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Calculation of the average range of charged particles after passing

through the finite-thickness target
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Inelatic energy losses in the target are proportional to the average range of the ions, which can essentially differ

from the target thickness due to multiple collisions between the ions and the target atoms. The ratio of the average

range of the ions L to the target thickness D depends on the energy on the ions, ions and target atoms masses.

The ratio L/D has been calculated by the computer simulation method. An elementary analytical theory of the

phenomenon has been simulation.
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Introduction

Deceleration capability is traditionally determined by

calculating the energy losses of a bombarding particle per a

unit range length in the target [1,2]. The work [3] has shown

that in case of the hydrogen ions transmitted through the

golden film, the average length of the ion path can exceed

the film thickness in 2.5 times. The authors explained a

large deviation of the path length from the film thickness

by an effect of repeated elastic collisions of the ions with

the target atoms. The values of the ratio L/D can not be

obtained directly from the computer software [4–7]. In the

present work, the authors study a dependence of the ratio

L/D on the energy and mass of the ions using the PAOLA

software [8] as well as by theoretical calculations.

1. Computer modeling

We consider a target located between the planes x = 0

and x = D. The ions of the energy E0 and the mass M1

fall perpendicular to the surface x = 0, enter the target and

come into elastic collisions with fixed atoms of the target of

the mass M2. As a result of the collisions, some ions return

to the surface x = 0, come out of the target and are regarded

as reflected ones. The other ions go out through the surface

x = D and are regarded as ones transmitted through the

target. Our aim is to calculate the average ranges of the

transmitted ions L, calculate the ratio L/D ≥ 1 and analyze

the dependence of the ratio L/D on the energy of the ions

E0 and the mass ratio A = M1/M2.

To solve the problem, we have applied the PAOLA

software using an atomic potential Mensing [9–12], for

which the energy of interaction of two charges at the

distance r is

U(r) = U0

(τ0

r
− 1

)

when r ≤ r0, (1)

U(r) = 0 when r ≥ r0, r0 — a radius of potential action.

The works [7,10] regard the magnitudes U0 and r0
as adjustable parameters. The values of the parameters

were determined from a condition of coincidence of the

potential (1) with the values of the true potential and its

derivative in a point of maximum approach in a head-on

collision of the particles.

Selection of a particular kind of the atomic potential is

an important step in creation of any software. The so-called

ZBL-potential is superposition of four shielded Coulomb

potentials.

UZBL(r) =
Z1Z2e2

r

4
∑

k=1

ck exp
(

−dk
r
a

)

, (2)

(Z1 and Z2 — the sequence numbers of the ions and

the target atoms, e — the electron charge, a — the

shielding length) and contains eight parameters ck and

dk [7]. The recently proposed DFT potential differs from (2)
by presence of an attracting multiplier [13,14], which is

important for collisions of the low-energy ions. The potential

(1) contains only two adjustable parameters and does not

possess accuracy of the ZBL potential. But, instead, for

the potential (1) all the characteristics of elastic scattering

can be expressed analytical formulae both in the classical

approximation [10,12] as well as in the quantum-mechanical

approximation [9,11]. For example, the differential section

of scattering as expressed via the scattering angle in the

mass center system ω is as follows

dσ =
2(1 + ǫ) sinωdω

[2 + ǫ(1− cosω)]2
, (3)
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where

ǫ = 4ε(1 + ε), ε = E/U0 (4)

— the reduced energy.

Before each elastic collision, the code generates three

random numbers R1, R2, R3, which are located between

zero and unity. These numbers define the average range

of the ion between two consecutive collisions as well as

the polar and azimuthal angles of scattering in this elastic

collision. In accordance with the gas model of binary

collisions, the distance passed by the ion between two

collisions is

λ = λ0 ln(1/R1), (5)

where λ0 — the mean free path. The scattering angle in the

mass center system is determined by the equation

cosω =
(2 + ǫ)R2 − 1

1 + ǫR2

. (6)

The angle of scattering in the laboratory system of coordi-

nates � is as follows

cos� =
A + cosω

(1 + 2A cosω + A2)1/2
. (7)

If we denote the cosines of the angle between the ion

velocity and the internal normal to the target surface via

µ, then after elastic collision the value of µn is converted

into the value of µn+1 in accordance with the equation

µn+1 = µn cos�− (1− µ2
n)

1/2 sin� cos(2πR3). (8)

When the ion leaves the target, the range is corrected by

taking into account a respective geometrical factor.

2. Theoretical research

The function of distribution of the ions in the target

f (x , µ, t) depends on the depth of penetration of the ion

into the target x , the angle θ between the ion velocity and

the normal to the target surface, µ = cos θ and the range of

the ion t . When A = 0 (the ion mass is significantly less than

the atomic weight of the target) and there is interaction in

accordance with the solid spheres law, the transfer equation

is as follows

µ
∂ f (x , µ, t)

∂x
+

∂ f (x , µ, t)
∂t

+ f (x , µ, t) =

=
1

2

1
∫

−1

f (x , µ, t)dµ. (9)

Laplace transform

F(x , µ) =

∞
∫

0

f (x , µ, t)e−stdt (10)

gives

µ
∂F(x , µ)

∂x
+ (1 + s)F(x , µ) =

1

2

1
∫

−1

F(x , µ)dµ. (11)

The equation (11) is the Chandrasekar problem [15] and
the ion reflectance in case of a semi-infinite target can be

presented analytically

RN(s) = 1− H(w0)(1 − w0)
1/2, w0 = 1/(1 + s), (12)

where H — is the Chandrasekar function. With small s we

obtain

RN(s) = 1− const
√

s , s ≪ 1, (13)

and the average range of the reflected ions becomes infinite,

L = lim
s→0

RN(0) − RN(s)

sRN(s)
= ∞. (14)

This is due to the fact that in the semi-infinite target the

reflected ion can intersect the plane x = D several times.

In the finite-thickness target, the ion intersects the plane

x = D only one, when leaving the target, and the average

range becomes finite.

To solve the equation (11), in case of the finite-thickness

target we select four discrete values of the angular variable

µ = 1, 1/3,−1/3,−1 and designate the respective values

of the distribution function F1, F2, F3, F4. Then the

equation (11) is written as a system of four ordinary

differential equations.



















F ′

1 + (1 + s)F1 = Q,

F ′

2/3 + (1 + s)F2 = Q,

−F ′

3/3 + (1 + s)F3 = Q,

−F ′

4 + (1 + s)F4 = Q,

(15)

Q =
F1 + 2F2 + 2F3 + F4

6
, (16)

where Q is a trapezoid formula for approximate calculation

of the integral on the right-hand side of the equation (11).
The boundary conditions for the system of equations (15):

F1(0) = 1, F2(0) = 0, (17)

F3(D) = 0, F4(D) = 0, (18)

correspond to the normal fall of the ions to the surface

x = 0 and absence of the ions entering the target through

the surface x = D.

The system of equations (15) is solved as follows

Fk(x) =

4
∑

m=1

CmYkm exp(−λmx), k = 1, 2, 3, 4, (19)

where Ykm — the eigen vectors, λm — eigenvalues obtained

from the biquadratic equation

3λ4 − (1 + s)(11 + 30s)λ2 + 27s(1 + s)3 = 0. (20)
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Figure 1. Dependences of the ratio L/D on the target thickness D
for the potential of solid spheres and the various mass ratios: A = 0

(the curve 1), 1 (2), 2 (3). The dashed line — the formula (23).

The coefficients Cm are determined from the boundary

conditions (17), (18). The ion transmission ratio is

TN(D, s) =

1
∫

0

µF(D, µ)dµ = F1(D) +
2

3
F2(D), (21)

and the average range of the transmitted ions is calculated

as a limit

L = lim
s→0

TN(0) − TN(s)

sTN(s)
. (22)

The solution of the problem (15)−(18) for the four

discrete flows has been obtained in an analytical form, but it

is rather cumbersome. Approximately, the final result with

the accuracy of 1% can be written as a formula

L
D

= 1 +
5D(D + 1)

12D + 5
. (23)

3. Results

Fig. 1 show the dependence of the ratio of the average

ion range to the target thickness on the mass ratio and the

target thickness at small ion energies (interaction according

to the solid spheres law). The ratio L/D increased with

the target thickness and with decrease on the ion mass.

In case of the heavy ions (A ≫ 1), the elastic scattering

occurs only to the small angles and the curves L/D tend to

unity. The dashed line depicts the function (23) belonging

to the case when A = 0. It can be shown that with further

increase of the numbers of the discrete flows divergence

between the theoretical result and the computer modeling

results decreases and does not exceed the error of the Monte

Carlo method.

Fig. 2 shows the dependence of the ratio L/D on the

ion energy at the fixed target thickness. The ratio gets to

the largest values with the small energies. With the high

energies, the scattering is close to the Rutherford scattering,

all the ions move almost along the straight line and their

ranges are equal to the target thickness. At the same time,

all the curves tend to the straight line L/D = 1.

Fig. 3 shows the results of calculation of the dependence

of the ratio L/d on the energy of hydrogen ions bombarding

the golden film of the thickness of d = 200 Å. The average

range between two subsequent collisions and the cut-off

radius are selected to be equal to each other: λ0 = r0 = 4 Å.

With this selection, the normalized thickness of the target

and the atomic energy unit turn out to be D = d/λ0 = 50

and U0 = 284 eV, thereby enabling use of the formulae (4)
and (6) in the computer calculation. Compliance of our

calculations with the calculations [3] may be considered to

be satisfactory. Noticeable difference of the results with
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Figure 2. Dependences of the ratio L/D on the reduced energy ε

for the normalized thickness of the target D = 10 at the various

mass ratios: A = 0 (the curve 1), 0.5 (2), 1 (3), 1.5 (4).
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Figure 3. Dependence of the ratio L/d on the ion energy E0

for the combination H−Au with the thickness of the golden film

d = 200A. The solid line — the PAOLA software, the markers —
the results of calculation [3].

the small energies may be related to either the negative

attracting area in the DFT potential or different values of

energy sublimation.

Conclusion

The computer modeling method has shown that the

average range of the ions transmitted through the finite-

thickness target can exceed the target thickness in several

times. The effect turns out to be especially noticeable

for the low energies of the ions, when the ion mass is

significantly less than the atomic weight of the target. The

results substantially depend on the value of the average

range of the ion λ0 between two subsequent collisions.

It is different from scattering of the ions in the semi-

infinite target, when the obtained results sometimes do

not depend on λ0 at all. The theory of the phenomenon

is built based on approximation of the solution of the

integro-differential transfer equation by the discrete flow

method. The deviations of the value of L/D from unit shall

be taken into account when experimentally measuring the

deceleration capability of the substance.
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