
Физика твердого тела, 2025, том 67, вып. 8

05,07

Микроструктура, кристаллическая структура, диэлектрические

и пьезоэлектрические свойства твердых растворов SrBi2−xNdxNb2O9

(x = 0.0, 0.1, 0.2, 0.3)

© С.В. Зубков 1, И.А. Паринов 2, А.В. Назаренко 3, Ю.В. Прус 4,5

1 Научно-исследовательский институт физики, Южный федеральный университет,

Ростов-на-Дону, Россия
2 Институт математики, механики и компьютерных наук им. И.И. Воровича, Южный федеральный университет,

Ростов-на-Дону, Россия
3 Федеральный исследовательский центр Южный научный центр Российской академии наук,

Ростов-на-Дону, Россия
4 Всероссийский научно-исследовательский институт по проблемам гражданской обороны

и чрезвычайных ситуаций МЧС России,

Москва, Россия
5 Академия государственной противопожарной службы МЧС России,

Москва, Россия

E-mail: svzubkov61@mail.ru

Поступила в Редакцию 8 июля 2025 г.

В окончательной редакции 28 июля 2025 г.

Принята к публикации 31 июля 2025 г.

Методом высокотемпературной твердофазной реакции синтезирован новый ряд твердых растворов

семейства фаз Ауривиллиуса-Смоленского SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3). Рентгеноструктурный
анализ показал, что все синтезированные соединения являются однофазными и имеют структуру семейства

фаз Ауривиллиуса-Смоленского (АСФ) с параметрами, близкими к орторомбической элементарной ячейке,

соответствующей пространственной группе A21am. Для синтезированного соединения измерены темпера-

турные зависимости относительной диэлектрической проницаемости ε/ε0 и тангенса угла потерь tg σ на

различных частотах, а также пьезомодуль d33; исследованы микроструктура и петли гистерезиса.
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тура, диэлектрическая проницаемость ε/ε0 .
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1. Введение

В 1949 г. при изучении системы Bi2O3−TiO2 В. Аури-
виллиус установил образование оксида Bi4Ti3O12 со
структурой типа перовскита [1]. Спустя десять лет

группа Г. Смоленского [2] открыла сегнетоэлектриче-
ские свойства в Bi2PbNb2O9, относящегося к этому
семейству соединений, после чего начался интенсивный
этап исследования данных соединений. В 1961, 1962 гг.

Е.С. Суббарао получил около десяти новых соедине-
ний, почти все они оказались сегнетоэлектриками [3,4].
В связи с этим, по праву, эти соединения можно назвать
Ауривиллиуса−Смоленского фазами (АСФ) [5].
В настоящее время синтезированы сотни АСФ. Они

образуют большое семейство висмутсодержащих слои-
стых соединений типа перовскита, химический состав
которых описывается общей формулой Bi2Am−1BmO3m+3.

Кристаллическая структура АСФ включает чередующие-
ся слои [Bi2O2]

2+, разделенные m перовскитоподобными
слоями [Am−1BmO3m+1]

2−, где A — позиции заняты
ионами большого радиуса: Na+ [6], K+ [7], Ca2+ [8],
Sr2+ [9], Ba2+ [10], Pb2+ [11], Y3+ [12,13], Bi3+, Ln3+

(La [14], Nd [15], Sm [16], Gd [17], Ce [18], Tb [19],
Dy [20], Ho [21], Er [22], Eu [23]) и Ac, Th, Pr

(актиниды), которые демонстрируют додекаэдрическую

координацию. B -позиции внутри кислородных октаэдров

заняты высокозаряженными (≥3+) катионами малого

радиуса: Fe, Cr, Mn, Co, [24–26], а также Cu2+ [27],
Mg2+ [28], Ti4+, W6+ [29], Nb5+ [30], Ta5+ [31].

Значение m определяется числом слоев перовскита

[Am−1BmO3m+1]
2−, расположенных между флюоритопо-

добными слоями [Bi2O2]
2+ вдоль псевдотетрагональной

оси c [32], и может быть целым или полуцелым [33]
числом в диапазоне m = 1−5. Замещения атомов в

позициях A и B существенно влияют на электрические

свойства АСФ. Имеют место большие изменения диэлек-

трической проницаемости и электропроводности; кроме

того, температура Кюри TC также может изменяться в

широких пределах. Таким образом, изучение катионза-

мещенных соединений АСФ имеет большое значение

при разработке материалов различного технического

назначения.

Изучение микроструктуры и электрических свойств

соединений семейства АСФ SrBi2Nb209 (SBN) обуслов-

лено сообщением о высоком пьезомодуле d33 ≤ 20 pC/N,

низких диэлектрических потерях [34–38] и его пре-

восходных свойствах отсутствия усталости [39–44], что
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делает это соединение основой для создания новых

пьезоматериалов.

Замена в узлах Sr ионами Ca в керамике SBN привела

к увеличению TC, что важно для высокотемпературных

резонаторных приложений [45,46]. Однако замена Bi3+

в слоях Bi2O2 некоторыми редкоземельными ионами,

такими как La3+ или Pr3+, приводит к сдвигу TC в сторо-

ну более низких температур [47–49]. Было обнаружено,

что поведение керамики SBN, легированной неодимом,

приводит к переходу от обычного сегнетоэлектрика

к сегнетоэлектрику релаксорного типа из-за введения

ионов Nd3+ в слои Bi2O2 [50,51]. В [52] сообщалось,

что керамика SrBi1.8Pr0.2Nb2O9 продемонстрировала ре-

лаксорное поведение дисперсии частоты. Замена Bi3+

ионов на Nd3+ привела к смещению температуры Кюри

TC в сторону более низких температур, уменьшению

остаточной поляризации и уменьшению коэрцитивного

поля.

В данной работе изучено влияние замещения ионов

Bi3+ ионами Nd3+ на кристаллическую и микрострукту-

ру, диэлектрические, сегнетоэлектрические и пьезоэлек-

трические свойства синтезированных соединений АСФ

SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3).
Представленное иследование продолжает серию работ

поизучению кристаллической структуры, микрострукту-

ры, температуры Кюри TC, диэлектрических и сегнето-

электрических свойств различных соединений семейства

АСФ при допировании ионами неодима [53–56].

2. Эксперимент

Поликристаллический ряд АСФ SrBi2−xNdxNb2O9

(x = 0.0, 0.1, 0.2, 0.3) был синтезирован твердофаз-

ной реакцией соответствующих оксидов Bi2O3, SrCO3,

Nd2O3, Nb2O5. Все исходные соединения были марки

ЧДА. После взвешивания по стехиометрическому со-

ставу и тщательного измельчения исходных оксидов с

добавлением этилового спирта прессованные образцы

прокаливали при температуре 860−870 ◦C в течение 4h.

Обжиг образцов проводился в лабораторной муфельной

печи на воздухе. Затем образец дробили, многократно

измельчали и прессовали в таблетки диаметром 9mm

и толщиной 1.0−1.5mm с последующим финальным

синтезом при температуре 1140 ◦C (2 h).
Рентгенограмма регистрировалась на дифрактометре

Rigaku Ultima IV с Cu-рентгеновской трубкой. Излу-

чение Cu Kα1, α2 было выделено из общего спектра

с помощью Ni-фильтра. Рентгенограмму измеряли в

диапазоне углов 2θ от 10◦ до 60◦ с шагом сканирования

0.02◦ и экспозицией (время регистрации интенсивности)
4 s на точку. Анализ профиля рентгенограммы, опреде-

ление положения линий, их индексация (hkl) и уточ-

нение параметров элементарной ячейки проводились с

помощью программы PCW 2.4 [57].
Для измерения диэлектрической проницаемости и

электропроводности на плоские поверхности исследу-

емых образцов наносились электроды с использова-

нием Ag-пасты, отожженной при температуре 720 ◦С

(20min.). Температурные и частотные зависимости

диэлектрических характеристик измерялись с помо-

щью измерителя иммитанса Е7-20 в диапазоне частот

от 100 kHz до 1МHz и в интервале температур от

комнатной до 500 ◦С.

Для измерения пьезомодуля d33 образец подвергался

поляризации в масляной бане при 150 ◦С при напряже-

нии 45−65 kV/cm в течение 30min.

Петли гестерезиса P−E были исследованы с помощью

схемы Сойера−Тауэрана стенда для изучения пьезома-

териалов в сильных электрических полях
”
Петля“ [58].

Измерения проводили при комнатной температуре с

максимальным напряжением ∼ 5 kV, помещая образец в

масло. Значение пьезомодуля, исследуемых соединений,

находили из соотношения с известным значением пьезо-

модуля эталонного образца кварца Х-среза.

Снимки микроструктуры поверхностей получены с

помощью сканирующего электронного микроскопа Carl

Zeiss EVO 40 (Германия) в ЦКП ЮНЦ РАН. Иссле-

дование проводилось на поперечных сколах изготов-

ленной керамики без предварительной механической

обработки. Дополнительный проводящий слой также не

применялся. Изображения получены в режиме высо-

кого ускоряющего напряжения (EHT = 20 kV), зондо-

вый ток составлял Iprobe = 25 pA, а рабочее расстояние

W D = 7.5−8mm.

3. Результаты и их обсуждение

Порошковые рентгенограммы всех исследованных

твердых растворов SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2,

0.3) соответствуют однофазным АСФ с m = 2 и не

содержат дополнительных рефлексов. Эти соединения

изоструктурны известному перовскитоподобному оксиду

АСФSBN. Все пики были проиндексированы на ос-

нове орторомбических ячеек, связанных с простран-

ственной группой A21am, которая соответствует файлу

JCPDS под номером № 49-0617 (№ 36 в программе

PCW 2.4). На рис. 1, a представлены экспериментальные

порошковые рентгенограммы исследуемых соединений

SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3). Пик (115) на

рентгенограмме рис. 1, a показывает самую высокую

интенсивность в плоскости (11(2m + 1)). Этот типичный
дифракционный пик соответствует слоистой структу-

ре SBN [59].
Видно, что степень ориентации 00l керамики остается

постоянной и не зависит от концентрации Nd3+, что

характерно при спекании в течение короткого (t < 25 h)
времени. На рис. 1, b) видно, что пик (115) незначитель-

но смещается в сторону большего угла при увеличе-

нии x от 0.0 до 0.3.

3.1. Микроструктура

Микроструктура исследованных участков керамики

SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3) при концентра-

циях x до 0.2 идентична (рис. 2); присутствуют хаотично,

Физика твердого тела, 2025, том 67, вып. 8
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Рис. 1. Рентгеновские дифрактограммы керамики SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3) в диапазоне 2θ, 10◦−60◦.
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Рис. 2. Микроструктуры и распределение размеров зерен при x = 0.0 (а) и x = 0.1 (b).

но плотно расположенные кристаллиты, размеры кото-

рых варьируются от ∼ 0.8µm до ∼ 5.0µm. В основном

зерна имеют однородную внутреннюю структуру, но в

некоторых областях, где они расположены под углом

к плоскости спайности, наблюдаются неоднородности,

представляющие собой стопку слоев субмикронной тол-

щины (рис. 2, выделенные области и стрелки). Несмотря

на то, что при x = 0.1 распределение размеров немного

шире и менее однородно, чем при x = 0.0, их формы ап-

проксимируются практически идентичными логнормаль-

Физика твердого тела, 2025, том 67, вып. 8



1486 С.В. Зубков, И.А. Паринов, А.В. Назаренко, Ю.В. Прус

Grain size, µm
0 2 4 6 8

5

25

10

15

20

30

40

35

45

0

C
o

u
n

ts
, 

%

Ave. size ~3.22 µm
x  = 0.2

10

5 µm

Рис. 3. Микроструктура и распределение размеров зерен

при x = 0.2.

ными кривыми и 90% размеров зерен лежат в диапазоне

от 1.0µm до 3.0−3.5µm, при почти одинаковом среднем

значении размера около 2.1µm.

При x = 0.2 структура керамики становится менее

плотной с образованием трещин и пор, частично техно-

логического и диффузионного характера (рис. 2). Зерна
также срастаются хаотично, а их внутренняя структу-

ра становится в основном неоднородной (почти везде

заметна слоистая структура). При этом зерна выглядят

значительно крупнее и толще. Их максимальный размер

достигает ∼ 11µm, а средний рост составляет около

34%, в отличие от зерен в образцах с концентрациями

x = 0.0−0.1.

Анализ распределения размеров кристаллитов при

x = 0.2 также показывает логнормальное поведение, ко-

торое менее однородно и имеет
”
более тяжелый хвост“,

чем при x = 0.0−0.1. Здесь 90% размеров находятся

в более широком диапазоне 1−5µm. Средний размер

зерна составляет около 3.2µm.

Микроструктурный анализ показал, что скол керамик

проходил преимущественно по зернам, а сама керамика

имела высокую плотность. Зерна в основном плоские,

неправильной формы и с достаточно четко выраженны-

ми границами. Это свидетельствует об анизотропном ро-

сте кристаллитов, характерном для семейства АСФ. Ло-

кализованные поры могут иметь как технологическую,

так и диффузионную природу, которая, по-видимому, ме-

няется с ростом концентрации. Также с ростом концен-

трации средний размер зерен увеличивается от ∼ 2.1µm

до ∼ 3.2µm, что может влиять на физико-механические

свойства материалов.

3.2. Кристаллическая решетка

По данным рентгеновской дифракции были опре-

делены параметры элементарной ячейки (постоянные
решетки a0, b0, c0 и объем V ), которые приведены

в табл. 1.

Также в табл. 1 приведены параметры орторомби-

ческой δb0 и тетрагональной δc ′ деформации; сред-

ний тетрагональный период a t , средняя толщина од-

ного перовскитоподобного слоя c ′; c ′ = 3c0 /(8 + 6m),
a t = (a0 + b0)/(2

√
2) — среднее значение тетраго-

нального периода; a0, b0, c0 — периоды решетки;

δc ′ = (c ′ − a t)/a t — отклонение ячейки от кубической

формы, то есть удлинение или сокращение кубической

формы; δb0 = (b0 − a0)/a0 — орторомбическая дефор-

мация [60,61]. Полученные параметры элементарной

ячейки исследованного образца SrBi2Nb2O9: a = 5.55�A,

b = 5.48�A, c = 25.261�A [62].

Толеранс фактор t был введен В.М. Гольдшмид-

том [63], как геометрический критерий, определяющий

степень устойчивости и искажения кристаллической

структуры:

t = (RA + RO) /
[

√
2
(RB + RO)

]

, (1)

где RA и RB — радиусы катионов в положениях A

и B , соответственно; RO — ионный радиус кислорода.

Значения толеранс-фактора t для исследуемого образца

приведен в табл. 2. В настоящей работе толеранс-

фактор рассчитывался с учетом таблицы ионных ра-

диусов Р.Д. Шеннона [64] для соответствующих коор-

динационных чисел (КЧ) (O2− (КЧ = 6), R2−
O = 1.40�A;

Nb5+ (КЧ = 12), RNb5+ = 0.64�A. Шеннон не привел

ионный радиус Bi3+ для координации с КЧ = 12. По-

этому его значение определялось из ионного радиуса

с КЧ = 8 (RBi3+ = 1.17�A), умноженного на коэффици-

ент аппроксимации 1.179, тогда для Bi3+ (КЧ = 12)
RBi3+ = 1.38�A.

3.3. Диэлектрические свойства

На рис. 4 представлены зависимости относительной

диэлектрической проницаемости ε/ε0 и тангенса угла

диэлектрических потерь tg δ от температуры для АСФ

SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3) при значениях

частоты от 100 kHz до 1MHz для керамик, спеченных

при температурах 1140 ◦С.
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Таблица 1. Параметры элементарной ячейки a0, b0, c0, V , a t — параметр тетрагонального периода, c′ — высота октаэдра по оси

c, δc′ — отклонение от кубической формы, δb0 — ромбическое искажение

Compounds a0,�A b0,�A c0,�A V ,�A3 c′,�A a t ,% δc′, % δb0,%

SrBi2Nb2O9 551 5.5 25.16 762.474 3.774 3.893 −3.08 −0.20

SrBi1,9Nd0,1Nb2O9 5.539 5.518 25.161 769.025 3.7742 3.909 −3.40 −0.37

SrBi1,8Nd0,2Nb2O9 5.542 5.515 25.355 774.935 3.80 3.909 −2.80 −0.48

SrBi1,7Nd0,3Nb2O9 5.538 5.512 25.308 772.538 3.796 3.906 −2.80 −0.47

Таблица 2. Толеранс фактор t-factor, температура Кюри TC, относительная диэлектрическая проницаемость ε/ε0 и тангенс

потерь tg δ, измеренные на частоте 100 kHz, пьезомодуль d33 .

№ Compounds t-factor T, ◦C ε/ε0 tg δ d33 , pC/Н

1 SrBi2Nb2O9 0.971 421 646 0.4 7.6

2 SrBi1.9Nd0.1Nb2O9 0.969 375 386 0.15 7.0

3 SrBi1.8Nd0.2Nb2O9 0.968 318 275 0.022 7.8

4 SrBi1.7Nd0.3Nb2O9 0.966 235 204 0.012 5.1
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Рис. 4. Температурные зависимости относительной диэлектрической проницаемости ε/ε0(T ) (а, b) и tg δ для SrBi2−xNd−xNb2O9

(x = 0.0, 0.1, 0.2, 0.3).

Макимум диэлектрической проницаемости, соответ-

ствующий фазовому переходу
”
сегнетоэлектрик−пара-

электрик“ (TС), отчетливо наблюдается для ряда твер-

дых растворов SrBi2−xNdxNb2O9 (x = 0.0, 0.1) на ча-

стотах от 100 kHz до 1МHz. Для этого ряда можно

также наблюдать соответствие минимума tg δ в обла-

сти температуры Кюри TC. Для ряда SrBi2−xNdxNb2O9

(x = 0.2, 0.3) наблюдается размытый максимум ε/ε0(T ),
температуру максимума которого можно отнести

к температуре фазового перехода TC. Для tg δ у

SrBi2−xNdxNb2O9 в интервале x = 0.2−0.3 не наблюда-

ется привычной зависимости температуры Кюри TC и

минимума значения tg δ (см. рис 4). Кроме того, наблю-

дается смешение минимума tg δ в сторону больших зна-

чений в интервале x = 0.0−0.3 от температуры фазово-

го перехода, то может быть более наглядным признаком

релаксорных свойств SrBi2−xNdxNb2O9 (x = 0.2, 0.3) по

сравнению со смещением ε/ε0(T ) в сторону больших

значений температуры с ростом частоты (рис. 4, a).
Релаксорные свойства для SrBi2−xNdxNb2O9 в интервале

x = 0.2−0.3 связаны с тем, что ионы неодима замещают

ионы висмута не в перовскитоподобных слоях, а в

флюритоподовных висмут-кислородных (Bi2O2)
2+ слоях.

С ростом концентрации ионов Nd3+ в ряде синтезиро-

ванных соединений SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2,

0.3) наблюдается уменьшение значения тангенса угла

Физика твердого тела, 2025, том 67, вып. 8
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Рис. 4 (продолжение).

диэлектрических потерь tg δ почти в 30 раз (см. табл. 2)
для SrBi2−xNdxNb2O9 (x = 0.3) по сравнению с нелеги-

рованным SBN. Легирование состава SrBi2−xNdxNb2O9

(x = 0.0, 0.1, 0.2, 0.3) ионами Nd3+ приводит к умень-

шению тангенса угла диэлектрических потерь, что сви-

детельствует об уменьшении концентрации кислородных

вакансий.

На рис. 5 показано изменение температуры фазового

перехода TC при увеличении концентрации Nd3+(x). Тем-
пература Кюри TC уменьшается практически линейно

с увеличением допанта Nd. Возможной причиной этого

может быть уменьшение искажения октаэдра NbO6 для

керамики SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3). Ион

Bi3+, находящийся в перовскитоподобном слое, имеет
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Рис. 5. Зависимость температуры Кюри TC от концентра-

ции Nd3+.

одну неподеленную пару электронов 6s2 [65]. Кроме

того, некоторые исследования указали, что для АСФ

флюоритоподобные слои Bi2O2 и перовскитоподобные

слои находятся под напряжением растяжения и сжа-

тия [66,67] и, соответственно, при замене на ион мень-

шего радиуса перовскиподобные слои будут испытывать
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Рис. 6. Петли гистерезиса P−E для образцов SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3).

меньшие силы напряжения, что приведет к уменьшению

искажения кислородного октаэдра.

Кроме того, неподеленые пары электронов имеют

тенденцию занимать больше места, чем электроны свя-

зывающей пары, согласно теории отталкивания элек-

тронных пар валентной оболочки. Таким образом, сте-

пень искажения октаэдров NbO6 уменьшится, когда Bi3+

заменяются на Nd3+, у которых нет неподеленных пар

электронов.

Этим можно объяснить уменьшение температуры фа-

зового перехода с одновременным уменьшением объема

кристаллической ячейки V ,�A3 (таблица 1).

3.4. Сегнетоэлектрические свойства

На рисунке 6 представлена зависимость P(E) для ря-

да соединений SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3).
Полученнные петли гистерезиса P−E не доситают на-

сышения и имеют вытянутую форму. Как можно видеть,

при частичной замене Bi на Nd, остаточная поляри-

зованность Pr и коэрцитивная сила E f практически

не изменились для SrBi2−xNdxNb2O9 − (0.0, 0.1, 0.2) по

сравнению с SBN. Для SrBi2−xNdxNb2O9 (x = 0.3) оста-

точная поляризованность Pr стала больше в 2.5 по

сравнению с SBN.
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Рис. 7. Зависимость lnσ от 104/T для SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2, 0.3) на частоте 100 кHz.

3.5. Энергия активации

Энергия активации Ea определялась из уравнения

Аррениуса:

σ = (A/T ) exp [−Ea/(kT )] (2)

где σ — электропроводность, k — постоянная Больцма-

на, A — постоянная, Ea — энергия активации. Типичная

зависимость lnσ (σ -проводимость) от 104/T (на часто-

те 100 kHz), которая использовалась для определения

энергии активации Ea , показана на рис. 7 для АCФ

SrBi2Nb2O9. Соединения SrBi2−xNdxNb2O9 (x = 0.0, 0.1)
имеют две области температур, в которых энергия

активации Ea существенно различается по значению.

В области низких температур электропроводность опре-

деляется, преимущественно, примесными дефектами с

очень низкими энергиями активации порядка одной

сотой электрон-вольта. Энергия активации собствен-

ной проводимости E1 ∼ 0.6−0.8 eV. Для соединений

SrBi2−xNdxNb2O9 (x = 0.2, 0.3) рис. 7, b, c таких значе-

ний активации нет, так как температуры фазового пе-

рехода SrBi2−xNdxNb2O9 (x = 0.2, 0.3) лежат в области

температур примесной проводимости (см. рис. 5).

4. Выводы

В данной работе были выполнены исследования элек-

трофизических свойств перовскитоподобных оксидов

АСФ для твердых растворов SrBi2−xNdxNb2O9 (x = 0.0,

0.1, 0.2, 0.3).

Керамика была изготовлена традиционным методом

твердофазной реакции. Рентгенограммы проиндексиро-

ваны как орторомбические A21am для всех твердых

растворов АСФ.

Легирование Nd3+ для состава SrBi2−xNdxNb2O9

(x = 0.2, 0.3) уменьшило тангенс угла диэлектрических

потерь в 30 раза по сравнению с нелегированным SBN.

Пьезомодуль соединения SrBi2−xNdxNb2O9 (x = 0.2)
выше, чем у SBN, что связано с уменьшением кислород-

ных вакансий.

Минимальная температура Кюри TC = 235 ◦C для

синтезированного ряда была получена для соединения

SrBi2−xNdxNb2O9 (x = 0.3).

Легирование Nd3+ снижало температуру Кюри TC

с ростом x . С ростом концентрации Nd3+ усилива-

лись релаксорные свойства SrBi2−xNdxNb2O9 (x = 0.0,

0.1, 0.2, 0.3).
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Для синтезированного ряда соединений

SrBi2−xNdxNb2O9 (x = 0.0, 0.1, 0.2) остаточная поляри-

зованность Pr и коэрцитивная сила E f оставались

практически неизменными. При этом, для соединения

SrBi2−xNdxNb2O9 (x = 0.3) остаточная поляризован-

ность Pr увеличилась почти в 2.5 раза по сравнению

с нелегированным соединением SBN при практически

неизменной коэрцитивной силы E f .
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