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Combining data sets in data analysis with interval uncertainty
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A practical example of the use of interval statistics methods in the field of nuclear physics is given. It is shown

how these methods allow combining two samples in an optimal way. The correction parameter of one of the samples

is a multiplicative correction for the background in one of the spectral regions. From physical considerations, the

background value estimate is known. The working tool in optimization is a combined measure of consistency,

which ensures the receipt of external and internal estimates simultaneously. Optimality in this case implies an

increase in the size of the maximum clique in the interval sample. Thus, the volume of data for calculating the

constant of the fundamental nuclear reaction increases, which makes the calculation result more reliable. Based
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Introduction

This paper continues the subject of application of interval

analysis and interval statistics for processing a physical

experiment [1,2]. The fundamentally methodological issues

of the interval statistics are considered in the book [3].

The task of determining the constant value is a basic task

of data analysis. The constant magnitude means a value

which is invariable during measurements. This category

includes the world physical constants, which in today’s

natural science are considered to be invariable across the

entire Universe both in space and time. Thus, the range of

applications is extended from the most routine situational

measurements to measuring the fundamental characteristics

of the matter.

The constant value is evaluated using various measures of

the location and scattering. The theory&probability mathe-

matical statistics applies both parametric estimates based on

theoretical distributions and non-parametric estimates, for

example, the median methods, the Tukey estimates, etc.

In case of interval data, one’s own specific methods

for sample evaluation are applied [3]. Further, we shortly

represent necessary notions of data analysis with interval

uncertainty. Then we will consider the task of determining

one of the parameters of the nuclear physics basic reaction -

radiation capture of neutron by a proton (np → dγ). Based
on the previously published data, we propose a method of

extending the data sample using the structures [1,2].

1. Theoretical foundations of interval
analysis

1.1. Basic definitions

The interval analysis is a mathematics section which

describes objects by means of intervals. The present work

uses definitions, methodology and terminology from [4] and
a modern system of designation from [5]. Since the interval

arithmetic has real arithmetic as a limit for, it is necessary

to distinguish designations of objects of various kinds of the

arithmetic in writing. In this regard, all the interval objects

- scalars, vectors, matrices, are denoted in bold font [5].
The interval [a, b] of the real axis R is a set of all

the number located between the specified number a, b,
including a, b, i.e.:

[a, b] := {x ∈ R|a ≤ x ≤ b}, (1)

while a and b are endpoints of the interval [a, b].
The other basic definitions of the interval analysis are

contained in the work [1,2]. The interval analysis is

described in detail in the book by S.P. Shary
”
Finite-

dimensional interval analysis“ [4].
We provide necessary information from a relatively new

section of data analysis - interval statistics or data analysis

with interval uncertainty [3]. The key in this approach

includes the notions a covering measurement and a covering

sample. The covering measurement means such interval

measurement which contains a true value of the measured
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quantity. The covering samples will be a sample in which

the covering measurements predominate. In practice, it

is not always possible to check the covering notion since

the true value of the quantity is not often known. For

practical purposes, the covering requirements is replaced

by the requirement of sample compatibility which is used

hereinafter.

1.2. Information set and measurement status

When solving specific problems with samples of the

interval data, the most important role is given to the notion

of the information set. In accordance with [3], it means

a set of values of quantities interesting to us, which are

compatible with the measurement data within the selected

model of their processing. As applied to the measurement

of the constant quantity, compatibility of the data with the

model can be expressed as conditions for relationship of the

model parameters intervals � and the interval of the specific

measurement xi . The methods of finding � may be different

(mode, median), while the relationship may be intersections

or an inclusion minimum. For the different measurements,

the different variants of the relationship of � and xi may

occur.

The papers [4,5] introduced the notions which character-

ize influence of separate measurements on the information

set. We will use the terms: internal, external and boundary

measurements. In accordance with [4,5], the measurement

is internal if it does not change the information set. The

internal measurements of xi are compatible with the model

of � and do not contain the boundaries by the model δ�:

� ∈ x i , δ� 6∈ x i .

Thus, these measurement
”
cover“ the model

”
with a

margin“ and their influence on the model is almost zero.

The boundary measurement contain at least one boundary

of the information set. It is these measurements that for

the information set. The external measurements change the

information set.

It may seem that the internal measurements are not

significant at all, which, in our opinion, is not quite

equitable. After considering the practical example, we

will additionally discuss the terms of description of a

measurement status.

2. Practical example

2.1. Source data

The data on circular polarization of γ-quanta np → dγ
with polarized neutrons are important for nuclear physics

and nucleosynthesis. The most accurate measurements of

the circular polarization which were carried out in the weak

interaction laboratory of the academician V.M. Lobashev

in RAS PNPI in 1988−1991 are given in the work [6].
The experiment is detailed in the papers [7–10].Specifically,

0n H2

γ

1 2 3

NaI ADC

Figure 1. Setup for measuring the circular polarization of gamma-

quanta in the reactionnp → dγ .

the paper [7] represents a system of neutron spin control,

while the paper [8] describes a solid parahydrogen target

and a unit for production of pure parahydrogen, the

paper [9] — describes the experiment recording system

and the work [10] — describes a study of influence of the

magnetic field on the gamma-quantum detector.

Fig. 1 shows a simplified diagram of the unit for

measuring the circular polarization of the gamma-quanta

in the reaction np → dγ [7–10]. The beam of cold

polarized neutrons of the PWR-M belonging to RAS PNPI

was delivered to the solid parahydrogen target 1. The

gamma-quanta of the reaction np → dγ and the energy

of 2.22MeV. The polarization was measured using the

analyzer 2 designed as a magnetized ferromagnetic with

the absorption length of about 70mm. The efficiency

of the analyzer was about 5%. The gamma quanta

were recorded using a scintillation NaI(Tl) detector of the

diameter of 150× 100mm. The ADC electron recording

system made it possible to record in three energy ranges:

in the photopeak of 2.22MeV, in the high-energy range of

Compton scattering and in the background range with the

energy above 2.22MeV.

The theoretical calculations were carried out in terms

of nuclear physics [11], which in a wide context discusses

deutron physics, and the work [12], which provides details

of calculation of the circular polarization, and in terms of

nucleosynthesis during the Big Bang [13]. Moreover, thin

effects in the deutron structure can affect analysis of pre-

cision measurements of Aγ -asymmetry when capturing the

nonpolarized neutrons [14,15]. The present experiment uses

methods of the works [6,8,9], but with the nonpolarized

neutrons.

Measurement of the circular polarization of the γ-

quanta is based on dependence of their Compton scattering

section on polarization of electrons in the magnetized

ferromagnetic. The experimental effect was calculated

by the formula (2):

δ0 = 2
N+ − N−

N+ + N−

, (2)

where N+, N− — counts of the γ-quanta with various

polarization of neutrons. The number of the measurements

was N ≈ 1010 in each series, so the statistical error was of

the order of ≈ 10−5 .

The experimental data was processed in [6] taking into

account about half a data. Table 1 shows a part of the date

of [6]. The experiment had no direct capability of measuring

the background in the Compton range of the detector-

caught quanta with the energy of 2.22MeV. Moreover, at
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Table 1. Data (1) multiplied by 105 ((−) the data non included in [6]), RMSD — the root-mean-square deviation

�of the measurement Compton — average Compton — RMSD Photopeak Photopeak — RMSD Background Background — RMSD

series

(1) (2) (3) (4) (5) (6) (7)

xC 1xC x p 1x p xb 1xb

1 −3.1 2.7 −4.4 2.7 4.2 6.7

2 −0.2 2.1 −3.4 1.9 −3.2 4.8

3 −4.0 2.1 −6.9 2.4 12.1 9

4 −2.1 2.5 −1.2 2.4 12.4 7.2

5 −3.7 1.9 −1.0 2.7 9.4 5.1

6 −1.7 3.7 −10.8 3.5 1 12.4

7 −5.7 2.8 −10.2 2.8 −0.6 6.1

8 −2.8 1.9 −6.3 2 3.9 4.3

9 −8.0 4.0 −10.4 4.1 10.3 10

10 −2.1 3.9 0.6 3.4 −4.8 10.6

11 −3.6 2.6 −1.8 2 4.6 4.2

12 −7.2 2.5 −6.6 2.1 −5.7 4.6

13 (−) (−) −4.9 2.1 13 3

14˜ (−) (−) −6.0 2.4 8.4 4.6

15 (−) (−) −4.0 2.7 10.6 5.5

Average −3.5 0.7 −4.8 0.8 5.8 1.7

that time the calculation capabilities were insufficient for

calculation of realistic geometry detectors. This calculation

still does not fully resolve the problem due to the fact that

the high-energy background appears simultaneously with

useful signals because of neutron scattering on the target

substance [16].
In the present work, we present the mathematical

approach, which together with generalized metrics of com-

patibility provides the use of a great deal of the experimental

data for calculation of the effects.

In order to apply the methods of interval statistics we

will form the interval data and their sample. The data in

the form of the intervals are derived from the data of the

columns 4 and 5 of Table 1 in the form of [3]:

x
p
i = [x p

i − 1x p
i , x p

i + 1x p
i ]. (3)

The sample of the interval data Xp (4) consists of the

values x
p
i (3):

Xp = {xp
i }

n, i = 1, 2, . . . , n, n = 15. (4)

Relating to the data (3), the band scattering diagram of

the sample of the interval data Xp within the photopeak

range and the endpoints of the intervals of the array Z are

shown in Fig. 2.

The sample of the interval data Xp has no property of

compatibility, since in terms of classic interval arithmetic

the intersection of all the measurements is empty: ∩xp
i = Ø.

Due to emptiness of intersection of all the measurements,

for the information set we will use an interval mode, which
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Figure 2. Scattering pattern of the sample of the interval data Xp

and the endpoints of the intervals of the array Z = {zp
i } within the

photopeak range, as multiplied by 105 .
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Figure 3. Graph of the frequencies of the elementary subinter-

vals Z.

generalizes the common notion of the sample mode in the

statistics. In order to calculate the interval mode according

to the method of the book [3], it is necessary to create the

array of elementary subintervals of measurements of Z. It

consists of increasingly ordered values of the endpoints of

the intervals of the data x
p
i = [xp

i , x̄
p
i ]:

Zp = {zp
i }

n, i = 1, 2, . . . , N, N = 2n − 1 = 29. (5)

The interval mode is found by calculating the frequen-

cies µi of entry of the elementary subintervals to the interval

data taking into account the condition (6):

zi ∩ x
p
i 6= Ø, j = 1, 2, . . . , n, i = 1, 2, . . . , N. (6)

The maximum of the graph µi corresponds to the interval

mode. The graph of the frequencies µi is shown in

Fig. 3. The top includes the numbers of the elementary

subintervals zi , which form the mode Xp.

As it is clear from the graph of Fig. 3, the size of the

maximum clique is 8 measurements of 15. The distribution

mode is a multi-interval (7):

modeXp = z12 ∪ z14 ∪ z20 ∪ z22 = [−6.7,−6.3]

∪ [−5.3,−4.5] ∪ [−3.6,−3.6] ∪ [−2.8,−2.8]. (7)

The intervals z20 and z22 are degenerate. This fact is due

to a method of data representation in [6] with a low number

of significant digits after the decimal dot.

The result of calculations as the multi-interval in the form

of (6) makes it difficult to interpret the study result. The

following looks more natural

modeXp = z12 ∪ z14 = [−6.7,−6.3] ∪ [−5.3,−4.5]. (8)

The maximum clique Kp includes 8 measurements

Kp = {1, 3, 8, 9, 12, 13, 14, 15}, (9)

which is just slightly above the half of the sample Xp .

2.2. Additional data and their inclusion in the
initial sample

The data representativity was increased by taking mea-

surements within the Compton scattering range, which are

included in the columns 2 and 3 of Table 1. They form the

sample of interval data Xc which is formed similar to Xp (2)
by the data of the 1-st and 2-nd columns.

Externally, it is clear from the scattering pattern of the

interval data sample Xp and Xc of Fig. 4 that the data of

the Compton scattering and the photopeak are pair-by-pair

compatible for the majority of the measurements. Thus,

presumably, they can be quite used in the processing after

necessary correction.

Let us set the most simple model of correction. We will

believe that the relative background contribution in all the

measurements was the constant quantity and the coefficient

kBG taking this fact into account can also be considered the

constant one. We consider that the true quantity within the

Compton scattering

xC = kBGxC0
, (10)

where xC — the corrected data, xC0
— the data of the

column 2 of Table 1. After correction of the data XC , they

were included together with the data Xp (3) into a single

interval sample X = {Xp,Xc} = {Xp, kBGX
c0}.

The quantity kBG is believed to be unknown. It was

determined by the methods for the first time proposed in [1]
using the combined measure of compatibility [2]. The point

and interval estimates are calculated using one-dimensional

optimization within the value range from 1 (no correction)
to 2 (very rough estimate of the background). The estimate

by the Jaccard index provides the point estimate argument.

kopt
BG = argmaxkBG

Ji . (11)

The interval estimate is determined by values of the Osko-

rbin coefficient kO and the maximum frequency max µi .

15105
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δ
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Figure 4. Scattering pattern of the interval data sample Xp and Xc .
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Figure 5. Jaccard index, Oskorbin coefficient kO, the size of the

maximum clique of kBG , the combined measure of compatibility T
as per [2].

The value of the argument of point estimate (8) (Fig. 5):

kBG = 1.57. (12)

The combined measure of compatibility provides an

interval estimate

k = [1.38, 1.68]. (13)

It is clear that the point value kBG is reliably inside the

interval estimate kBG ∈ k , so the Jaccard index extremum

provides the reliable point estimate.

The graphs of the used measures of compatibility are

shown in Fig. 5.

Fig. 5 shows in red the external estimate (12) of the

interval multiplicative multiplier taking into account kBG .

The resultant measure of compatibilty T [2] exhaustively de-

scribes both the external and internal estimates, whereas the

optimum internal estimate T coincides with the optimum of

the Jaccard interval measure [1]:

argmax T = argmax Ji .

Table 2 shows modified data of the columns 2 and 3 of Ta-

ble 1 taking into account the optimum multiplier kBG (11).
Now let us consider 27 measurements as a single estimate

X = {Xp,Xc} = {Xp, kBGX
c0}, i = 1, 2, . . . , 27. (14)

Table 2. Data (1), multiplied by 105 (in relation to Table 1 the

table has the columns (2) and (3) changed )

�of meas. Compton — Compton — Photopeak Photopeak —
series average RSMD RSMD

(1) (2) (3) (4) (5)

xC 1xC x p 1x p

1 −4.87 4.24 −4.4 2.7

2 −0.31 3.3 −3.4 1.9

3 −6.28 3.3 −6.9 2.4

4 −3.3 3.92 −1.2 2.4

5 −5.81 2.98 −1.0 2.7

6 −2.67 5.81 −10.8 3.5

7 −8.95 4.4 −10.2 2.8

8 −4.4 2.98 −6.3 2

9 −12.56 6.28 −10.4 4.1

10 −3.3 6.12 0.6 3.4

11 −5.65 4.08 −1.8 2

12 −11.3 3.92 −6.6 2.1

13 −4.9 2.1

14 −6.0 2.4

15 −4.0 2.7

Average −5.5 1.1 −4.8 0.8

The first 15 measurements comply with the initial

data Xp. The next 12, starting from the 16-th, comply with

the added data Xc . The interval data in Xc are formed

similar to the formula (3) based on the data of the columns

2 and 3 of Table 1. The array of the elementary subintervals

Z = {zi}, i = 1, 2, . . . , 53 is formed similar to Zp (4) as

per the condition (5).
Let us provide the results of calculation of the interval

mode, the maximum clique and the Oskorbin coefficient

modeX = z24 = [−6.7,−6.3], (15)

maxµi = 18, (16)

kO = 1.7. (17)

Fig. 6 shows in red the graph of frequencies for the

sample Xp (3), in grey — the similar graph for Xc , and

in blue — for X (13).
The mode of distribution of Xc is a multi-interval in the

same way as modeXp (6):

modeXc = [−7.4,−7.4] ∪ [−7.2,−6.3]. (18)

The interval mode modeX (14) of the whole sam-

ple (13) is an intersection of the intervalsmodeXp (6)
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and modeXc (17) and consists of a single elementary

subinterval [−6.7,−6.3].
The band scattering diagram of the combined sam-

ple X (14) is shown in Fig. 7. The maximum clique K (18)
is highlighted in red.

The numbers of measurements for the maximum clique

K of the sample X (14) are the following:

K = Kp + KC ={1, 3, 8, 9, 12, 13, 14, 15, 16, 18,

19, 20, 21, 22, 23, 24, 25, 26}. (19)

Here, Kp (9) — the array for the maximum clique of the

sample Xp (4).
It should be noted that of the 12 added measurements

10 are included in the maximum clique (14). Let us note

noticeable improvement of the uniformity properties of the

sample X (12) as compared to the sample Xp (3). The

distribution of frequencies of the elementary subintervals

became a unimodal one. Correspondingly, the multi-interval

of the interval mode modeXp (7) became the common

interval modeX (15).
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Figure 6. Graph of frequencies of the elementary subintervals Z

of the combined sample X (11).
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Figure 7. Scattering pattern of the combined sample (Table 2).
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Figure 8. Graph of frequencies of the elementary subintervals Zout

for the combined sample X (14).

It should be noted that the measurements outside the

maximum clique (19) as highlighted in blue in Fig. 7 have

many non-empty intersections with other elements of the

interval sample X . Thus, they should not be included in

the invalid ones and considered to be outliers, they are also

useful for characterization of the entire data volume [6].
The work [3] contains extensive discussion of in compatible

samples and methods of their analysis.

Let us name such measurements outliers (marginal, or

outsiders) without any negative meaning of this epithet. Let

us denote the set of the outliers as Kout:

Kout = {2, 4, 5, 6, 7, 10, 11, 17, 27}.

Let us plot frequencies of the elementary subintervals Zout

of outliers of the combined sample X (11). As it is clear

from Fig. 8, the distribution is bimodal and the modes are

to the left and to the right of modeX (14).
The set of the values of X(Kout) is narrower that the

maximum clique X (14):

wid[−15.3, 4.0] = 19.3 < wid[−18.9, 3.2] = 22.1.

It can be also noted that the intervals of the
”
left“ mode

are included in the interval x24 = [−18.9,−6.3], so are

the majority of the intervals of the
”
right“ mode —

in x21 = [−8.5, 3.2]. This fact reflects the so-called Khleb-

nikov paradox [3]: the wider intervals x24, x21 are included

in the maximum clique, while the narrower intervals X(Kout)
are not included therein.

2.3. Discussion of the results

To compare the obtained results with calculation of

the physical quantity δ [6], let us calculate by the

theory&probabality mathematical statistics as per data of

Table 2.

δ(P) = (−4.8± 0.8) · 10−5 [6],

Technical Physics, 2025, Vol. 70, No. 4
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Pγ(P) = (−1.5± 0.3) · 10−3 [6]; (20)

δ(C+P) = (−5.1± 0.7) · 10−5,

Pγ(C+P) = (−1.6± 0.3) · 10−3, (21)

where the index P indicates calculations of the photopeak

data and the index C + P corresponds to the same calcu-

lations with the data of the photopeak and the Compton

spectrum. The uncertainty in the estimate (21) is given

for the significance level which corresponds to one standard

deviation as in the paper [6].

The results of the calculations (20) show good com-

pliance of the new estimates with the calculations in [6]
at slight decrease of the estimates of statistical spread.

The results (21) are correction of [6] and they will be

separately published together with discussion of nuclear-

physics aspects of the task and various calculations.

The proposed method is developed in a more detailed

method of data correction within the Compton scattering

range. The present work has used the same coefficient

(9) for all the measurements. At the same time, the

paper [6] provides data on measurement of the background

for each measurement. Taking into account the spectra form

of the gamma quanta [16], it is possible to calculate the

background contribution to the effect individually for all the

data of the sample.

Let us now discuss the issue of the status of the interval

measurements in a broader context of data analysis. We

have taken the basic sample 3 (Table 1) as a starting point

of the study and added additional data (after necessary

correction) from the same table thereto, which have been

not included in the processing. The point estimates and

the scattering measures (21) have not varied considerably

in relation to the initial ones (20).

But what changes after enhancing a sample power?

The number of mutually compatible sample data has

substantially increased from 8 of 15 to 18 of 27 (while the

number of the outliers has insignificantly increased from 7

to 9). Thus, the result became more representative. This

fact indicates that one should more attentively consider

the status of the added measurements in terms of the

terminology of Section 1.2.

Section 1.2 denote the model-compatible measurements

as internal ones which do not participate in formation of

the estimates of the information set. It is really so, but the

contribution of such measurements to the parameters of the

compatibility measures is high, vice versa. Here, the
”
active“

boundary measurements do not contribute decisively. The

English terminology denotes this by the terminology pair

”
inlier/outlier“. It is internal measurements that form the

interval mode and are included in the maximum clique

of the interval sample. The authors of the book [3]
have proposed to name the internal measurements

”
totally

compatible“.

Conclusion

An original approach of combining the samples is pro-

posed. The approach is based on using the combined

measure of compatibility for the samples with the interval

uncertainty. As a result, the maximum clique of the data

sample is substantially increased. A new value is obtained

for the parameter Pγ — the basic nuclear reaction of

neutron capture by a proton. Pγ is most often used

in astrophysical calculations when considering the reverse

reaction of photofission of the deuton taking into account

polarization of the gamma quanta.
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