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одноионной анизотропией
”
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1. Введение

Состояние спинового нематика является одним из

наиболее необычных состояний магнитоупорядоченных

структур. Стандартное магнитное упорядочение связано

с нарушением симметрии относительно обращения вре-

мени [1,2], тогда как в спиновом нематике спонтанное

нарушение вращательной симметрии определяется муль-

типольными средними, т. е. разноузельными (или одно-

узельными) спиновыми корреляторами [3–22]. Обычно
свойства спиновых нематиков исследуются в случае

отсутствия внешнего поля. При этом, возникает вопрос:

а будет ли устойчива нематическая фаза при включе-

нии внешнего магнитного поля? Влияние магнитного

поля на устойчивость нематических состояний активно

исследуется в магнетиках со спином магнитного иона

S = 1/2, в которых нематическое состояние характе-

ризуется разноузельными спиновыми средними [23–34].
Однако влияние магнитного поля на фазовые состояния

негейзенберговского магнетика с биквадратичным об-

менным взаимодействием приводит к новым, необычным

результатам. Так, в работе [35] было показано, что как

в изотропном, так и в спиновом нематике с одноионной

анизотропией, реализуется устойчивое нематическое со-

стояние. При этом внешнее магнитное поле оказывает

существенное влияние на геометрический образ этого

состояния в спиновом пространстве. Так, в отсутствие

внешнего поля геометрическим образом нематического

состояния в спиновом пространстве является одноосный

эллипсоид (бесконечно тонкий диск), тогда как включе-

ние поля трансформирует квадрупольный эллипсоид в

двухосный эллипсоид. Кроме того, в работе [36] было

показано, что в ферромагнетике с большим биквадра-

тичным обменным взаимодействием и одноионной ани-

зотропией типа
”
легкая плоскость“, наличие внешнего

магнитного поля, перпендикулярного базисной плоско-

сти, приводит к реализации
”
угловой“ нематической

фазы, в которой квадрупольные двухосные эллипсоиды

ориентированы под некоторым углом к оси квантования,

т. е приводит к реализации нового фазового состояния —

”
угловой“ нематической фазе. Возникновение такого

состояния связано с наличием легкоплоскостной анизо-

тропии, приводящей к эффекту квантового сокращения

спина [37], и внешнего магнитного поля. Возникает во-

прос: будет ли энергетически выгодна реализация такой

”
угловой“ нематической фазы в легкоосном негейзен-

берговском ферромагнетике, находящемся во внешнем

поле, ортогональном легкой оси?

Таким образом, целью данной работы является иссле-

дование фазовых состояний негейзенберговского ферро-

магнетика с большим биквадратичным обменным вза-

имодействием, и одноионной анизотропией типа
”
лег-

кая ось“, находящемся во внешнем магнитном поле.

2. Негейзенберговский анизотропный
ферромагнетик в продольном
магнитном поле

В качестве исследуемой модели рассмотрим ферро-

магнетик со спином магнитного иона S = 1, в обменном

гамильтониане которого учитывается как гейзенбергов-

ский обмен, так и биквадратичный. Кроме того, исследу-

емая система обладает одноионной анизотропией типа

”
легкая ось“, и находится во внешнем магнитном поле,

параллельном оси легкого намагничения. Гамильтониан

такого ферромагнетика можно представить следующим
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образом:

H = −H
∑

n

Sz
n − β

∑

n

(Sz
n)

2

− 1

2

∑

n1 6=n2

[

J(n − n′)(SnSn′) + K(n − n′)(SnSn′)
2
]

,

(1)
где J,K — константы билинейного и биквадратичного

обменных взаимодействий, β > 0 — константа одно-

ионной анизотропии типа
”
легкая ось“, H — внешнее

поле в энергетических единицах. В дальнейшем будем

рассматривать только случай большого биквадратич-

ного взаимодействия K > J, а также предполагается,

что рассмотрение проводится при низких температурах,

т. е. T → 0.

Прежде чем рассматривать влияние внешнего поля

на состояние анизотропного спинового нематика, рас-

смотрим поведение системы при H = 0 [14]. Как было

показано в работах [12,16,17,19–21], в случае большого

биквадратичного обмена в системе реализуется немати-

ческое состояние, описываемое следующими параметра-

ми порядка:

〈Sz 〉 = cos 2α, q0
2 = 3〈(Sz )2〉 − S(S + 1),

q2
2 = 〈(Sx )2〉 − 〈(Sy )2〉 = sin 2α,

где α — параметр обобщенного u−v преобразова-

ния [38], который в случае отсутствия внешнего поля

может принимать значение ±π/4. Таким образом, в

рассматриваемом случае параметры порядка, определя-

ющие нематическое состояние, имеют следующий вид:

〈Sz 〉 = 0, q0
2 = 1, q2

2 = ±1. (2)

Из соотношений (2) следует, что

〈(Sz )2〉 = 1, 〈(Sx )2〉 = 1, 〈(Sy )2〉 = 0,

если α = π/4; или

〈(Sz )2〉 = 1, 〈(Sx )2〉 = 0, 〈(Sy )2〉 = 1,

если α = −π/4. Таким образом, геометрический образ

в спиновом пространстве нематического состояния ани-

зотропного спинового нематика с анизотропией
”
лег-

кая ось“ является одноосный эллипсоид (бесконечно
тонкий диск), ориентированный либо в плоскости ZOX

(α = π/4), либо в плоскости ZOY (α = −π/4). При

этом, энергия основного состояния в обоих случаях

одинакова и равна

Egs = −K0

3
− β,

а векторы основного состояния имеют вид:

|ψgs〉 =
|1〉 + | − 1〉√

2
(α = π/4);

|ψgs 〉 =
|1〉 − | − 1〉√

2
(α = −π/4).

Следовательно, нематическое состояние при H = 0 яв-

ляется вырожденным по ориентации квадрупольных эл-

липсоидов в спиновом пространстве относительно оси

легкого намагничения, т. е. оси OZ.

При включении внешнего поля, параллельного оси

анизотропии, возникает ненулевой магнитный момент,

т. е. 〈Sz 〉 6= 0, причем величина его меньше номинально-

го значения спина магнитного иона. Энергия основного

состояния в этом случае равна:

Egs = −K0

3
− β − H cos 2α +

1

2
(K0 − J0) cos

2 2α, (3)

а параметры порядка, при этом, принимают вид:

〈Sz 〉 = cos 2α, q0
2 = 1, q2

2 = sin 2α, (4)

где

〈(Sx )2〉 =
1

2
(1 + sin 2α);

〈(Sy )2〉 =
1

2
(1− sin 2α); 〈(Sz )2〉 = 1. (5)

Поскольку мы рассматриваем поведение системы при

низких температурах (T → 0), то выражение для энер-

гии основного состояние (3) определяет плотность сво-

бодной энергии исследуемого магнетика. Анализ плот-

ности свободной энергии показывает, что

cos 2α = 〈Sz 〉 =
H

K0 − J0

,

т. е. при полях меньше критического (Hc < K0−J0) в

спиновом нематике с легкоосной одноионной анизо-

тропией реализуется так называемый осевой нематик,

геометрическим образом которого в спиновом про-

странстве, как следует из соотношений (5), является

двухосный эллипсоид, главная ось которого параллельна

оси OZ, т. е. параллельна как направлению внешнего

поля, так и оси легкого намагничения.

При полях, больших Hc , параметры порядка принима-

ют следующий вид:

〈Sz 〉 = 1, q0
2 = 1, q2

2 = 0,

и магнетик переходит в парамагнитное состояние.

3. Негейзенберговский анизотропный
ферромагнетик в поперечном
магнитном поле

Рассмотрим теперь поведение легкоосного спинового

нематика в поперечном внешнем поле, перпендикуляр-

ном оси легкого намагничения. Для определенности

будем предполагать, что магнитное поле параллель-

но оси OZ, а легкоосная анизотропия ориентирована

по оси OX . Как и ранее предполагается, что спин
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магнитного иона S = 1, температуры низкие, а константа

биквадратичного обменного взаимодействия превосхо-

дит константу билинейного обмена, т. е. K > J . Гамиль-

тониан магнетика, в этом случае, имеет вид:

H = −H
∑

n

Sz
n − β

∑

n

(Sx
n)

2

− 1

2

∑

n1 6=n2

[

J(n − n′)(SnSn′) + K(n − n′)(SnSn′)
2
]

.

(6)
Включение внешнего поля приведет к возникновению

ненулевого магнитного момента, ориентация и величина

которого будут определяться конкуренцией внешнего

поля и материальных параметров системы, в частно-

сти — одноионной анизотропии. Можно ожидать, что в

такой геометрии возможна реализация так называемой

”
угловой“ нематической фазы, как это наблюдается

в легкоплоскостном спиновом нематике (см., напри-

мер, [36]). Следовательно, можно предположить, что воз-

никающий под действием магнитного поля магнитный

момент ориентирован под некоторым углом θ к оси OZ.

Для определенности будем считать, что магнитный мо-

мент лежит в плоскости ZOX. С помощью унитарного

преобразования

H (θ) = UHU+, U(θ) =
∏

n

exp[iθSy
n ]

перейдем в собственную систему координат на каждом

узле, в которой ось OZ совпадает с направлением

среднего магнитного момента. В собственной системе

координат энергия основного состояния, совпадающая

в случае низких температур с плотностью свободной

энергии, имеет вид:

Egr,st = −H cos θ cos 2α +
1

2
(K0 − J0) cos

2 2α

+
β

2
cos2 θ(1− sin 2α). (7)

Здесь, как и ранее, α — параметр u−v преобразования.

Минимизируя плотность свободной энергии (7) по

параметрам θ и α получим связь этих параметров с

материальными параметрами магнетика:

cos θ =
H

β

cos 2α

1− sin 2α
, sin 2α = − H2

2β(K0 − J0)
. (8)

Используя соотношения (8), а также учитывая, что в

собственной системе координат cos 2α = 〈S〉, получим

〈Sz 〉 =

(

β

H
+

H

2(K0 − J0)

)

cos θ. (9)

Из анализа выражения (9) следует, что среднее значение

магнитного момента убывает с ростом величины магнит-

ного поля, поскольку первое слагаемое убывает с ростом

поля как гипербола (при фиксированных β, θ), а вто-

рое — растет как линейная функция. Такое поведение

среднего значения магнитного момента свидетельствует

о том, что в данном случае, в отличие от легкоплос-

костного нематика [36],
”
угловая“ нематическая фаза

не реализуется, а возникает осевая нематическая фаза,

в которой ненулевой магнитный момент параллелен

внешнему полю, а параметры порядка определяются со-

отношениями (4). При этом, средний магнитный момент

с ростом поля растет, а квадрупольный эллипсоид, как

следует из явного вида одноузельных корреляторов

〈(Sz )2〉 = 1,

〈(Sy )2〉 =
1

2
(1− sin 2α), 〈(Sx )2〉 =

1

2
(1 + sin 2α),

трансформируется в двухосный эллипсоид, главная ось

которого ориентирована по магнитному полю.

Энергия основного состояния в этой фазе равна:

Egr,st = −H cos 2α +
1

2
(K0 − J0) cos

2 2α +
β

2
(1− sin 2α).

(10)
а волновой вектор основного состояния имеет вид:

|ψgr,st〉 = cosα|1〉 + sinα| − 1〉.
Поскольку мы рассматриваем систему при низких

температурах, то энергия основного состояния (при
T → 0) определяет плотность свободной энергии, ми-

нимизация которой по параметру позволяет получить

следующее уравнение на этот параметр:

H sin 2α − (K0 − J0) sin 2α cos 2α +
β

2
cos 2α = 0.

После несложных математических преобразований это

уравнение можно привести к виду:

(

H

K0 − J0

)2/3

+

(

β

2(K0 − J0)

)2/3

= 1. (11)

Уравнение (11) в общем случае описывает замкнутую

кривую (астроиду) в переменных

H

K0 − J0

,
β

2(K0 − J0)

(см. [1]). В рассматриваемом случае уравнение (11)
описывает лишь часть астроиды, поскольку все пара-

метры, входящие в (11) положительны, т. е. это часть

астроиды, лежащая в первом квадранте. Кроме того,

уравнение (11) позволяет определить поле перехода

между осевой нематической фазой, характеризуемое

параметрами порядка (4), и парамагнитным состоянием,

характеризуемом параметрами порядка

〈Sz 〉 = 1, q0
2 = 1, q2

2 = 0.

Величина критического поля определяется следующим

образом:

Hc = (K0 − J0)

[

1−
(

β

2(K0 − J0)

)2/3]3/2

.
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Фазовая диаграмма спинового нематика с анизотропией
”
лег-

кая ось“ в поперечном магнитном поле.

Таким образом, при H < Hc реализуется осевое немати-

ческое состояние, а при H > Hc — парамагнитная фаза.

Графически это можно представить следующим образом

(см. рисунок).

4. Заключение

В чем же причина столь разительного отличия, каза-

лось бы, очень близких моделей: спиновый нематик с

анизотропией
”
легкая плоскость“ в поперечном поле, и

спиновый нематик с анизотропие
”
легкая ось“, также в

поперечном поле?

Чтобы понять возникающие различия в поведении

магнетиков с одноионной анизотропией
”
легкая ось“

и
”
легкая плоскость“ во внешнем магнитном поле,

обратимся к рассмотрению ситуации в отсутствие внеш-

него поля. Как показано в [36], при H = 0 и большом

биквадратичном обменном взаимодействии в магнетике

реализуется нематическое состояние с 〈S〉 = 0. При

этом, одноионная анизотропия типа
”
легкая плоскость“

ориентирует одноосный квадрупольный эллипсоид (бес-
конечно тонкий диск) в базисной плоскости, т. е. со-

здает эффективную анизотропию квадрупольных пара-

метров порядка. При включении внешнего магнитного

поля, перпендикулярного базисной плоскости, возникает

конкуренция между эффективной анизотропией и маг-

нитным полем, что приводит к реализации
”
угловой“

нематической фазы. В рассматриваемом в данной работе

случае, т. е. спинового нематика с анизотропией
”
легкая

ось“, при H = 0 также реализуется нематическое состоя-

ние с 〈S〉 = 0, но квадрупольный эллипсоид (бесконечно
тонкого диска) формируется в плоскости либо XOZ,

либо в плоскости ZOY . Внешнее поле, включенное

перпендикулярно оси анизотропии оказывется лежащим

в плоскости одноосного эллипсоида, а это означает, что

отсутствует конкуренция между эффективной анизотро-

пией квадрупольных параметров порядка и внешним

полем. Следовательно, при включении внешнего поля,

ориентированного параллельно оси OZ, возникает нену-

левой магнитный момент, ориентированный по магнит-

ному полю (0 < 〈Sz 〉 < 1), и квадрупольный двухосный

эллипсоид ориентируется так, что его главная ось парал-

лельна также оси OZ. Таким образом, в рассматривае-

мом нами случае, при H 6= 0 и большом биквадратичном

обменном взаимодействии,
”
угловая“ нематическая фаза

не реализуется, а возникает состояние осевого нематика.

Таким образом, можно утверждать, что симметрийные

свойства спинового нематика с анизотропией
”
легкая

ось“, и спинового нематика с анизотропией
”
легкая

плоскость“ являются различными.
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[31] N. Büttgen, K. Nawa, T. Fujita, M. Hagiwara, P. Kuhns,

A. Prokofiev, A.P. Reyes, L.E. Svistov, K. Yoshimura,

M. Takigawa. Phys. Rev. B 90, 134401 (2014).
10.1103/PhysRevB.90.134401

[32] D. Flavián, S. Hayashida, L. Huberich, D. Blosser,

K.Yu. Povarov, Z. Yan, S. Gvasaliya, A. Zheludev. Phys. Rev.

B. 101, 224408 (2020).
https://doi.org/10.1103/PhysRevB.101.224408
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