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Микропровода на основе сплава PrDyFeCoB в поле 0−2Т отличаются наличием, как положительного, так

и отрицательного магнитокалорического эффекта (МКЭ) в диапазонах температур 300−340 и 200−240K, со-

ответственно. Низкотемпературный отрицательный МКЭ вызван переходом между ферромагнитным и спин-

стекольным состояниями сплава, а высокотемпературный МКЭ возникает при спин-переориентационном

переходе в результате конкуренции анизотропии формы и объемной анизотропии. Максимальная относи-

тельная мощность охлаждения, составила RCP= 0.007 J/g в поле 2 Т. Значения полученных критических

коэффициентов свидетельствуют о том, что при температуре перехода в спин-стекольное состояние,

спиновое упорядочение носит двумерный характер, описываемый моделью Изинга.
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1. Введение

Магнитокалорический эффект заключается в том, что

во время фазового спинового перехода, например, в

точке Кюри, ферромагнетик обменивается теплом с

окружающей средой в изотермическом режиме, либо

изменяется его температура в адиабатическом режиме

изменения магнитного поля [1,2]. Это явление может

быть использовано для создания холодильных машин

нового поколения, которые не требуют ядовитого га-

за, экологичны, а их КПД значительно выше, чем

у газовых машин. В другом предельном случае при

постепенном изотермическом увеличении или сниже-

нии величины внешнего магнитного поля, температура

образца сохраняется неизменной, и он находится в

равновесии с термостатом. При этом магнитная состав-

ляющая энтропии (1SM) изменяется, поскольку имеет

место обмен теплом с окружающей средой. Наиболь-

шее влияние на величину изменения энтропии оказы-

вают процессы, затрагивающие полностью беспорядоч-

ные состояния системы, такие как парамагнитные или

спин-стекольные состояния. Спин-стекольные фазы на-

блюдаются в аморфно-кристаллических микропроводах

PrDyFeCoB при переходе из ферримагнитного состоя-

ния [3]. Разориентация спинов и изменение обменно-

го взаимодействия между ними может быть причиной

магникалорического эффекта в сплаве PrDyFeCoB. Ана-

логичный эффект наблюдался в метамагнитных спла-

вах FeRh [4] и Ni2+xMn1−xSn [5]. Значительное число

научных работ посвящено изучению магнитокалориче-

ского эффекта в объемных образцах сплавов RE-TM-B

(RE — редкоземельные элементы, TM — переходные

металлы, B — бор) [6–12]. Исследования микромагнитов

проявляющих магнитокалорические свойства встречает-

ся в литературе реже. В микропроводах Pr1.3Nd0.7Fe17
и Pr1.5Nd0.5Fe17, обладающих ромбоэдрической струк-

турой типа 2−17, максимальное изменение магнитной

составляющей энтропии составляет 4.31 J/kg · K [13].
Температуру Кюри TC = 307K, близкую к комнатной, а

также высокое значение параметра относительной мощ-

ности охлаждения RCP= 487 J/g демонстрирует сплав

Pr1.3Nd0.7Fe17 [7].

Одним из направлений увеличения эффективности

магнитного охлаждения является создание внутренних

механических напряжений, влияющих на магнитострик-

ционную анизотропию и температурный интервал Кю-

ри. Установлено, что изменение ориентации подложки

пленок Gd, приводящее к возникновению механических

напряжений на границе раздела, оказывает существен-

ное воздействие на величину магнитокалорического эф-

фекта [14]. Можно предположить, что микропровода,

изготовленные путем быстрого затвердевания расплава,
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характеризуются высокими уровнями внутренних ме-

ханических напряжений, что способствует увеличению

МКЭ. Помимо прочего, микропровода привлекатель-

ны как рабочая среда магнитных холодильных машин

потому, что большая площадь поверхности массива

микропроводов обеспечивает интенсивный теплообмен

с окружающей средой [15–17]. Термодинамический под-

ход к вычислению магнитной части анизотропии за-

ключается в учете намагниченности M и скорости

ее изменения с температурой. Если бы производная

∂M/∂T зависела только от степени упорядоченности

спинов, МКЭ был бы одинаков во всех материалах

и зависел бы только от величины спина и плотно-

сти спинов атомов. Однако процесс перемагничивания

управляется обменными взаимодействиями и полем ани-

зотропии. Поэтому для величины МКЭ, выраженном

в виде изменения энтропии, существенно, как именно

упорядочены спины и каким обменным взаимодействи-

ем они связаны. Обменное взаимодействие в твердых

телах описывается существующими моделями Гейзен-

берга, Изинга и их многочисленными модификациями

для разной размерности. Поэтому феноменологическое

определение критических индексов магнитоупорядочен-

ных состояний и их переходов в разупорядоченные

состояния спинов важны для понимания физических

основ МКЭ.

Цель работы заключалась в сравнительном анализе

критических индексов спиновых состояний и магнитока-

лорического эффекта в поликристаллических микропро-

водах сплава PrDyFeCoB, а также в анализе изменения

магнитной части энтропии и величины относительной

мощности охлаждения.

2. Образцы и методика экспериментов

Микропровода PrDyCoFeB изготовлены методом экс-

тракции висящей капели расплава (ЭВКР), основанном
на быстром извлечении жидкого металла из подвешен-

ной капли путем ее контакта с острым краем быст-

ро вращающегося водо-охлаждаемого латунного дис-

ка. Под действием центробежных сил капля вытягива-

лась в тонкие микропровода, быстро затвердевающие

благодаря интенсивному охлаждению (∼ 106 K/s) [3,18]
(рис. 1). Полученные микропровода (рис. 1) имели длину

5−60mm и диаметр 30−300µm.

Измерение магнитного момента микропроводов в

СКВИД-магнитометре MPMS XL Quantum Design. Экс-

перимент проводился в диапазоне температур от 2

до 350K. Направление главной оси микропровода во

всех экспериментах совпадало с направлением внешнего

магнитного поля, поскольку именно такая конфигурация

образца обеспечивает максимальное изменение магнит-

ного момента во время спин-переориентационного пере-

хода, описанного в литературе [3]. Полевая зависимость

намагниченности M измерялась путем постепенного

300 µm

Рис. 1. SEM-изображения микропроводов PrDyCoFeB на под-

ложке, полученные в сканирующем электронном микроскопе.

увеличения внешнего магнитного поля при постоянной

температуре криостата.

Зависимость продольного магнитного момента от

температуры регистрировались двумя методами: 1) FC

(
”
Field-Cooling“, охлаждение в присутствии внешнего

магнитного поля); 2) ZFC (
”
Zero Field Cooling“, охла-

ждение в отсутствие внешнего магнитного поля). При

использовании метода FC образец сначала охлаждался

в сильном внешнем магнитном поле (0.5 T), а затем

нагревался в гораздо меньшем магнитном поле (0.01 T),
не разрушающем состояние, созданное термо-магнитной

предысторией. При этом производилось измерение маг-

нитного момента. При использовании метода ZFC обра-

зец предварительно охлаждали в отсутствие внешнего

магнитного поля, а затем также подвергали нагреванию,

измеряя магнитный момент в слабом внешнем магнит-

ном поле (0.01 T).

3. Экспериментальные результаты
и обсуждение

На рис. 2 представлен спектр рентгеновской ди-

фракции микропроводов PrDyCoFeB (рис. 2). Микро-

провода обладают поликристаллической структурой с

основной магнитной фазой 2-14-1, в которой варии-

руется доля празеодима y и доля железа x в соот-

ветствии с формулой (PryDy1−y )2(FexCo1−x)14B [19],
а также присутствует слабомагнитная фаза Лавеса

Dy(FexCo1−x)2.
На рис. 3 представлена полевая зависимость маг-

нитного момента m(H) микропровода, полученная при

изотермическом изменении внешнего магнитного поля
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Рис. 2. XRD спектры микропроводов PrDyCoFeB.
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Рис. 3. Полевая зависимость магнитного момента m микро-

провода PrDyCoFeB при температуре T = 300K.
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Рис. 4. Температурные зависимости намагниченности M мик-

ропровода PrDyCoFeB, записанные в поле 0.5 kOe в режимах

ZFC (Zero Field Cooling) и FC (Field Cooling).
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Рис. 5. Изотермические зависимости намагниченности M

микропровода PrDyCoFeB от внешнего магнитного поля, при-

ложенного вдоль оси микропровода, при различных темпера-

турах.

из области положительных значений в отрицательные и

обратно за ∼ 1 h. Этот режим развертки поля обеспечи-

вает релаксацию намагниченности и изотермическое на-

магничивание образца. Микропровода PrDyCoFeB обла-

дают характерной ферромагнитной петлей гистерезиса

с большим значением коэрцитивной силы HC ∼ 10 kOe

(рис. 3).

На рис. 4 представлены температурные зависимо-

сти намагниченности M(T ) микропровода записанные

в режимах FC и ZFC. Для микропровода PrDyCoFeB

зависимости FC и ZFC различаются в диапазоне тем-

ператур от 2 до 195K (рис. 4). При температуре

195K и выше наблюдается совпадение кривых FC

и ZFC, поэтому TB = 195K можно интерпретировать

как температуру блокировки намагниченности в мик-

ропроводе PrDyCoFeB, что указывает на присутствие в

микропроводе ферромагнитных нанозерен, включенных

в основную матрицу.

Для получения магнитной части энтропии бы-

ли получены серии полевых зависимостей намагни-

ченности M(H), записанные при постоянных тем-

пературах и медленной скорости развертки внеш-

него магнитного поля ∼ 0.0033 T/min. На рис. 5

представлены примеры зависимостей намагниченности

M(H) микропровода PrDyCoFeB в диапазоне темпе-

ратур 120−340K, поскольку данный диапазон охва-

тывает температуру блокировки намагниченности TB

и спин-переориентационный переход в микропроводе

PrDyCoFeB, обнаруженный ранее в [3].

Расчет изменений полной энтропии S системы ос-

нован на уравнении Максвелла, которое устанавливает

зависимость между изменениями энтропии и магнитного

Физика твердого тела, 2025, том 67, вып. 8
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Рис. 6. Температурная зависимость изменения магнитной

части энтропии микропровода PrDyCoFeB в различных маг-

нитных полях.

момента [20,21]:

(

∂S

∂H

)

T

=

(

∂M

∂T

)

H

. (1)

Из соотношения Максвелла можно определить ве-

личину магнитокалорического эффекта, определяемого

вкладом удельной магнитной энтропии 1SM [20,21]:

1SM(T, H) =

H
∫

0

(

∂M(T, H)

∂T

)

H

dH. (2)

Для упрощения обработки эмпирических данных урав-

нение (2) можно привести к дискретному виду, посколь-

ку во время эксперимента изменение температуры T и

внешнего магнитного поля H носят дискретный харак-

тер:

1SM(T, H) =
∑

i

M i+1(Ti+1, H) − M i(Ti , H)

Ti+1 − Ti

1H, (3)

где M i(Ti, H) — намагниченность при температуре Ti ,

M i+1(Ti+1, H) — намагниченность при температуре Ti+1.

На рис. 6 представлены температурные зависимости

изменения магнитной части энтропии микропровода

PrDyCoFeB в различных внешних магнитных полях.

В микропроводе PrDyCoFeB (рис. 6) наблюдаются

минимум (область температур 200−250K) и максимум

(область температур 300−340K) энтропии, что свиде-

тельствует о наличии отрицательного и положительного

магнитокалорического эффекта, соответственно. Причи-

ной появления положительного магнитокалорического

эффекта (поглощение тепла) может являться спин-

переориентационный переход в кристаллических вклю-

чениях тетрагональной фазы. Появление отрицательного

Магнитокалорические свойства микропроводов PrDyCoFeB

и Gd

Микропровод PrDyCoFeB (при H = 0.07 T)

При T = 207K −1Sm ∼ −0.4mJ/kg ·K RCP ∼ 0.04 J/g

При T = 317K −1Sm ∼ 0.35mJ/kg ·K RCP ∼ 0.007 J/g

Микропровод Gd (при H = 9T) [22]

При T = 292K −1Sm ∼ 16.9 J/kg ·K RCP ∼ 0.66 J/g

При T = 312K −1Sm ∼ 15.4 J/kg ·K RCP ∼ 0.28 J/g

магнитокалорического эффекта (выделение тепла) мо-

жет быть обусловлено спин-переориентационным пере-

ходом Альмейды−Таулеса между состоянием спинового

стекла и ферримагнитным состоянием, который наблю-

дается в той же области температур [3].

Площадь пика −1SM(T ) пропорциональна относи-

тельной мощности охлаждения RCP (Relative Cooling

Power):

RCP = −1Sm1T1/2, (4)

где 1T1/2 — полуширина максимума на зависимости

−1SM(T ). В таблице представлены расчетные значения

RCP для микропроводов PrDyCoFeB, а также для мик-

ропроводов Gd, полученные ранее в [22].

Значения RCP в микропроводах Gd на два порядка

превосходит RCP в микропроводах PrDyCoFeB. Это

различие может быть связано с различными типами

обменного взаимодействия, упорядочивающего спины в

микропроводах Gd и PrDyCoFeB.

Для определения геометрии обменного взаимодей-

ствия и спиновой структуры обычно применяют метод

Аррота, который основан на теории молекулярного

поля Вейсса [23,24]. Этот анализ основан на уравнении

Арротта−Ноакса:

(H/M)1/γ =
(T − Tc)

Tc

+

(

M

Mr

)1/β

, (5)

где γ и β — критические параметры, характеризую-

щие характер упорядочения спинов в ферромагнетике.

Построение полевых зависимостей намагниченности в

координатах M1/β(H/M1/γ) позволяет определить па-

раметры γ и β, и по их значениям делать заклю-

чения о двумерном, трехмерном или более сложном

упорядочении спинов. Для этого из серии полевых

зависимостей намагниченности находят ту зависимость,

которая спрямляется в упомянутых координатах, подго-

няя значения γ и β, необходимые для ее спрямления.

Данный метод помимо информации об упорядочении

спинов позволяет определять и температуру перехода,

при которой происходит спрямление в координатах

M1/β(H/M1/γ) с соответствующими критическими коэф-

фициентами.
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Полевые зависимости, представленные на рис. 5, были

приведены к координатам M1/β(H/M1/γ) с соответству-

ющими коэффициентами β = 2 и γ = 1 для модели

среднего поля, β = 0.325 и γ = 1.24, соответствующи-

ми модели Изинга, β = 0.365 и γ = 1.386 для модели

Гейзенберга. Полученные кривые Аррота представлены

на рис. 7−9 соответственно.

Значения полученных критических коэффициентов

свидетельствуют о том, что в микропроводах при тем-

пературе, при которой наблюдается спин-стекольное

состояние, спиновое упорядочение носит двумерный
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125 K
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Рис. 7. Кривые Аррота в температурном диапазоне

125−370K. Критические коэффициенты β = 2 и γ = 1 соот-

ветствуют модели среднего поля. Спрямления кривых при

использовании данной модели не происходит.
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Рис. 8. Кривые Аррота в температурном диапазоне

125−370K. Критические коэффициенты β = 0.325 и γ = 1.24

соответствуют модели Изинга. Спрямление кривых происходит

при температуре T = 236K.
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Рис. 9. Кривые Аррота в температурном диапазоне

125−370K. Критические коэффициенты β = 0.365 и γ = 1.386

соответствуют модели Гейзенберга. Спрямления кривых при

использовании данной модели не происходит.

характер, описываемый моделью Изинга. Значение тем-

пературы, при которой кривые Аррота спрямляются со-

ставляет ∼ 236K, что близко к значениям температуры

239K, где наблюдалось спин-стекольное состояние в

нашей работе [3].

4. Выводы

Микропровода на основе PrDyFeCoB характеризуются

широкой петлей магнитного гистерезиса с коэрцитив-

ной силой 10 kOe и наличием положительного и от-

рицательного магнитокалорического эффекта в области

температур 300−340 и 200−240K соответственно. По-

лученное в настоящей работе максимальное значение

относительной мощности охлаждения в микропроводах

PrDyFeCoB RCP= 0.007 J/g оказалось на два порядка

величины меньше, чем в микропроводах Gd, однако

магнитокалорический эффект в области комнатных тем-

ператур позволяет применять микропровода PrDyFeCoB

в качестве рабочего тела холодильника. Критические

коэффициенты указывают на то, что спиновые корреля-

ции в микропроводах PrDyFeCoB при температуре спин-

стекольного состояния имеют двухмерное поведение,

соответствующее модели Изинга.
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