 и PbО во время высокотемпературного

синтеза из-за их летучести. Испарение этих окси-

дов обуславливает появление дополнительных вакансий

в A-положении на месте ионов Bi3+ и Pb2+ уже в про-

цессе кальцинации [27], что, по нашему предположению,

открывает возможность вводить ионы самария как на

этапе исходной смеси оксидов, так и после кальцинации

немодифицированного BSPT. Существующие публика-

ции не учитывают эти особенности синтеза описанного

твердого раствора. Кроме того, хорошо известно, что

изготовление BSPT с использованием двустадийного

метода спекания приводит к изменению размера зерна,

что оказывает существенное влияние на температуру

перехода, величины диэлектрической проницаемости ε,

пьезомодуля d33 и других параметров [1–3].

Целью настоящей работы является исследование

состава, кристаллической структуры, микрострукту-

ры и диэлектрических свойств, а также пьезоэлек-

трического модуля d33 керамики BSPT при раз-

ных способах легирования самарием, а именно:

1) стехиометричная модификация (введение в исход-

ную смесь оксидов по стехометрии состава, включая

Sm2O3); 2) сверхстехиометричная модификация (добав-
ление избытка Sm2O3 к стехиометрическому составу

BSPT); а также 3) введение избытка Sm2O3 в прошед-

ший кальцинацию немодифицированный BSPT. Вариан-

ты модификации исследуются в сочетании с режимами

спекания: одностадийным (SSS — single step sintering)
и двустадийным (TSS — two step sintering), как важными

технологическими факторами, определяющими свойства

материала.

2. Эксперимент

Исследовалась керамика состава

0.36(Bi1−xSmx )ScO3-0.64PbTiO3 (BSSPT), где x = 0.022,

0.038, 0.056. Для исследования влияния способа

введения иона Sm+ на параметры BSSPT при x = 0.022

образцы для спекания были изготовлены тремя

Физика твердого тела, 2025, том 67, вып. 8



1536 Е.Г. Гук, Е.П. Смирнова, В.Н. Климов, П.А. Панкратьев, Н.В. Зайцева, Е.Е. Мухин

различными способами. Партия № 1 была получена

из смеси окислов Bi2O3, Sm2O3, Sc2O3, PbO и TiO2,

взятых в соотношении, соответствующем составу

стехиометричной модификации BSSPT для x = 0.022.

В партии № 2 исходная смесь состояла из окислов

Bi2O3, Sc2O3, PbO и TiO2, отвечающих стехио-

метрическому составу немодифицированного BSPT

с добавлением в эту исходную смесь избытка Sm2O3.

В партии № 3 состав исходной смеси для кальцинации

соответствовал содержанию окислов Bi2O3, Sc2O3, PbO,

TiO2, смешанных в стехиометрическом соотношении

для формирования керамики BSPT (для x = 0)
с дальнейшим добавлением Sm2O3 после кальцинации.

Все окислы были предварительно прокалены в тече-

ние 4 h: Sc2O3 и TiO2 при 1000 ◦C, а Bi2O3 и PbO —

при 700 ◦C из-за их летучести. Все 3 варианта исходной

смеси оксидов измельчали растиранием суспензии в те-

чение 24 h, полученный порошок прессовали под одно-

осным давлением в пресс-форме диаметром 2.5 cm при

P = 12MPa для проведения кальцинации в открытом

платиновом тигле при 850 ◦C в течение 4 h. Из образцов

партий № 1 и 2 традиционным способом в результате

12-часового растирания их спиртовой суспензии фор-

мировалась шихта для спекания. Перед аналогичным

растиранием образцов из партии № 3 в состав шихты

BSPT для заключительного обжига был добавлен ок-

сид самария Sm2O3 в количестве x , равном 2.2mol.%.

Во всех случаях сформированную шихту сушили и прес-

совали из нее под одноосным давлением P = 8MPa

диски диаметром 10mm и толщиной 1mm, после чего

диски из каждой партии делили на 2 группы: 1a, 2a,

3a, в которых спекание проводилось в одностадийном

режиме, и 1b, 2b, 3b, в которых режим спекания был

двустадийным. Одностадийный режим предусматривал

спекание при T1 = 1200 ◦C в течение 2 h. Двустадийное

спекание проводилось по разработанной нами модифи-

цированной технологии [3], на первой стадии, включа-

ющей нагрев до T1 = 1150 ◦C, выключение печи через

1min после достижения этой температуры, и охла-

ждение вместе с печью до T2 = 800 ◦C. Вторая стадия

обжига проводилась при этой температуре в течение

4 h. Во всех случаях при спекании рядом с образцом

располагалась
”
атмосферная“ таблетка цирконата свин-

ца, предназначенная для компенсации потерь свинца.

Исследование зависимости параметров синтезированной

керамики BSSPT от концентрации самария проводилось

в режиме, соответствующем варианту 1b (стехиомет-
ричная модификация, двустадийное спекание) на дис-

ках состава 0.36(Bi1−xSmx )ScO3-0.64PbTiO3 при x = 0,

0.022, 0.038, 0.056. Во всех случаях потери PbO+Bi2O3

не превышали 1mass.%. В качестве материала для элек-

тродов использовалось серебро. Электроды вжигались

при температуре 500 ◦C.

Исследование полученных образцов проводилось на

рентгеновском дифрактометре ДРОН-3 с использовани-

ем излучения линии CuKα, λ = 1.54178�A, Ni-фильтра

и источника напряжения (38 kV, 18mA). Сканирование

осуществлялось в интервале углов 2θ от 10 до 60◦ c

шагом 0.1◦. Для измерения параметров решетки в каче-

стве эталона использовался германий. Все полученные

образцы были однофазными и имели структуру перов-

скита. Измеренная плотность образцов соответствовала

93−96% от теоретической рентгеновской плотности.

Анализ элементного состава и размеров зерен керами-

ки осуществляли на сканирующем электронном микро-

скопе TescanMira с системой определения элементного

состава. Диэлектрические свойства измерялись мостом

переменного тока Р5079 (частота 1 kHz, амплитуда 1V).
Поляризация образцов проводилась при T = 115 ◦C в те-

чение 30min в силиконовом масле в поле E = 40 kV/сm,

приложенном по толщине диска. Измерение пьезоэлек-

трического модуля d33 проводилось на поляризованных

образцах с помощью измерителя перемещений Модель

М-048 и высоковольтного источника Stanford Research

Systems. Inc. Model PS350/5000V-25W. Измерялась де-

формация, возникающая при приложении электрическо-

го поля за счет обратного пьезоэлектрического эффекта.

3. Результаты и обсуждение

Рентгенограммы образцов состава

0.36(Bi1−xSmx )ScO3-0.64PbTiO3 (x = 0, 0.022, 0.038,

0.056), синтезированных с использованием различных

способов введения иона Sm3+, демонстрируют, как

и в случае немодифицированного состава BSPT,

тетрагональную (P4mm) структуру. Параметры

решетки, приведенные в таблице 1, измерялись

с помощью рентгеновской дифрактометрии (XRD)
и сканирующей электронной микроскопии (SEM)
и зависят от способа модификации.

В случае варианта № 1 (стехиометричная модифика-

ция) параметры решетки a и c различаются при разных

способах введения иона Sm+ и режимах синтеза, но

величины тетрагональности решетки для всех случаев

близки (c/a лежит в пределах от 1.021 до 1.025). Этот
результат отличается от данных для немодифицирован-

ной керамики BSPT, где степень тетрагональности ре-

шетки при переходе от одностадийного к двустадийному

обжигу снижается от c/a = 1.025 до c/a = 1.017 соот-

ветственно. Сверхстехиометричная модификация (вари-
ант № 2) демонстрирует уменьшение тетрагональности

решетки по сравнению со стехиометричной модифика-

цией. Для варианта модификации № 3 наблюдается рост

тетрагональности при синтезе в режиме SSS и равные

степени тетрагональности для вариантов № 2 и № 3

при режиме TSS. Вариации степени тетрагональности

указывают на некоторые различия положения состава

вблизи морфотропной фазовой границы (МФГ) при

сохранении тетрагональной структуры.

Исследование элементного состава образцов керами-

ки BSSPT, синтезированных с использованием различ-

ных способов и режимов введения иона Sm+, приведен-

ных в таблице 1, демонстрирует практически одинаковое
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Таблица 1. Влияние режима и способа введения 2.2mol.% иона Sm3+ в состав BSPT

SSS TSS

Способ введения Sm Способ введения Sm

Немодифицированная керамика BSPT Немодифицированная керамика BSPT

c/a = 1.025 c/a = 1.017

Способ Pb: 42.8 wt.% Pb: 43.5wt.%

измерения Bi: 22.5% Bi: 23.7 wt.%

и εm = 33092 εm = 16115

параметры Tm = 450 ◦C Tm = 433 ◦C

d33 = 350 pCN d33 = 525 pC/N

Стехио- Сверхстехио- Избыток в BSPT Стехио- Сверхстехио- Избыток в BSPT

метричная метричная после метричная метричная после

модификация модификация кальцинации модификация модификация кальцинации

XRD a = 3.987±0.002�A a = 4.001±0.003�A a =3.969±0.002�A a =3.979±0.002 a =3.9900±0.00 a =3.99±0.002�A

c =4.078±0.002�A c =4.080±0.003 c =4.073±0.003 c =4.070±0.003 c =4.075±0.002�A c =4.075±0.002�A

ā = 4.017�A ā = 4.027�A ā = 4.003�A ā = 4.009�A ā = 4.019�A ā = 4.018�A

c/a = 1.023 c/a = 1.0207 c/a = 1.025 c/a = 1.023 c/a = 1.021 c/a = 1.021

SEM Pb: 40.2wt.% Pb: 38.0wt.% Pb: 41.6wt.% Pb: 40.5wt.% Pb: 43.1% Pb: 44.2%

Bi: 21.2wt.% Bi: 22.4wt.% Bi: 23.0wt.% Bi: 21.7wt.% Bi: 24.1wt.% Bi: 24.2wt

Sm: 0.4wt.% Sm: 0.3wt.% Sm: 0.4wt.% Sm: 0.4wt.% Sm: 0.4wt.% Sm: 0.45wt.%

εm 35644 33222 28268 19385 22530 18100

Tm, C
◦ 417.24 415.92 424 407 416 425

d33 , pC/N 240 270 250 536 240 400

содержание самария в синтезированной керамике неза-

висимо, как от способа его введения, так и от режимов

синтеза (одностадийного и двустадийного). Этот резуль-

тат (∼ 0.4wt.%), полученный SEM в весовых %, близок

к величине содержания самария в шихте, выраженно-

го в тех же единицах: для варианта стехиометричной

модификации 0.4618 wt.%, а для сверхстехиометричной

модификации и добавления избытка Sm2O3 после каль-

цинации — 0.4609wt.%.

Учитывая отсутствие признаков второй фазы в по-

лученных рентгенограммах, можно сделать вывод, что

легирование керамики BSPT ионами самария произо-

шло полностью. Описанные результаты свидетельствуют

также о возможности встраивания ионов Sm+ в ре-

шетку BSPT после кальцинации. Этот эффект, оче-

видно, обусловлен образованием в керамике вакансий

в A-положении из-за высокой летучести как Bi2О3,

так и PbО при температурах выше 800 ◦C аналогич-

но, например, процессу, наблюдавшемуся в керамике

Bi1/2Na1/2TiO3 (BNT) [28]. Таким образом, как рент-

генограммы, так и результаты SEM образцов состава

0.36(Bi1−xSmx)ScO3-0.64PbTiO3 при x = 0.022 свиде-

тельствуют о том, что добавление Sm2O3 после стадии

кальцинации позволяет вводить ионы Sm+ в сформиро-

вавшиеся в подрешетке A вакансии керамики BSSPT.

На основе полученных электронных изображений

были построены гистограммы распределения зерен по

размерам и их огибающие для всех синтезированных

образцов керамики. На рис. 1 приведены такие гисто-

граммы для стехиометричной модификации способа вве-

дения самария (x = 0.022), сформированные в результа-

те одностадийного (рис. 1, a) и двустадийного (рис. 1, b)
режима спекания. Как видно из рис. 1, легирование

ионами самария, даже при его небольшой концентрации

(x = 0.022), оказывает значительное влияние на средний
размер зерна, равный 6µm для одностадийного и 3.5µm

для двустадийного режимов синтеза, соответственно. Та-

ким образом, сохраняется тенденция снижения среднего

размера зерен, продемонстрированная при переходе от

одностадийного к двустадийному спеканию при синтезе

немодифицированной керамики BSPT [2,3].

Уменьшение среднего размера зерна при модифи-

кации свинец-содержащей керамики РЗЭ наблюдалось

в работах [16,29], где исследовалось легирование сама-

рием керамики PLZT с образованием твердого раствора

[Pb0.925−xSmxLa0.075(Zr0.2Ti0.8)0.981O3 и PZT с образова-

нием твердого раствора [Pb1−xSmx (Zr0.55Ti0.45)1−x/4O3],
проведенное в обоих случаях в одностадийном режи-

ме спекания. Аналогичный результат был получен для

керамики BSPLT в работе [20], где спекание также

проводилось в одностадийном режиме. Было показано,

что замена, предположительно, иона Pb2+ на ион La3+

приводит к снижению среднего размера зерна от 7.5µm

до величины ≤ 1µm. В работе [12] была сделана попытка

11 Физика твердого тела, 2025, том 67, вып. 8



1538 Е.Г. Гук, Е.П. Смирнова, В.Н. Климов, П.А. Панкратьев, Н.В. Зайцева, Е.Е. Мухин

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

al
iz

ed
 d

is
tr

ib
u
ti

o
n

Grain size, µm

a

SSS

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

al
iz

ed
 d

is
tr

ib
u
ti

o
n

Grain size, µm

b

TSS

Рис. 1. Гистограммы и функции распределения зерен керамики 0.36(Bi1−xSmx )ScO3-0.64PbTiO3, x = 0.022, для a) одностадийного
и b) двустадийного режимов спекания.

объяснить этот факт тем, что разница зарядов лантана

и свинца в положении A компенсировалась за счет

образования вакансий (VB) в положении B , что за-

трудняло движение границ зерен, снижая размер зерен.

В тоже время, предположение о преимущественном

замещении иона Pb2+ на ион La3+ с образованием

вакансий является, на наш взгляд, необоснованным,

учитывая возможность замещения ионов Bi3+ ионами

La3+. В работе [19] описан синтез и характеристики кера-

мики BLSPT, полученной легированием BSPT лантаном,

в результате которого ион La3+, как считают авторы, за-

меняет равный по заряду и близкий по ионному радиусу

Bi3+ в A-положении, т. е. необходимости в образовании

вакансии в B -положении нет. Для керамики состава

BLSPT, в которой La3+ замещает в A-положении Bi3+,

в [21] показано, что модификация лантаном приводила

не к уменьшению, а к значительному росту зерен,

несмотря на то, что синтез BLSPT также проводился

по традиционной технологии с одностадийным спекани-

ем. В работе, посвященной исследованию легирования

керамики BSPT самарием [24], где синтез керамики

0.36(Bi1−xSmx)ScO3-0.64PbTiO3 (x = 0.1, 0.2, 0.3, 0.4,

0.5) также проводился по традиционной технологии,

результаты свидетельствуют об увеличении размера зе-

рен вследствие замены ионов Bi3+ ионами Sm+ при

проведении спекания в режиме SSS.

На рис. 2 и 3 для образцов керамики BSSPT

(x = 0.022), синтезированных с помощью различных

способов введения самария, приведены огибающие нор-

мированной функции распределения зерен по размерам

для одностадийного (рис. 2) и двустадийного (рис. 3)
режимов. Для сравнения приводятся огибающие для

немодифицированной керамики BSPT.

Огибающие на рис. 2 (одностадийное спекание) де-

монстрирует увеличение размеров зерен по сравнению

с огибающими, приведенным на рис. 3 (двустадийное
спекание), что соответствует закономерности снижения
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Рис. 2. Огибающие нормированной функции распределения

зерен по размерам для образцов BSSPT (x = 0.022), полу-

ченныx различными способами при одностадийном режиме

обжига. Кривая 1 — BSSPT, стехиометричная модификация;

2 — BSSPT, сверхстехиометричная модификация; 3 — BSSPT,

избыток Sm2O3 добавлен к BSPT, прошедшему кальцинацию,

4 — немодифицированный BSPT.

размеров зерен при переходе от режима SSS к TSS для

немодифицированной керамики BSPT [2,3]. Как известно,
это снижение размера зерен обусловлено замораживани-

ем точек соприкосновения границ зерен, что препятству-

ет миграции этих границ [2].

Однако введение ионов Sm+ в BSPT оказывает допол-

нительное влияние на процессы миграции границ зерен,

и тем самым на размер зерен керамики, как в случае

одностадийного, так и двустадийного режимов обжига.

Как следует из рис. 2, в случае одностадийного режима

синтеза 0.36(Bi1−xSmx )ScO3-0.64PbTiO3 все огибающие

для этой керамики при x = 0.022 демонстрируют сниже-

ние среднего размера зерен в 1.5−2 раза (т. е. 5−7µm
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по сравнению с 10µm для нелегированной керамики

BSPT). Добавка самария в керамику вызывает появление

локальных напряжений из-за разницы радиусов иона

Bi3+ и замещающего его иона Sm3+, что приводит

к изменению степени упорядоченности катионов [13–15],
снижает миграцию границ зерен и, соответственно,

средний размер зерна. В случае перехода к двустадий-

ному режиму введении в BSPT ионов Sm+ (рис. 3)
наблюдается не столь сильное уменьшение размеров

зерен по сравнению с немодифицированной керамикой

(3.5−4.5µm по сравнению с 0.88µm). Увеличение кон-

центрации иона Sm+ в модифицированной керамике

0.36(Bi1−xSmx)ScO3-0.64PbTiO3 демонстрирует дальней-
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Рис. 3. Огибающие нормированной функции распределения

зерен по размерам для образцов BSSPT (x = 0.022), по-

лученных различными способами при двустадийном режиме

обжига. Кривая 1 — BSSPT, стехиометричная модификация;

2 — BSSPT, сверхстехиометричная модификация; 3 — BSSPT,

избыток Sm2O3 добавлен к BSPT, прошедшему кальцинацию,

4 — немодифицированный BSPT.
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Рис. 4. Огибающие нормированной функции распределения

зерен по размерам в керамике 0.36(Bi1−xSmx )ScO3-0.64PbTiO3

для различных концентраций: кривая 1 — x = 0.022; 2 —

x = 0.038; 3 — x = 0.056.
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Рис. 5. Зависимость диэлектрической проницаемости ε от

температуры для керамики 0.36(Bi1−xSmx )ScO3-0.64PbTiO3

с различной концентрацией Sm: кривая 1 — x = 0.022, 2 —

x = 0.038, 3 — x = 0.056.

шее снижение размера зерен (рис. 4) вследствие даль-

нейшего ослабления процесса ограничения подвижности

и торможения движения границ зерен [12].

Таким образом, в каждом конкретном случае размер

зерен определяется балансом процессов миграции гра-

ниц зерен и торможения движения этих границ, а также

ограничения подвижности. В результате при переходе

от одностадийного режима спекания к двустадийному

наблюдается традиционное снижение размера зерен, но

это снижение ослаблено. Противоречивые данные о мик-

роструктуре керамики BSPT при легировании самарием,

полученные в настоящей работе и в публикации [24],
указывают на необходимость дальнейшего исследования

механизмов, определяющих рост зерен и их распре-

деление.

В таблице 1 приведены результаты измерения тем-

пературной зависимости диэлектрической проницаемо-

сти ε на частоте 1 kHz для различных режимов и спосо-

бов введения 2.2mol.% Sm в состав BSPT. Как и в случае

немодифицированной керамики BSPT [30], у образцов,

синтезированных в одностадийном режиме обжига, ве-

личины действительной части диэлектрической прони-

цаемости εm в максимуме в 1.5−2 раза превышают

эти параметры, полученные в двустадийном режиме,

что, очевидно, в первую очередь обусловлено меньшим

размером зерен в керамике, сформированной в режиме

TSS. Например, для случая стехиометричной модифи-

кации BSSPT самарием с x = 2.2mol.% в режиме SSS

величина диэлектрической проницаемости в максимуме

εm = 35644, а в режиме TSS при сохранении остальных

условий εm = 19385. Изучению влияния размера зерна

на диэлектрическую проницаемость пьезокерамики по-

священо много работ. Этот вопрос подробно рассмотрен

на примере титаната бария в обзоре [31], где обсуждают-
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Таблица 2. Влияние величины концентрации Sm на параметры керамики BSSPT

Параметр
TSS, стехиометричная модификация

Концентрация Sm (x), mol.%/wt.%

0/0 2.2/0.4618 3.8/0.797 5.6/1.1521

XRD a =3.995± 0.004�A a =3.979± 0.002�A a =3.988± 0.002�A a =3.992± 0.002�A

c =4.064± 0.004�A c =4.070± 0.003�A c =4.076± 0.002; c =4.070± 0.003�A

c/a = 1.017 ā = 4.009�A ā = 4.009�A ā = 4.018�A

c/a = 1.023 c/a = 1.022 c/a = 1.019

SEM Pb: 43.5 Pb: 40.5 Pb: 40.0 Pb: 43.5

Bi: 23.7 Bi: 21.7 Bi: 22.4 Bi: 23.4

Sm: 0.4 Sm: 0.9 Sm: 1.6

εm 16000 19385 18776.3 13078.87

Tm,
◦C 433 407 400.17 377.78

d33 , pC/N 525 536 275 270

ся основные механизмы этого влияния: внутреннее на-

пряжение [32], вклад 90◦ доменов [33] и вклад областей

межфазных границ зерен [34]. Показано, что, в зависи-

мости от размера зерна, керамику можно разделить на

3 группы: 1) группа с размером зерна от 10 до 50µm,

в которой возникающее при фазовом переходе внутрен-

нее напряжение снижается в результате двойникования

90◦ доменов; 2) группа с размером зерен < 10µм,

где ширина 90◦ доменов уменьшается пропорционально

квадратному корню из диаметра зерна [35], что можно

объяснить равновесием энергии упругого поля и энергии

доменной стенки. Чем меньше размер зерна, тем больше

вклад 90◦ доменных стенок в диэлектрические и упругие

постоянные. Когда размер зерна превышает 1µм, ши-

рина 90◦ домена уменьшается с уменьшением размера

зерна, что приводит к большей активности 90◦ доменных

стенок и к улучшению пьезоэлектрических свойств [36].
В третьей группе — в керамике с ультрамелким зер-

ном (< 1µm) — наблюдается увеличение вклада об-

ластей межфазных границ зерен с низкой величиной

диэлектрической проницаемости до значительного про-

цента [37]. В результате граница зерна увеличивается

по мере уменьшения размера зерна, поэтому движение

доменной стенки сильно ограничено, и внешний эф-

фект снижается. Таким образом, по мнению авторов,

оптимальные диэлектрические параметры должны на-

блюдаться в пьезокерамике со средним размером зерна

(> 1µм, но < 10µм), однако для конкретных составов

пьезокерамики, при сохранении описанной тенденции,

эти границы имеют конкретные значения, зависящие от

состава керамики и ее структуры.

Величина диэлектрической проницаемости в максиму-

ме εm и соответствующая ей температура Tm умень-

шаются с увеличением концентрации ионов Sm+ в со-

ставе керамики. На рис. 5 приведены температурные

зависимости диэлектрической проницаемости ε керами-
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410

420
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440
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, 
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Рис. 6. Зависимость температуры, соответствующей макси-

мальному значению величины диэлектрической проницаемо-

сти εm, от концентрации ионов Sm3+.

ки, синтезированной при стехиометричной модификации

в двустадийном режиме, для различных концентраций

иона Sm+ .

Из рис. 6, на котором представлена зависимость

температуры Tm от концентрации иона Sm+, следует,

что величина Tm практически линейно уменьшается

с увеличением концентрации Sm+.

Из данных таблиц 1 и 2 следует, что пьезомодуль d33

имеет величину ∼ 400 pC/N для керамики BSSPT, полу-

ченной в результате двустадийного режима спекания при

стехиометричной модификации и при введении избытка

самария после кальцинации.

Для варианта стехиометричной модификации макси-

мальное значение d33 достигает 536 pC/N, что превыша-

ет величину 525 pC/N для немодифицированного BSPT.
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4. Выводы

Исследованы варианты модификации керамики

0.36BiScO3-0.64PbTiO3 (BSPT) ионами Sm+: 1) сте-

хиометричная модификация, 2) сверхстехиометричная,

3) введение избытка Sm2O3 в немодифицированную

BSPT, прошедшую кальцинацию, в сочетании

с двумя режимами спекания (одностадийный,
двустадийный). Синтезирована керамика состава

0.36(Bi1−xSmx)ScO3-0.64PbTiO3 (BSSPT), где x = 0.022,

0.038, 0.056. Рентгенограммы синтезированныx образцов

BSSPT демонстрируют тетрагональную (P4mm)
структуру.

Исследование элементного состава всех вариантов

синтезированных образцов керамики BSSPT показывает

практически одинаковое содержание самария. Получен-

ные в данной работе результаты свидетельствуют о воз-

можности встраивания ионов Sm+ в решетку BSPT как

при сверхстехиометричном введении, так и при введении

после кальцинации.

Гистограммы распределения зерен по размерам, по-

строенные на основе полученных электронных изобра-

жений, подтверждают, что легирование ионами самария,

даже при его небольшой концентрации (x = 0.022),
оказывает значительное влияние на размер зерен. При

переходе от одностадийного режима спекания к двуста-

дийному наблюдается традиционное снижение размера

зерен, но это снижение ослаблено введением ионов са-

мария — в результате в случае одностадийного синтеза

модификация ионами Sm3+ ведет к снижению размера

зерен в 1.5−2 раза (от 10 до 5−7µm), а в случае

двустадийного синтеза наблюдается увеличение размера

зерна от 0.88 до 3.5−4.5µm, что соответствует зависи-

мости, полученной для немодифицированной керамики

BSPT [3].

Результаты измерения температурной зависимости ди-

электрической проницаемости демонстрируют снижение

как величины диэлектрической проницаемости в макси-

муме εm, так и значения соответствующей ей температу-

ры Tm при переходе от одностадийного к двустадийному

спеканию для различных способов введения ионов Sm+

в состав BSPT. Величина температуры Tm линейно

уменьшается с увеличением концентрации ионов Sm+.

Полученная в данной работе величина d33 достигает

536 pC/N, что превышает d33 = 525 pC/N для немодифи-

цированного BSPT.
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