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Наночастицы (НЧ) смешанных Zn-Co и Mg-Co ферритов с формулами Zn1−xCoxFe2O4 и Mg1−xCoxFe2O4,

где x = 0.0, 0.2 и 0.4, были синтезированы автотермическим методом с использованием цитратного прекур-

сора в качестве катализатора, инициирующего термическую реакцию. Рентгеновские дифракционные картины

показали, что НЧ всех составов представляют собой нанокристаллы пространственной группы Fd-3m.

Мёссбауэровская спектроскопия 57Fe показала, что все ионы Co2+ в Mg-Co-феррите занимают только

октаэдрические позиции, а ионы Fe3+ распределены приблизительно поровну между октаэдрическими

и тетраэдрическими позициями. В НЧ Zn-Co-феррита ионы Co2+ распределены приблизительно поровну

между этими позициями, а ионы Fe3+ локализованы преимущественно в октаэдрических позициях.

Магнитные измерения демонстрируют большие значения намагниченности насыщения в обоих случаях,

но высокую коэрцитивную силу Hc в первом случае и низкую — во втором. Впервые получены спектры

эффекта Фарадея и магнитного кругового дихроизма для таких смешанных ферритов, и проанализирована

их зависимость от природы немагнитного иона и концентрации кобальта. В частности, проведенный анализ

позволил однозначно связать интенсивный пик в ближней инфракрасной области со спин-разрешенным

электронным переходом в ионах Co2+, находящихся в октаэдрических позициях.

Ключевые слова: наноструктуры, магнитные свойства, эффект Мессбауэра, магнитный круговой дихроизм,
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1. Введение

Магнитооптические эффекты, обусловленные взаимо-

действием электромагнитного излучения с веществом,

сыграли важную роль в ранней истории электромагне-

тизма, и в настоящее время они остаются одним из

важнейших инструментов исследования материи [1–7].
В современной технике магнитооптические эффекты

применяются необычайно широко: от магнитооптиче-

ских сенсоров [8] и устройств управления световыми

лучами [9] до лазерной интерферометрии при изучении

гравитационных волн [10]. Магнитооптические эффекты

в ферритах-шпинелях исследуются довольно давно. В ос-

новном изучаются эффекты Керра в отраженном свете

на кристаллах и пленках и анализируются спектральные

зависимости недиагональной компоненты диэлектриче-

ского тензора ε′′xy [11–18]. Представленные в литературе

результаты и особенно их трактовка у разных авторов

значительно различаются. Это связано со сложным

распределением катионов металлов по кристаллическим

позициям в шпинельной структуре и, во многих случаях,

присутствием разновалентных катионов. Таким обра-

зом, выяснение природы магнитооптических эффектов

в ферритах-шпинелях остается актуальной задачей, ре-

шение которой представляет не только фундаменталь-

ный интерес, но также необходимо для прикладного

использования конкретных соединений.

Основным типом магнитоупорядоченных материа-

лов, используемых для создания магнитооптических

устройств, являются ферриты-гранаты [19–21], демон-

стрирующие высокую магнитооптическую активность

в видимой и ближней ультрафиолетовых (УФ) областях

спектра [19]. Ферриты-шпинели, содержащие кобальт,

характеризуются интенсивным пиком в спектре магнит-

ного кругового дихроизма (МКД, MCD) в ближнем

инфракрасном (ИК) диапазоне [22], центрированном

при 1.75 eV, что соответствует длине волны излучения

(710 nm) некоторых твердотельных лазеров (например,
ALP-710 nm, NKT Photonics, Denmark) и диодов, выпус-

каемых многими компаниями (например, BMI SURPLUS

Inc. США). Это может быть интересным для разработки

устройств фотоники ближнего ИК-диапазона. С этой
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точки зрения материал для использования в конкретных

устройствах должен обладать не только достаточно

большой магнитооптической активностью, но и опреде-

ленными магнитными свойствами, например, малой или

большой коэрцитивной силой для работы в различных

частотных режимах.

Настоящая работа посвящена исследованию магни-

тооптических свойств наноразмерных кристаллов се-

мейств Zn1−xCoxFe2O4 и Mg1−xCoxFe2O4 в зависимости

от распределения магнитных катионов по кристалли-

ческим позициям, полученного с помощью эффекта

Мёссбауэра. В этих семействах крайние члены ряда

ZnF2O4 являются нормальной шпинелью, в которой

ионы Zn2+ занимают тетраэдрические (A) позиции,

а ионы Fe3+ — октаэдрические (B) позиции; в MgF2O4

ионы Mg2+ и Fe3+ занимают оба типа позиций. CoF2O4

имеет структуру частично обращенной шпинели, где

ионы Fe3+ и Co2+ занимают как A-, так и B-позиции

с параметром обращенности от 0.6 до 0.9 [23,24]. В ре-

альной ситуации могут наблюдаться самые различные

распределения ионов, которые определяется многими

факторами. Прежде всего это соотношение между ра-

диусами ионов и радиусами пустот. Так, радиусы ионов

r(Fe3+) = 0.64�A, r(Co2+) = 0.74�A, r(Mg2+) = 0.72�A,

r(Zn2+) = 0.74�A; радиусы пустот в структуре MgF2O4

октаэдров — 0.72�A и тетраэдров — 0.58�A; в структуре

ZnF2O4, октаэдров — 0.7�A и тетраэдров — 0.65�A.

Большую роль играет электронная конфигурация иона:

например, ионы Zn2+ стремятся занимать тетраэдриче-

ские узлы, чтобы их 4sp-электроны могли образовать

ковалентную связь с 2p-электронами кислорода. Учет

электростатической энергии Маделунга приводит к то-

му, что энергетически выгодным может быть состояние,

когда ионы с наименьшим положительным зарядом по-

падают в окружение с 4-мя ионами кислорода, а ионы

с наибольшим положительным зарядом — с 6-ю ионами

кислорода, несмотря на соотношение радиусов иона

и пустоты. Эти и некоторые другие факторы приводят

к тому, что в реальности и двух-, и трехвалентные

ионы могут занимать как A-, так и B-позиции. В случае

нанокристаллов задача усложняется из-за их распределе-

ния по размерам, слоя разупорядоченной поверхности

с оборванными связями, влияния эффективной среды,

в которой они находятся, межчастичного взаимодей-

ствия и пр. Способ синтеза оказывает критическое

влияние на все эти факторы, а, следовательно, и на

распределение ионов по позициям и, соответственно, на

магнитные и магнитооптические свойства образцов. Для

синтеза нанокристаллов был выбран автотермический

метод с использованием цитратного прекурсора в ка-

честве катализатора термической реакции. В случае на-

нокристаллов наиболее информативным представляется

исследование эффектов в проходящем свете — эффекта

Фарадея (ЭФ) и МКД. При этом МКД наиболее удобен

для интерпретации, поскольку наблюдается только в об-

ластях полос поглощения исследуемых образцов.

2. Образцы и методики измерения

Наночастицы Zn1−xCoxFe2O4 и Mg1−xCoxFe2O4

с x = 0, 0.2 и 0.4 были синтезированы автотермиче-

ским методом с использованием цитратного прекурсора

в качестве катализатора термической реакции. В ка-

честве исходных компонент использовались в первом

случае гексагидраты нитрата цинка (zinc nitrate hex-

hydrate (Zn(NO3)2 · 6H2O)) и кобальта (cobalt itrate

hexa-hydrate (Co(NO3)2 · 6H2O)) и нонагидрат нитрата

железа (iron(III) nitrate nona-hydrate (Fe(NO3)3 · 9H2O)),
растворенные в 125ml дистиллированный воды. Во вто-

ром случае вместо гексагидрата нитрата Zn был исполь-

зован гексагидрат нитрата магния (Mg(NO3)2 · 6H2O).
В полученную смесь добавляли 5 g лимонной кислоты

и перемешивали при 80 ◦C, чтобы получить однород-

ный раствор. Раствор выдерживался при 80± 5 ◦C до

полного испарения воды и получения коричневого геля,

после чего возникает реакция авторазогрева с выбросом

красно-коричневого газа диоксида азота, в результате

которой образуется слипшийся порошок черного цве-

та, далее измельчаемый вручную с помощью пестика

в агатовой ступке. Измельченный порошок нагревался

до 700 ◦C в муфельной печи в течение 3 h, а затем

охлаждался естественным путем до комнатной темпе-

ратуры и снова размалывался. Таким образом, была

использована одна и та же технология изготовления НЧ

в обоих случаях.

Кристаллическая структура НЧ определялась по дан-

ным порошковой дифракции, с помощью порошкового

дифрактометра Bruker D8 ADVANCE (CuKα-излучение)
и линейного детектора VANTEC. Размер шага 22 состав-

лял 0.02◦, время счета — 2 s на шаг. Уточнение Рит-

вельда было выполнено с использованием программы

TOPAS 4.2 [25]. Уточнения были стабильными и давали

низкие R-факторы. Спектры эффекта Мёссбауэра 57Fe

были получены на спектрометре MC-1104Em в геомет-

рии пропускания с радиоактивным источником Co57(Rh)
при 300 и 4.2K. Зависимости намагниченности НЧ от

внешнего магнитного поля регистрировали с помощью

вибрационного магнитометра VSM 8604 (LakeShore
Cryotronics) в диапазоне температур от 300 до 80K

в магнитных полях до 15 kOe.

Магнитооптические эффекты в проходящем свете —

МКД и ЭФ измерялись с использованием специально

подготовленных образцов: прозрачных плоскопараллель-

ных пластин, между которыми фиксировалась смесь

НЧ с оптически прозрачным клеем на основе кремния

(Rayher, артикул № 3338100) с весовой пропорцией

0.5:100. Пластины помещались в изготовленное в ла-

боратории измерительное устройство [26] перпендику-

лярно направлениям распространения светового луча

и вектору внешнего магнитного поля. МКД измеряли

как разность оптической плотности (1D = D+ − D−)
образцов для световых волн, поляризованных вправо

(D+) и влево (D−) по кругу относительно направления

магнитного поля в спектральном диапазоне 1.2−3.8 eV
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в магнитном поле до 1.3 T при 300 и 80K. Точность

измерений составляла около 10−4, а спектральное раз-

решение — 20−50 cm−1 в зависимости от длины вол-

ны. ЭФ измеряли как поворот анализатора, компен-

сирующий изменение интенсивности светового потока,

прошедшего через образец при его перемагничивании.

Точность измерения ЭФ составила 0.1′ .

3. Результаты и обсуждение

3.1. Структура

Для всех образцов исследования рентгеновских ди-

фрактограмм было проведено ранее [27,28]. Было уста-

новлено, что НЧ имеют структуру кубической шпинели

пространственной группы Fd-3m. Средний размер кри-

сталлитов, оцененный по формуле Шеррера, в случае

Zn1−xCoxFe2O4 составлял 29−36 nm, а постоянная ре-

шетки уменьшалась от 8.443 до 8.412�A, по мере возрас-

тания концентрации кобальта, замещающего ионы Zn2+.

Радиусы Zn2+ и Co2+ в тетраэдрическом окружении

составляют 0.74 и 0.72�A соответственно. Уменьшение

постоянной решетки в данном случае может свидетель-

ствовать о вхождении ионов Co2+ в тетраэдрические

позиции, хотя бы частично. В случае с Mg1−xCoxFe2O4

средний размер кристаллитов был близок для всех

составов и составлял 56 ± 3 nm. Постоянная решетки

возрастала линейно от 8.387 до 8.3899�A, что, видимо,

обусловлено бо́льшим радиусом ионов Co2+ 0.745�A

в октаэдрической позиции по сравнению с Mg2+ с ра-

диусом 0.72�A, т. е. со вхождением Co2+ именно в эти

позиции.

3.2. Эффект Мёссбауэра

Спектры эффекта Мёссбауэра, зарегистрированные

при 300 и 4.2K, представлены на рис. 1. В случае

Zn1−xCoxFe2O4, при T = 300K в спектрах доминиру-

ют квадрупольные дублеты (рис. 1, a), что свидетель-

ствует о преимущественно парамагнитном состоянии

НЧ в этих образцах. Понижение температуры измере-

ния приводит к существенным изменениям в спектрах:

при 4.2K наблюдаются хорошо разрешенные сексте-

ты, характерные для магнитоупорядоченного состояния

(рис. 1, b); центральный дублет полностью исчезает. Эти

секстеты использованы для оценки распределения ионов

по кристаллическим позициям (см. таблицу).
Достаточно широкие ширины линий дублетов и пиков

секстета обусловлены перекрытием нескольких компо-

нент, возникающих из неэквивалентных состояний ионов

железа. Возможные неэквивалентные позиции железа

в образцах определялись путем расчета распределений

вероятностей магнитных сверхтонких полей. В резуль-

тате формировался предварительный модельный спектр,

параметры которого подгонялись под эксперименталь-

ный спектр путем варьирования всего набора сверх-

тонких параметров с использованием линейной аппрок-
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Рис. 1. Спектры эффекта Мёссбауэра наночастиц

Zn1−xCoxFe2O4 при 300 и 4.2K (a, b) и Mg1−xCoxFe2O4

при 300K (c).
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Данные спектроскопии эффекта Мёссбауэра. Распределение ионов по позициям.

Круглые скобки — тетраэдрические позиции, квадратные — октаэдрические позиции
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x = 0.4 (Fe0.26Zn0.60Co0.24) [Fe1.74Co0.26]O4 (Fe0.94Mg0.06) [Fe1.06Mg0.54Co0.4]O4
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Рис. 2. Полевые зависимости намагниченности образцов при T = 300 и 100K.

симации метода наименьших квадратов. Из таблицы

видно, что ионы Co2+ входят как в тетраэдрические,

так и в октаэдрические позиции с небольшим перевесом

в пользу октаэдров. Это согласуется с изменениями

параметра решетки по данным рентгеновской дифрак-

ции. Заметим, что, в отличие от классической ситуации

нормальной шпинели, часть ионов цинка локализована

здесь в октаэдрах и, соответственно, часть ионов Fe3+

переместилась в тетраэдрические позиции, что и обеспе-

чило обменное взаимодействие достаточной интенсивно-

сти для возникновения магнитного порядка при низкой

температуре.

Иная ситуация имеет место в случае Mg1−xCoxFe2O4,

хорошо разрешенные секстеты наблюдаются в спектрах

Мёссбауэра уже при комнатной температуре (рис. 1, c),
их обработка, аналогичная предыдущему случаю, пока-

зала, что ионы кобальта входят только в октаэдры (см.
таблицу). Это также согласуется с увеличением посто-

янной решетки по данным рентгеновской дифракции.

Следует отметить, что наша ситуация отличается от

результатов большинства работ по Mg1−xCoxFe2O4, где

наблюдалось распределение ионов Co2+ по обоим типам

позиций [29–31]. Таким образом, между распределением

магнитных ионов по кристаллическим позициям наблю-

дается принципиальная разница, что должно отразиться

на магнитных и магнитооптических свойствах этих двух

наборов НЧ.

3.3. Намагниченность

Как отмечено выше, распределение ионов в значи-

тельной степени предопределило магнитные свойства

образцов, которые иллюстрируются рис. 2. В соответ-

ствии с преимущественным расположением Fe3+ ионов

в одной из подрешеток, образец ZnF2O4 при 300K яв-

ляется парамагнитным (рис. 2, a, кривая 1). Однако при

100K на кривых намагничивания (рис. 2, a, кривая 2)
появляется заметный изгиб в области малых полей, сви-

детельствующий о возникновении магнитного порядка.

При введении Co2+ на кривых намагничивания появля-

ется изгиб, и при 100K становится заметным гистерезис

с очень маленькой коэрцитивной силой (рис. 2, b и c).
Для MgF2O4 при T = 300K кривые намагничивания

характеризуются насыщением и значительным гистере-

зисом (рис. 2, d), что типично для ферримагнитного

состояния, и при дальнейшем включении кобальта или
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понижении температуры намагниченность насыщения

и коэрцитивная сила резко возрастают (рис. 2, e и f).
При этом концентрационная зависимость намагничен-

ности соответствует таковой, рассчитанной по разности

магнитных моментов подрешеток, определенной с по-

мощью данных эффекта Мёссбауэра. При концентрации

ионов Co2+, соответствующей x = 0.4, намагниченность

насыщения при комнатной температуре достигает вели-

чины, достаточной для многих приложений, ∼ 20 emu/g

и 40 emu/g для Zn- и Mg-ферритов соответственно. При

этом коэрцитивная сила Hc в первом случае составляет

20Oe, во втором — Hc = 620 emu/g при комнатной

температуре.

3.4. Магнитооптические эффекты

Спектры МКД для образцов Zn1−xCoxFe2O4 показаны

на рис. 3. При комнатной температуре сигнал МКД

образца, не содержащего кобальт, находится на уровне

шума и незначительно превышает его при 100K. По-

скольку в этом образце нет ионов кобальта, крайне

слабый положительный сигнал можно связать только

с ионами Fe3+. При введении кобальта отношение сигнал

шум в этой области возрастает, форма спектра постепен-

но изменяется и возникает отрицательный пик, центри-

рованный вблизи 1.75 eV, с соотношением сигнал/шум

∼ 25 при 300K. В случае магниевого феррита интен-

сивные сигналы и хорошо разрешенные спектры и ЭФ

и МКД наблюдаются уже при комнатной температуре

(рис. 4, a). Основные особенности сосредоточены при

энергиях световой волны выше 2.5 eV, что характерно

для электронных переходов в ионах Fe3+. В отличие

от цинкового феррита, форма спектра и знак эффекта

не изменяются при понижении температуры измерения;

возрастает только интенсивность сигнала, как это по-

казано на вставке на рис. 4, a. При введении кобальта

форма спектров изменяется, и появляется интенсив-

ный отрицательный пик, центрированный вблизи 1.75 eV

так же, как это наблюдается в случае Zn-феррита.

Сравним полученные спектры МКД (θF) со спектра-

ми полярного θKp
) и экваториального эффектов Керра

(ЭКЭ) θKt
), которые описываются аналогичными урав-

нениями [5,32]

θF =
4π

λ

{

n

k2 + n2
ε′′xy −

k

k2 + n2
ε′xy

}

, (1)

θKp
=

B

B2 − A2
ε′′xy −

A

B2 − A2
ε′xy , (2)

θKp
= a(n, k, ϕ)ε′xy + b(n, k, ϕ)ε′′xy . (3)

Здесь ε′xy и ε′′xy — действительная и мнимая части

недиагональной компоненты тензора диэлектрической

проницаемости ε, n и k — показатели преломления

и поглощения, a, b. A и B — комбинации из диаго-

нальных компонент тензора ε и угла падения света

на образец ϕ (в случае ЭКЭ). Наночастицы ZnF2O4

содержит только один тип магнитных ионов. Как упоми-

налось выше, в объемных образцах единственные маг-

нитные ионы Fe3+ занимают октаэдрические позиции,

и сверх-обменное взаимодействие между ними обеспечи-

вает антиферромагнитное упорядочение при T < 10K.

Однако в случае НЧ часть ионов Fe3+ локализована

в тетраэдрических позициях (см. таблицу), что при

учете малого размера НЧ может привести к магнитному

упорядочению при низких температурах аналогично [33].
Перегиб кривой намагничивания при 100K (рис. 2, a)
свидетельствует об этом. При введении кобальта вместо

железа суммарное количество магнитных ионов в обоих

типах позиций изменяется незначительно, но сигнал

МКД в области энергий 2−4 eV, оставаясь слабым отри-

цательным при комнатной температуре, при охлаждении

образца резко возрастает (рис. 3, b), как и намагничен-

ность (рис. 2, b), и изменяет знак. Ионы Co2+ частично

занимают тетраэдрические позиции вместо немагнитных

ионов Zn2+ и магнитных Fe3+, как следует из мёсс-

бауэровских данных. Можно предположить, что из-за

значительно большего радиуса ионов Co2+ по сравнению

с ионами Fe3+ изменяются углы связи и возрастает

обменное взаимодействие, приводящее к повышению

температуры магнитного упорядочения и, следователь-

но, к возрастанию намагниченности и магнитооптиче-

ского сигнала при 100K. Наряду с изменением знака

МКД при понижении температуры и резким увеличени-

ем при этом абсолютной величины сигнала в области

2−4 eV появляется интенсивный отрицательный пик

МКД, центрированный при 1.75 eV, и s-образная особен-

ность вблизи 2.1 eV, очевидно связанные с переходами

в ионах кобальта. При возрастании концентрации Co

форма этих особенностей не изменяется, но возрастает

интенсивность сигала (рис. 3, c). В высокоэнергетиче-

ской части спектра также происходят изменения: вместо

набора перекрывающихся пиков одного знака остается

положительный асимметричный пик, центрированный

вблизи 2.7 eV, МКД проходит через ноль при 3.1 eV,

и появляются особенности противоположного знака при

больших энергиях световой волны. Эти изменения оче-

видно связаны с возбуждениями ионов Co2+.

В случае НЧ MgF2O4 интенсивный сигнал МКД на-

блюдается уже при комнатной температуре, спектр пред-

ставлен набором пиков отрицательного знака разной

интенсивности (рис. 4, a). Он практически полностью

совпадает со спектром ЭКЭ, представленном в [15].
При охлаждении образца знак эффекта не изменяется

(рис. 4, a), в отличие от ситуации с ферритом цинка,

возрастает только абсолютная величина эффекта, про-

порционально возрастанию намагниченности (рис. 2, a).
Наблюдается также хорошо разрешенный спектр ЭФ.

Центры тяжести пиков в спектре МКД соответствуют

точкам перегиба на кривых зависимости ЭФ от энергии

световой волны. В случае изолированного электрон-

ного перехода положения экстремумов МКД должны

соответствовать прохождению ЭФ через ноль [2]. Из-за

s-образной формы кривых ЭФ и их перекрывания в слу-
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Рис. 3. МКД-спектры образцов Zn1−xCoxFe2O4 при 300 и 100K.

чае электронных переходов, происходящих при близких

энергиях световой волны, могут наблюдаться отклоне-

ния от этого правила. В частности, кривые дисперсии

ЭФ в видимой области могут налагаться на
”
хвост“ дис-

персионной кривой ЭФ интенсивного перехода в УФ, что

аналогично сдвигу нулевой линии при измерении. Такая

ситуация имеет место в нашем случае. При введении

кобальта форма спектра изменяется (рис. 4, b), в прин-

ципе, похоже на изменения спектров Zn1−xCoxFe2O4.

При обеих использованных концентрациях Co наблюда-

ются положительный и отрицательный пики вблизи 2.5

и 3.4 eV соответственно. Интенсивность первого возрас-

тает, а второго уменьшается при увеличении концентра-

ции Co. Полностью аналогично НЧ Zn1−xCoxFe2O4, по-

является отрицательный пик при 1.75 eV с интенсивно-

стью, возрастающей по мере увеличения концентрации

Co. Кроме того, вблизи 2 eV формируется особенность,

аналогичная особенности, наблюдаемой при этой же

энергии в спектре цинкового феррита (рис. 3, b и c), но
значительно менее интенсивная.

Можно сравнить спектры МКД, представленные кри-

выми 2 на рис. 3, a и 4, a, со спектрами ЭKЭ поли-

кристаллического образца и монокристаллической плен-

ки MgF2O4 и монокристалла LiF2O4 [15], которые во

всех этих случаях совпадают (нам не удалось обна-

ружить в литературе данных по магнитооптике цин-

кового феррита). Они содержат четыре пика в об-

ласти 2−4 eV: один очень слабый при 2.3 eV и три

перекрывающихся пика при 2.6, 3.25 и 3.9 eV. Авто-

ры работы [15] приписали их одноионному перехо-

ду 6A1g(
6S) → 4Eg(

4G) и трем двух-экситонным пе-

реходам: 2[6A1g(
6S) → 4T1g(

4G)], [6A1g(
6S) → 4T1g(

4G)
+ 6A1g(

6S) → 4T2g(
4G)] и 2[6A1g(

6S) → 4T2g(
4G)] соот-

ветственно, где энергии переходов в состояния T1g и T2g

составляли 1.3 и 1.95 eV соответственно.

Эти типы переходов могут вносить основной вклад

в широкую структуру c положительным знаком в спек-

тре МКД цинкового феррита с x = 0.2, появляющуюся

при 100K (рис. 3, a), и такой же широкий спектр

в этой же области энергий, но отрицательного знака,

в случае магниевого феррита при x = 0, хорошо на-

блюдаемый уже при 300K. Положения особенностей

на шкале энергий довольно близки для обоих случаев

и для представленных в [15]: 2.5, 2.8, 3.08, 3.4 eV для Zn-

феррита и 2.3, 2.7, 2.98, 3.37, 3.88 eV для Mg-феррита.

Различие в величине эффектов в двух случаях согласует-
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ся с различием в величине и температурной зависимости

намагниченности. Различие в знаке МКД можно связать,

следуя ряду авторов (например, [34,35]), со скосом

магнитных подрешеток в НЧ MgF2O4, обусловленным

влиянием поверхностных слоев с оборванными связями.

Такое предположение подкрепляется сходством спектра

МКД (рис. 4, a) со спектром мнимой части недиаго-

нальной компоненты тензора g ′′ слабого ферромагне-

тика FeBO3 [36], где наблюдались особенности при

энергиях 2.8, 3.0 и 3.4 eV. Введение Co разрушает эту

структуру, и вклад ионов Fe3+ в сигнал МКД быстро

уменьшается.

В работах, посвященных изучению магнитооптиче-

ских эффектов в феррите кобальта, особенности в спек-

трах ЭКЭ или ε′′xy , наблюдались вблизи энергий 1.8

и 2.2 eV и были идентифицированы как разрешенный

по спину переход между уровнями, расщепленными

в кристаллическом поле (CF) в тетраэдрически коорди-

нированном ионе Co2+: 4A2 →
4T2 и как интервалентный

переход с переносом заряда [Co2+]t2g → [Fe3+]t2g соот-

ветственно [11,14,15,37]. Аналогичным образом, особен-

ности в спектре МКД наночастиц феррита кобальта

при энергиях 1.81 и 2.25 eV были идентифицированы

в [38]. Однако в свете представленных здесь данных по

эффекту Мёссбауэра первый из обсуждаемых пиков при

1.75 eV нельзя связывать с переходами в ионах Co2+,

локализованных в тетраэдрах, поскольку все ионы Co2+

занимают в нашем случае только октаэдрические по-

зиции. Вообще говоря, идентификация CF электронных

переходов в ионах Co2+ с электронной конфигурацией

3d7 встречает существенные трудности, так как они

происходят при близких значениях энергии световой

волны как в тетраэдрической, так и в октаэдрической

координации [39]. Ценную информацию можно получить

из сравнительного исследования оптических или магни-

тооптических спектров и спектра эффекта Мёссбауэра,

что и реализовано в настоящем случае. Соответствую-

щее сравнение позволяет однозначно связать пик МКД

вблизи 1.75 eV с разрешенным по спину переходом
4T1g → 4A2g в ионах Co2+ в октаэдрических позици-
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ях. Полоса поглощения, обусловленная этим перехо-

дом, наблюдалась в работах, посвященных соединениям,

в которые ион Co2+ входил только в октаэдрическую

координацию (например, [40,41]). Такая интерпретация

согласуется с тем фактом, что интенсивность сигнала

МКД при этой энергии возрастает пропорционально

концентрации кобальта в образце.

Положения пиков в спектрах ЭКЭ или МКД в пленках

или наночастицах феррита кобальта при более высоких

энергиях световой волны и их идентификация различа-

ются у разных авторов. Звягин и соавторы [42] исследо-
вали эффект Керра в полярной геометрии и определяли

спектральные зависимости недиагональных компонент

тензора диэлектрической проницаемости. Они связали

максимум в спектре ε′′ при 2.64 eV с межподрешоточ-

ным переходом (ISCT) между ионами Fe3+, занимающи-

ми тетра- и октаэдрические позиции (Fe3+)t2 → [Fe3+]t2g

и особенность при 3.41 eV с интервалентным пере-

ходом (IVCT) между двух- и трехвалентными ионами

в одинаковых позициях [Co2+]t2g → [Fe3+]eg . Фонтейн

и соавторы [11] также соотнесли интенсивный поло-

жительный пик в спектре ε′′xy в CoF2O4, наблюдаемый

ими при 2.6 eV, с ISCT-переходом (Fe3+)t2 → [Fe3+]t2g .

Особенность около 3.55 eV была связана ими также

с ISCT-переходом [Fe3+]eg → (Fe3+)t2. Такая интерпре-

тация представляется реальной, но возникают некоторые

вопросы. Действительно, особенность вблизи 2.6 eV вид-

на в спектрах МКД всех представленных образцов (от-
личие знака МКД в случае магниевого феррита обсужда-

лось выше), т. е. она может быть обусловлена переносом

заряда между Fe3+ ионами в различных позициях. Со-

отношение между концентрацией ионов Fe3+ в октаэд-

рических и тетраэдрических позициях при введении ко-

бальта изменяется крайне мало, особенно в случае Mg-

феррита (около 2%), а интенсивность пика при 2.6 eV

возрастает значительно. В то же время, интенсивность

отрицательного пика около 3.5 eV уменьшается при

возрастании концентрации Co, что противоречит обеим

моделям [11,42]. Вероятно, в рассматриваемой области

спектра реализуются и электронные переходы другой

природы, и наблюдаемый спектр МКД обусловлен рядом

перекрывающихся пиков, в том числе имеющих разные

знаки. В [14,15] исследован ЭКЭ в поликристаллических

образцах CoF2O4, представленный двумя широкими пи-

ками положительного знака, центрированных при ∼ 2.35

и 4.5 eV. Первый из этих пиков авторы [14] привязали

к разрешенным по спину CF-переходам в ионах Co2+

в октаэдрах 4T1g(
4F) → 4A2g , |

4T1g(
4F) → 4T1g(P). Учет

этих переходов приведет к возрастанию сигнала МКД

при увеличении концентрации кобальта, что и наблюда-

ется в нашем случае (сравнить рис. 3, b и c, а также

рис. 4, b и c). Однако переход 4T1g(
4F) → 4A2g однознач-

но привязан к отрицательному пику при 1.75 eV. Второй

максимум в спектре ЭКЭ, появляющийся при введении

кобальта, может привести к уменьшению сигнала МКД

при энергиях, больших 3.5 eV, показанному на рис. 3, c

и 4, c. Учет этого перехода не дает возможности сде-

лать выбор между механизмами МКД, предложенными

в [11,42]. Таким образом, интерпретация МКД спектров

ферритов весьма сложна. Более детальное исследование

МКД в разбавленных ферритах кобальта в настоящее

время продолжается.

4. Заключение

Наночастицы Zn1−xCoxFe2O4 и Mg1−xCoxFe2O4

с x = 0, 0.2 и 0.4 синтезированы автотермическим ме-

тодом с использованием цитратного прекурсора. Со-

гласно данным рентгеновской дифракции, наночасти-

цы представляют собой кубические нанокристаллы со

структурой шпинели пространственной группы Fd-3m.

Несмотря на использование одинаковых технологиче-

ских условий, распределение ионов Co2+, Fe3+, Zn2+

и Mg2+ по тетраэдрическим и октаэдрическим позици-

ям в кристалле резко различно, что играет ключевую

роль в формировании магнитных и магнитооптических

свойств синтезированных наночастиц. В случае Zn-

феррита ионы Zn2+ занимают в основном тетраэдриче-

ские позиции (при введении кобальта — только тетра-

эдрические), Fe3+ — преимущественно октаэдрические,

а Co2+ распределен примерно поровну между обоими

типами позиций. Совершенно другая картина наблю-

дается для Mg1−xCoxFe2O4. Ионы Mg2+ в основном

локализованы в октаэдрах, Co2+ — только в октаэдрах,

а ионы Fe3+ распределены приблизительно поровну

между октаэдрическими и тетраэдрическими позициями.

Таким образом, распределение магнитных ионов Co2+

и Fe3+ по кристаллографическим позициям в случае

феррита магния соответствует их распределению в иде-

альной инвертированной феррошпинели.

Магнитные свойства образцов также резко различны.

При x = 0 наночастицы Zn1−xCoxFe2O4 демонстрируют

чисто парамагнитное поведение при комнатной темпе-

ратуре; при введении кобальта наблюдаются полевые

зависимости намагниченности, характерные для магни-

тоупорядоченного состояния, при этом величины намаг-

ниченности значительны, а коэрцитивные силы малы.

Все образцы Mg1−xCoxFe2O4 являются ферримагнитны-

ми с высокими значениями намагниченности насыщения

и коэрцитивной силы.

Сигнал МКД в наночастицах ZnF2O4 при комнатной

температуре находится на уровне шума, но при 100K

появляется зашумленный сигнал, что свидетельствует

об образовании магнитоупорядоченной фазы в соответ-

ствии с магнитными данными и низкотемпературным

мёссбауэровским спектром. Спектры МКД наночастиц

сильно изменяются при введении кобальта и росте его

концентрации. В случае феррита магния четкие спектры

МКД и ЭФ наблюдаются при x = 0 при комнатной тем-

пературе, они отличаются от спектра МКД цинкового

феррита. По мере увеличения концентрации кобальта
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формы спектров МКД обеих систем становятся все

более близкими друг к другу.

Особое внимание уделено пику МКД с центром при

1.75 eV. Длина волны, соответствующая центру тяжести

этого пика, точно совпадает с длиной волны излуче-

ния (710 nm) некоторых лазеров, например, ALP-710 nm

производства NKT Photonics (Дания), и светодиодов,

производимых многими мировыми компаниями, напри-

мер, BMI SURPLUS Inc. (США). Это обусловило инте-

рес исследуемых наночастиц к использованию в фотон-

ных устройствах. Проведенный анализ показал, что этот

пик обусловлен разрешенным по спину электронным

переходом в кристаллическом поле в октаэдрически

координированных ионах Co2+.
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