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Dynamic microcavities and time-dependent media in collisions

of unipolar attosecond pulses of different shapes
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Optics of time-varying media has been actively developing in recent decades due to new possibilities for

controlling the properties of light in space and time using such media. The advent of extremely short light pulses,

up to unipolar half-cycle pulses, opens up new possibilities for ultrafast control of the properties of a medium in

space and time on times of the order of half the field period, which are inaccessible for conventional multi-cycle

pulses. In this paper, we numerically study the dynamics of Bragg microresonators in a three-level medium whose

properties vary in space and time. This occurs when unipolar light pulses of different time shapes, Gaussian and

rectangular, collide in it, having a small amplitude at which the medium is slightly excited and does not return back

to the ground state after the passage of the pulses. We discuss broader possibilities for controlling the properties

of a medium in space and time by using half-cycle pulses of different time shapes as a result of symmetric and

asymmetric collisions of pulses in the medium.
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Introduction

Optical microresonators with a high Q-factor have been

extensively studied in optics in recent decades [1–3]. Interest
in them stems from their numerous potential applications,

such as optical frequency comb generation [4–5], compact

laser source development [6], strong-coupling regime studies

of exciton-polariton dynamics [7], biological sensors [8], and
other applications. Such microresonators can be made,

for example, from quartz nanoparticles having whispering

gallery modes or photonic crystals [1–8]. But the parameters

of such structures are embedded in them during manufactur-

ing and cannot be quickly changed. This imposes a number

of limitations on the use of such structures in the tasks of

modern ultrafast optics.

To date, media whose optical properties (refractive index)
can be changed rapidly in time (time varying medium) [9]
or simultaneously in space and time (spatiotemporal pho-

tonic crystals) are actively studied [10]. These artificial

media are of interest in optics, in the problems of controlling

the propagation of light in both space and time. On the other

hand, a number of interesting phenomena, such as temporal

reflection and temporal refraction, parametric amplification,

and more, can occur in such media when the refractive

index changes rapidly, see review [9].
But changing the properties of the medium in space and

time is a complex practical problem. Currently, multi-cycle

femtosecond pulses of laser radiation have been used for

this purpose [11]. With the advent of attosecond pulses,

it became possible to study and control the motion of

electrons in matter at times comparable to the period of

the electron’s turnover along the Bohr orbit in the atom

(hundreds of attoseconds) [12].
But the studying and controlling the properties of sub-

stances at shorter times requires extremely short half-cycle

pulses consisting of a half-wave field. Such pulses with non-

zero electrical area,

SE =

∫
E(r, t)dt, (1)

(E(r, t) is field strength at a given point of space, t is

the time) [13] are promising for ultrafast control of the

properties of quantum systems and ultrafast switching of

the state of matter in much faster times than conventional

multicycle pulses. The results of recent studies in the

production and application of such pulses are summarized

in the reviews [13,14] and the monograph [15].
The physics of the interaction of such pulses with

matter is quite unusual; we have to abandon a number

of typical theories and concepts that are valid for multi-

cycle pulses [13–15]. Under these conditions, many new

and unusual phenomena occur that seem impossible with

multicycle pulses.

It turned out that the collision of half-cycle pulses in

matter can create high-voltage dynamic microresonators

(DM) at each resonance transition of the medium [16–18].
The population difference of atomic transitions remains

nearly constant within the pulse overlap region. It either
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changes by a jump to a different value outside this region.

Either a Bragg lattice of atomic populations is created in this

region. The shape of DMs can be controlled by multiple

collisions between pulses, indicating the dynamical nature

of such structures. An overview of recent research results

in this area can be found in Ref. [19].
In early studies [16–19] such structures were studied

in case of a collision of unipolar pulses of the same

shape — Gaussian or rectangular. The shape of the induced

structures obviously depends on the shape of the pulses.

For application of such structures it is important to study

their properties depending on the parameters of external

excitation and other factors. Analytical approaches [18]
to describe DM are developed on the basis of rough

approximations and have a limited area of applicability. The

full picture can only be revealed by numerical modeling.

We study in this paper the behavior of DM (doublet
molecules) during multiple collisions of half-cycle pulses

with different profiles (rectangular and Gaussian) in a

medium, based on numerical solutions of the density matrix

equations for a three-level system coupled with the wave

equation. We consider the case of small weak excitation

of the medium, when the impact of pulses leads to an

insignificant emptying of the ground state of the medium

(the regime of self-induced transparency, when the medium

returns to the ground state after pulses, is not considered in

this paper).

Calculated model and calculation results

The numerical model is based on a system of equations

for off-diagonal elements of the density matrix (ρ21, ρ32,

ρ31), diagonal elements (ρ11, ρ22, ρ33), representing the

population densities of the 1st, 2nd and 3rd medium

states (corresponding to atomic level populations), medium

polarization P(z , t), wave equation for the electric field

strength [20]:

∂

∂t
ρ21 = −

ρ21

T21

− iω12ρ21 − i
d12

~
E(ρ22 − ρ11)

−i
d13

~
Eρ23 + i

d23

~
Eρ31, (2)

∂

∂t
ρ32 = − iω32ρ32 − i

d23

~
E(ρ33 − ρ22)

−i
d12

~
Eρ31 + i

d13

~
Eρ21, (3)

∂

∂t
ρ31 = − iω31ρ31 − i

d13

~
E(ρ33 − ρ11)

−i
d12

~
Eρ32 + i

d23

~
Eρ21, (4)

∂

∂t
ρ11 = i

d12

~
E(ρ21 − ρ∗

21) − i
d13

~
E(ρ13 − ρ∗

13), (5)

∂

∂t
ρ22 = −i

d12

~
E(ρ21 − ρ∗

21) − i
d23

~
E(ρ23 − ρ∗

23), (6)

∂

∂t
ρ33 = −

ρ33

T33

+ i
d13

~
E(ρ13 − ρ∗

13) + i
d23

~
E(ρ23 − ρ∗

23),

(7)
P(z , t) =2N0d12Reρ12(z , t) + 2N0d13Reρ13(z , t)

+2N0d23Reρ23(z , t), (8)

∂2E(z , t)
∂z 2

−

1

c2

∂2E(z , t)
∂t2

=
4π

c2

∂2P(z , t)
∂t2

. (9)

Here d12, d13, d23 are the matrix elements of the dipole

moments of the transitions, Tik are the relaxation times.

The parameter values are chosen for atomic hydrogen and

are given in the table [21]. Relaxation times in gases lie

in the nanosecond range, which is much longer than the

time intervals considered below (femtoseconds). The pulses

interact with the medium coherently, their lengths and

intervals between them are shorter than the relaxation times,

which are insignificant in this case. The one-dimensional

wave equation describes the propagation of sub-cycle pulses

in near-field or coaxial waveguides [13]. The observation

of DM in real media requires media with large values of

polarization relaxation time T2 which is easily realized in

gases, nanoscale structures at low temperatures.

The initial conditions were chosen as follows. 2 pulses

were launched into the vacuum from the left, point z = 0,

and right ends of the integration regions, point z = L
(L = 12λ0 is the length of the integration region, λ0 is the

wavelength of the main transition). The first is a rectangular

pulse, in the form of a hypergaussian function:

E(z = 0, t) = E01e
−

(t−11)20

τ 20 . (10)

The second semi-cyclic pulse moved towards the first one

and had a Gaussian shape:

E(z = L, t) = E02e
−

(t−12)2

τ 2 . (11)

The medium was placed between points with coordinates

from z 1 = 2λ0 to z 2 = 10λ0. The collision of pulses

occurred at the point z = z col = 6λ0. Ideal mirrors were

placed on the boundaries of the integration region. When

reflected from them, the pulses entered the medium again

and collided in it.

Symmetrical collision between pulses

The first example considers the case of the so-called

symmetric collision of pulses in the medium, when the

pulses simultaneously entered the medium and collided

at its center. This is achieved by equalizing the delays

11 = 12 = 2.5τ . The results of numerical simulations of the

spatial and temporal dynamics of the medium polarization

and population difference at the three resonant transitions

are shown in Fig. 1−4. The parameters are listed in the

table.

The collisions occur sequentially at times tc1 = 2.7 fs,

tc2 = 7.6 fs, tc3 = 12.6 fs, etc. fs. As can be seen from
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Figure 1. Spatial and temporal dynamics of polarization of a

three-level medium P(z , t).
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Figure 2. Spatial and temporal dynamics of the population

difference ρ11 − ρ22 of a three-level environment.

Fig. 2−4, a rather broad region with an almost constant

value of the population difference appears in the pulse

overlap region near the point z = z col = 6λ0. Bragg lattices

of atomic populations arise to the left and right of it. After

each collision, the shape of these lattices and the value of

the inversion at the center change. This is due to the change

in the character of polarization fluctuations (coherence of

the medium) after each collision. It is the interaction of

incident pulses with medium coherence fluctuations that is

the physical mechanism for the formation of Bragg lattices

of atomic populations at each medium transition, see [22]
and [16–18] for more details.

The changes in the shape of the resonators after each

collision indicate the dynamical nature of the induced

structures, distinguishing them from conventional microres-

onators. This behavior of DM is analogous to the case

when pulses of the same (Gaussian shape) and small

amplitude collided in a two-level medium [18]. Differences

are obviously to be expected at stronger fields, such as when

the pulses act like self-induced transparency (SIT) pulses,

which is beyond the scope of this paper.

Nonsymmetric momentum collision

In the example of the so-called symmetric collision

of pulses, they entered the medium simultaneously and

collided in its center. By varying the delays between

them, it is possible to consider the situation when the

pulses enter the medium non-simultaneously and collide

in it off-center (the case of
”
unsymmetric“ collision).

The delay is 12 = 7.5τ in the following example. The

other parameters are as in Fig. 1−4. The results of

numerical calculations showing the dynamics of the pop-

ulation difference at all transitions of the medium are

shown in Fig. 5−7. The first collision of pulses at the

given parameters occurs at the point z c = 7.3λ0 at time
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Figure 3. Spatial and temporal dynamics of the population

difference ρ22 − ρ33 of a three-level environment.
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Figure 4. Spatial and temporal dynamics of the population

difference ρ11 − ρ33 of a three-level environment.
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Parameters used in numerical calculations

Frequency (wavelength λ0) ω12 = 1.55 · 1016 rad/s

1 → 2 (λ12 = λ0 = 121.6 nm)

Dipole moment of transition 1 → 2 d12 = 3.27D

Frequency (wavelength) ω13 = 1.84 · 1016 rad/s

of transition 1 → 3 (λ13 = 102.6 nm)

Dipole moment of the transition 1 → 3 d13 = 1.31D

Frequency (wavelength) ω23 = 2.87 · 1015 rad/s

of transition 2 → 3 (λ23 = 656.6 nm)

Dipole moment of the transition 2 → 3 d23 = 12.6D

Concentration of atoms N0 = 2 · 1020 cm−3

Field amplitude E01 = 840000 ESU

E02 = 1008000 ESU

Parameter τ τ = 200 as

Delays 11 = 12 11 = 12 = 2.5τ
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Figure 5. Spatial and temporal dynamics of the population

difference ρ11 − ρ22 of a three-level medium.

tc = 3.44 fs. The second collision of pulses occurred at

z c = 8.3λ0 and at time tc = 4.8 fs, etc. Each subsequent

collision occurred at different time moments due to the

delay.

The DMs appeared at different moments of time in

different regions of the medium as a result of such

asymmetric
”
collision“Ṫhe parameters of the induced Bragg

gratings (shape, number of periods, etc.) could differ to

the left and right of the pulse overlap region due to the

asymmetry of the problem. The use of asymmetric collisions

opens up additional possibilities in controlling the shape

of induced structures, as previously noted in Ref. [23], in

which an asymmetric collision of rectangular SIT pulses was

considered.
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Figure 6. Spatial and temporal dynamics of the population

difference ρ22 − ρ33 of a three-level environment.
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Figure 7. Spatial and temporal dynamics of the population

difference ρ11 − ρ33 of a three-level environment.

Conclusion

The dynamics of DM in case of collisions of unipolar light

pulses with different profiles — rectangular and Gaussian —
was studied in this paper in a three-level medium under

weak excitation conditions, based on numerical simulations.

The case of symmetric collision of pulses, when the pulses

simultaneously entered the medium and collided in its

center, was considered. In this case, due to the rectangular

profile of one of the pulses, the population difference

maintained a constant value at the center of the medium,

while periodic population Bragg gratings formed at the

edges. This case is qualitatively similar to the previously

studied case of collision of semi-cyclic pulses of the same

shape (Gaussian shape) with small amplitude and in a two-

level medium. In the case of asymmetric collision of pulses

due to the delay between them, DMs appeared in different

Optics and Spectroscopy, 2025, Vol. 133, No. 3



304 R.M. Arkhipov, M.V. Arkhipov, O.O. Diachkova, N.N. Rosanov

regions of the medium and the shape of Bragg gratings also

looked different to the left and right of the region of pulse

overlap. This makes it possible to create DMs of asymmetric

shape with different parameters of Bragg mirrors lying to

the left and right of the overlap region.

The obtained results demonstrate the possibility of realiz-

ing media parameters of which change in space and time in

ordinary atomic media under the action of extremely short

pulses. Any media with a large value of phase memory time

T2 can be used to realize such media under these conditions,

and it is not necessary to use the various artificial media and

metamaterials that are currently specially developed for the

practical realization of time-dependent media [9–11,24,25].
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S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke,

A. Forchel. Nature, 432, 197−200550 (2004).
[8] H. Yu, X. Liu, W. Sun, Y. Xu, X. Liu, Y. Liu. Opt. & Laser

Technol., 177, 111099 (2024).
[9] T.T. Koutserimpas, F. Monticone. Opt. Mater. Express., 14,

1222−1236712 (2024).
[10] Y. Sharabi, A. Dikopoltsev, E. Lustig, Y. Lumer, M. Segev.

Optica, 9 (6), 585 (2022).
[11] K. Pang, M.Z. Alam, Y. Zhou, C. Liu, O. Reshef,

K. Manukyan, M. Voegtle, A. Pennathur, C. Tseng, X. Su,

H. Song, Z. Zhao, R. Zhang, H. Song, N. Hu, A. Almaiman,

J.M. Dawlaty, R.W. Boyd, M. Tur, A.E. Willner. Nano Lett.,

21 (14), 5907 (2021).
[12] F. Krausz. Reviews of Modern Physics, 96, 030502 (2024).
[13] N.N. Rosanov, M.V. Arkhipov, R.M. Arkhipov, A.V. Pakho-

mov. Contemporary Physics, 64 (3), 224 (2023).

[14] N.N. Rosanov, M.V. Arkhipov, R.M. Arkhipov. Phys. Usp. 67

(11), 1129 (2024).
DOI: 10.3367/UFNe.2024.07.039718.

[15] N.N. Rozanov, M.V. Arhipov, R.M. Arhipov. Teragertsovaya

fotonika, pod red. V.Ya. Panchenko, A.P. Shkurinov (RAS, M.,

2023), p. 360−393 (in Russian).
[16] O.O. Diachkova, R.M. Arkhipov, M.V. Arkhipov, A.V. Pakho-

mov, N.N. Rosanov. Opt. Commun., 538, 129475 (2023).
[17] O. Diachkova, R. Arkhipov, A. Pakhomov, N. Rosanov. Opt.

Commun., 565, 130666 (2024).
[18] R. Arkhipov, A. Pakhomov, O. Diachkova, M. Arkhipov,

N. Rosanov. JOSA B, 41 (8), 1721 (2024).
[19] R.M. Arkhipov, O.O. D’yachkova, M.V. Arkhipov, A.V. Pakho-

mov, N.N. Rosanov. Opt. i spektr., 132 (9), 919 (2024) (in
Russian).

[20] A. Yariv. Quantum Electronics (John Wiley & Sons, N.Y.,

London, Toronto, 1975).
[21] S.E. Frisch. Optical spectra of atoms (State Publishing House

of Physical and Mathematical Literature, Moscow-Leningrad,

1963).
[22] R.M. Arkhipov. JETP Lett., 113, 611 (2021).
[23] R.M. Arkhipov, O.O. D’yachkova, M.V. Arkhipov, A.V. Pakho-

mov, N.N. Rosanov. Opt. i spektr., 133 (2), 184 (2025) (in
Russian).

[24] N. Engheta. Nanophotonics, 10 (1), 639−642 (2020).
[25] V. Pacheco-Peña, D. M. Solı́s, N. Engheta. Opt. Mater.

Express, 12 (10), 3829−3836 (2022).

Translated by A.Akhtyamov

Optics and Spectroscopy, 2025, Vol. 133, No. 3


