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Introduction

Non-linear meta-surfaces that involve the use of both,

conventional dielectrics and plasmon materials (metals in

the optical band, graphene) and their combinations, are

widespread in todays’ photonics — sensors, visualization,

optical multiplexing, generation of upper harmonics, ter-

ahertz emission, entangled photons [1–12]. The main

advantages of meta-surfaces are their small sizes, ability to

control the wave front by manipulating the linear phase of

transmitted or reflected light, and the presence of resonance

elements. To increase the level of harmonic generation

and mixing, it is natural to use resonances, including

plasmon — polariton resonances, resonance of localized

plasmons. Although, as stated in [13,14], graphene has

greater nonlinearity than dielectrics, graphene meta-surfaces

have greater losses compared to dielectric ones. Therefore,

dielectric resonant meta-surfaces can operate at high power.

The purpose of this paper is to show the possibility of

numerically analytical solutions of reflection and diffraction

problems on nonlinear meta-surfaces in strong electromag-

netic fields, and to estimate the error of the perturbation

method.

Objects under study: 1) nonlinear graphene layer;

2) diffraction grating formed by nonlinear dielectric layers;

3) nonlinear dielectric layer for testing the volumetric

integro-differential equation (IDE) method.

1. Reflection of electromagnetic wave
from a graphene layer lying
on a dielectric layer

It has been theoretically and experimentally established

that graphene has an extremely strong third-order nonlinear-

ity compared to widely used dielectrics. This is due to the

appearance of a large number of papers (mostly theoretical)
on the development of nonlinear photonic devices [15].
The simplest way to solve a nonlinear problem is the

perturbation method — to use the electrical field strength

obtained from solving a linear problem. However, it is

possible to obtain an analytical solution for the simple

problem of reflecting a planar electromagnetic wave from

a graphene layer [16]. The task set in this section — to

ensure progress of the study [16].
Coordinate system — z axis is perpendicular to the plane-

parallel dielectric layer h thick and dielectric permittivity of

ε1. Planar electromagnetic wave has an incidence angle of θ

from z = −∞. Incidence plane x = 0. Graphene layer is

located at the bottom face of the layer with a coordinate

z = 0. At z ≥ h the substrate has dielectric permittivity ε2.

Wave polarization along x axis— E = Eex . The orthogonal

polarization solution is similar. Only boundary conditions

(BC) at the interfaces of dielectric layers change.

BC:

1) continuity E at all boundaries, including at infinitely

thin graphene layer;

2) continuity of the component of magnetic field Hy at

z = h;
3) impedance BC on graphene j(y) = σE(y, 0), where

j(y), σ -conductivity, — σ (Eg) = σ1 + σ3|Eg |2, Eg —
strength of electrical field on graphene where σ1 — linear

conductivity from Kubo formula [17], σ3 — non-linear

conductivity of graphene third order. For THz to optical

band frequencies, the nonlinear conductivity of graphene

of the third order is determined by a formula based on

quantum theory [18,19]. Various formulae for calculating

the nonlinear conductivity of graphene compared are given

in the review [20]. The following formula was used in the
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present work.

σ3 = −i
3

32

e4v2
F

ω3~2µc
,

where e — electron charge, µc — chemical potential (Fermi

level), vF = 106 m/s — Fermi velocity, ω — frequency of

incident wave, ~ — reduced Planck’s constant. This formula

is applicable with the quant energy of ~ω ≪ 2µc .

It is not difficult to obtain a solution of Helmholtz

equation for a field in a dielectric satisfying the first BC:
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×
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∑
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where E0 — amplitude of incident wave,

ky,3 = ky,1 = k1 sin θ, kz , j =
√

k2
j − k2

y,1,

γ{12}, j
=

√

k2
jε{12} − k2

y,1, k1, k3 = 3k1

— wavenumbers of the first and third frequency harmonics.

Having satisfied the second boundary condition, we

express the unknown coefficients A j in terms of the desired

transmission ratio Tj :

A j = U j TJ, U j = cos γ1, j h +
iγ2, j

γ1, j
sin γ1, j h.

Finally, having satisfied the third BC we get

− 1

Z0

{

kz ,1

k1

−
∑

j=1,3

(TjU j − δ j,1)
kz , j

k j
exp(i jωt)

− i
∑

j=1,3

TjV j exp(i jωt)

}

= σ

[

exp(iωt)

+
∑

j=1,3

(TjU j − δ j,1) exp(i jωt)

]

, (1)

where V j =
γ1, j

k j

[

−
(

iγ2, j

γ1, j

)

cos γ1, j h + sin γ1, j h
]

.

From BC for the fundamental harmonic, after elementary

transformations, we obtain

T1

[

U1

(

1− σ
k1

kz ,1

)

+ iV1

k1

kz ,1

]

, (2)

at

σ (|T1|) = σ1 + σ3
3

4

[

E2
0

[

|U1||T1|
]2

]

. (3)

It follows from (1) that

|T1|
[

U1

(

1− σ (|T1|)
k1

kz ,1

)

+ iV1

k1

kz ,1

]

= 2. (4)

Equation (4) with conductivity (3) —- transcendental

equation relative to the unknown |T1|. First, we find

numerical solution, after that - σ (|T1|) from (3), and

then from (2) we find complex transmission ratio T1 and

reflectance R1 = U1T1 − 1. If we know T1, from (1) we

may find the coefficients for the third harmonic T3, R3.

2. Reflection from the non-linear layer

The structure is similar to the one described above,

but without graphene, while in a layer with a thickness

of h there is a dielectric with quadratic nonlinearity

ε(y) = εlin + α|E(x)|2. In solution the non-linear layer is

dissected in N-layers. We assume that within each layer,

the dielectric constant is constant, depending on the field

strength in the center of the layer.

The task set in this section — to ensure progress of the

study [21,22].
We introduce the functions: a) U(y, z , t) = Ex(y, z , t)

for s -polarization of the incident plane wave with cyclic

frequency ω1; b) U(y, z , t) = Hx(y, z , t) for p-polarization
of the incident plane wave

U (exp)(y, z , t) = U0 exp[i(−ky y − kz z + ω1t)].

We’ll be limited only by two frequency harmonics. The

solution is represented as:

U(y, z , t) = [V1(z ) cos(ω1t) + V3(z ) cos(ω3t)] exp(−iky z ).

We assume that |V3(z )| ≪ |V1(z )|.
In this case, Helmholtz equation in the nonlinear layer

will take the form

∑

j=1,3

[

d2V j

dz 2
+ V j

(

κ2j + k2
jα|V1|2 cos2(ω1t)

)

cos(ω jt)

]

, (5)

where κ2j = k2
jεl − k2

x , k j — wavenumber at cyclic fre-

quency ω j . Let’s write it using harmonics:

d2V1

dz 2
+ γ2

1V1 = 0, γ2
1 = κ21 + k2

1α
3

4
|V1|2, (6)

d2V3

dz 2
+ γ2

3V3 + k2
1βV1 = 0,

γ2
3 = κ23 + k2

3α
1

2
|V1|2, β =

1

4
α|V1|2. (7)

The solution of (6) is represented as:

V1z = U0

{

[exp(−ikz z ) + R1 exp(ikz z )], z ≤ 0

T1U+(z , |T1|), z ≥ 0,

}

,
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where R1, T1 are the desired reflection and transmission

coefficients of a wave with a frequency o ω1. At this stage,

we consider the function U+(z , |T |) to be known. Let’s

assume that U+(0, |T |) = 1 . Let’s describe the way to find

it below.

We satisfy the conditions of continuity of the tangential

components of the electromagnetic field at z = 0. In

particular, for s -polarization, we obtain

1 + R1 = T1, 1− R1 = T1η, (8)

where η(|T1|) = iU ′

+(0, |T1|)/kz , prime — derivative with

respect to z . From (8) we obtain

T1[1 + η(|T1|)] − 2 = 0. (9)

We solve numerically the transcendental equation (9)
relatively to unknown |T1| . Then, from (8), we find the

coefficients R1 depending on the field amplitude.

The method of successive approximations for the solu-

tion (9) at large wave amplitudes is also used. We assume

that E(p)
0 = E0

p
P . Let’s solve (6) in P steps [18]:

T (p) =
2

1 + η(T (p−1))
, p = 1, 2 . . . P,

where T (p) — solution at E(p)
0 , T (0) — linear solution.

The resulting algorithm converges quickly in the number

of steps P . Both methods give the same solution even at

large field amplitudes.

Let’s consider plotting the function U+(z , |T |). Let’s

divide the layer in N-layers. The layers have the same

thickness hn. We assume that within each layer εn is

constant, depending on the field strength in the center of

the layer. N + 1 layer — semi-finite linear substrate. Let’s

denote z n =
n

∑

m=1

hn.

The solution in this case will be written as

U(z )=


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sin γnhn
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n = 1, 2 . . . N

AN+1 exp[−iγN−1(z − z n)]


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,

γn =
√

k2εn − k2
y .

This solution satisfies the condition of continuity at the

interface of the layers. From the condition of continuity

of normal derivatives, we obtain a recurrent scheme for

determining unknowns An = Ãn/Ã1:

Ãn = Q−1
n

[

Ãn+1(Pn + Pn+1) − Ãn+2Qn+1

]

,

n = N, N − 1, . . . , 1, ÃN+2 = 0, ÃN+1 = 1.

Qn =
γn

sin γnhn
, Pn = γn ctg γnhn, n = 1, . . . N,

PN+1 = −iγN+1.

Having defined all An, let’s find the field in the center of the

layer

E
(

z n +
hn

2

)

= E0TU+

(

z n +
hn

2

)

=
E0T [An + An+1]

[

2 cos γnhn

2

] ,

and after that the dielectric

permittivityεn = εlin + α|E(z n + hn/2)|2, where εlin —
linear dielectric permittivity.

The resulting algorithm converges quickly in the number

of partitions N.

Now let’s solve the equation (8) for the third harmonic.

All parameters for the first harmonic are determined at the

last step of the direct or iterative method.

Again, the non-linear layer is partitioned in N-layers.

Solving an inhomogeneous equation (8) we search in the

form of two functions

V3 = V (1)
3 + V (2)

3 ,

where the 1st function — general solution of the ho-

mogeneous equation,
d2V (1)

3

dy2 + γ2
3V (1)

3 = 0 in all layers; the

2nd function is the solution of the inhomogeneous equation
d2V (2)

3

dy2 + k2
1βV1 = 0 only in the nonlinear layer.

V (1)
3 (y) =



















R3 exp(iγ3,0y), y ≤ 0;
1

sin γ3,nhn
[A3,n sin γ3,n(yn − y)

+B3,n sin γ3,n(y − yn−1)], n = 1, 2 . . . N

T3 exp(−iγ3,y−1(y − yN)), y ≥ yN ;

V (2)
3 (y) =



















0, y ≤ 0;

Mn
1

sin γ1,nhn
[A1,n sin γ1,n(yn − y)

+ A1,n+1 sin γ1,n(y − yn−1)], n = 1, 2 . . . N

0, y ≥ yN ;

Mn =
k2
1β

(γ1,n)2
.

Let’s provide consistency with the boundary conditions.

The procedure is quite simple, but quite bulky, so it is not

given here. Finally, we’ll obtain a system of linear algebraic

equations (SLAE) of 2N + 2 order relative to the unknowns

A3,n, n = 1, . . . N; R3; B3,n, n = 1, . . . N; T3, from which

we’ll find R3, T3 — reflectance and transmission coefficients

of wave with a frequency of ω3.

The resulting algorithm converges quickly in the number

of partitions N and number of iterations P .

3. Diffraction on the non-linear dielectric
field

The solution of diffraction on a linear diffraction grating

by IDE method with isotropic layers is given in [23]. Solving
the volumetric integro-differential equation with respect to
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E(x , y, z ) — strength of the external electromagnetic field

in nonlinear dielectric strips

E(x , y, z ) = Eext(x , y, z ) + [grad div + k2]

×
∫

V

G(x , y , z , z ′)τ (|E(x ′, y ′, z ′)|)E(x ′, y ′, z ′)dv ′,

x , y, z ∈ V,

where Eext — strength of external electromagnetic field,

τ (|E(x ′, y ′, z ′)|) = ε − εext , ε, εext — dielectric permittivity

of strips and dielectric, G(x , y , z , z ′) —- Green’s function,

x = x − x ′, y = y − y ′ .

We assume that the dielectric constant is nonlinear

τ (|E(x ′, y ′, z ′)|) = ε(|E(x ′, y ′, z ′)|) − εext .

Let’s assume Eext(x , y, z ) = E0E
exy
1 (x , y, z ), where

Eext
1 (x ′, y ′, z ′) field of a single amplitude; E(x ′, y ′, z ′) =

= E0E
exy
1 (x ′, y ′, z ′). We obtain

E1(x , y, z ) =Eext
1 (x , y, z ) + [grad div + k2]

×
∫

V

G(x , y , z , z ′)τ E1(x
′, y ′, z ′)dv ′,

x , y, z ∈ V (10)

Let’s introduce the function D = τ E1 and transform (10):

D(x , y, z )

τ (x , y, z )
=Eext

1 (x , y, z ) + [grad div + k2]

×
∫

V

G(x , y , z , z ′)D(x ′, y ′, z ′)dv ′,

x , y, z ∈ V (11)

where

τ (|E(x ′, y ′, z ′)|) = ε
(∣

∣

∣
E0

1

τ
D(x ′, y ′, z ′)

∣

∣

∣

)

− εext . (12)

Equation (11) is solved by successive approximations

E(p)
0 = E0

p
P , p = 1, . . . P , E(0)

0 — linear approximation,

D(p)(x , y, z )

τ (p)(x , y, z )
=Eext

1 (x , y, z ) + [grad div + k2]

×
∫

V

G(x , y , z , z ′)D(p)(x ′, y ′, z ′)dv ′,

x , y, z ∈ V (13)

where τ (p)(x , y, z ) is defined from (12), where

D(x ′, y ′, z ′) = D(p−1)(x ′, y ′, z ′).
Perturbation method — first step of iteration method.

In (12) D(x ′, y ′, z ′) — solution of a linear IDE, τ —
inhomogeneous inside an object and also depends on linear

solution.

For dielectric bodies on a layered dielectric substrate, the

Green’s function his of tensor nature [23]. However, the

IDE transformations are the same.

It should be noted that the nonlinear part is located

on the left side of equation (13), therefore, the solution

method (13) and the program for a linear dielectric can

easily be transformed into a method and program for a

nonlinear dielectric. Compared to the linear approximation,

only diagonal elements due to the first (free) term in (13)
are changing.

IDEs (13) with respect to an unknown linear function

were solved by the Galerkin method, similar to how it is

done in [23,24]:

D(p)(x ′, y ′, z ′) =
∑

m

X(p)
m Vm(x ′, y ′, z ′),

where X
(p)
m is a matrix of unknown coefficients,

Vm(x ′, y ′, z ′) scalar basis functions independent of the

step number of the iterative process. As a result, by

using Galerkin method we’ll obtain SLAE relative to X
(p)
m .

Moreover, SLAE matrix elements generated by the integro-

differential term in (13) are the same as when solving a

similar linear problem. They do not depend on the step

number of the iterative process. Unlike the linear problem,

SLAE matrix elements generated by the free term (13) are

found by numerical integration.

After solving SLAE we find the diffracted field, which is

defined by (13) at x , y, z /∈ V

4. Numerical results

Figure 1 shows the results of calculating the reflection of a

Gaussian pulse with a duration of τ = 0.1 ns, with a carrier

frequency of 1 THz. Parameters of dielectric layer — ε = 2,

h = 26.5µm, substrate εs = 4. Parameters of graphene

µc = 0.25 eV, temperature 300K, relaxation time 1 ps. The

incidence is normal. R1,3 — first and third harmonics power

reflectance coefficients. The electric field strength during

graphene breakdown is more than 1.2MV/cm [25].
Calculation method — the spectrum of the incident

pulse was found, then the spectrum of the reflected and

transmitted pulses was calculated according to the described

method, after numerical inverse Fourier transformation

these pulses were found. Since the conductivity of graphene

depends on the square of the amplitude of the electric field

strength, the amplitudes of reflected pulses at both the main

and third harmonics are not directly proportional to the

amplitude of the incident pulse.

As in [16], the error of the perturbation method for this

structure is several percents (less than 5). Maximum error

at frequencies less than 1 THz. This is due to the fact that

the conductivity of graphene (σ1 and σ3) increases with the

drop of frequency. The discrepancy is not fundamental, but

it should be taken into account when calculating nonlinear

graphene structures in the field of plasmon resonance.
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Figure 1. Reflection of a Gaussian pulse from a graphene layer. Curve 0 — incident pulse (normalized to maximum), curves 1 — linear

mode, 2 — electrical field strength in the maximum of incident pulse E0 = 3MV/cm, 3 — E0 = 5MV/cm, 4 — E0 = 9MV/cm.

Figure 2 shows the dependences of reflection coefficients

on a nonlinear layer at various dimensionless normalized

external field strengths U0 = E0

√
α. The wavelength is

normalized to the layer thickness h. Parameters εlin = 9,

dielectric permittivity of the substrate 2.25. It can be seen

from Fig. 2 that the effect of self-action is mainly manifested

near the minimum of the reflectance coefficient R1.

Comparison of the perturbation method (number of

iterations P = 2) and the iterative method is shown in Fig. 3.

Parameters of the structure are the same as in Figure 2: The

main discrepancy is observed at high field strengths and

short wavelengths. When comparing, it should be taken into

account that both the iterative method and the perturbation

method have the same number of layers N into which the

nonlinear layer was divided.

Now let’s consider diffraction on the non-linear dielectric

strip grating. Figure 4 shows the unit cell of such a

diffraction grating (DG), a shaded rectangle — a cross-

section of a nonlinear dielectric strip. The grating is infinite

in the direction perpendicular to the plane of the drawing.

The figure shows a single-layer substrate, but the number of

layers in the program is arbitrary. Up to 100 layers were

tested. The method is described in [23] and in other papers,

the main difference, as mentioned above, is numerical, and

not analytical (as in the case of linear problem) integration

when calculating matrix elements due to the free term

in (13).

One of the method and program tests is transition from

the DG to the continuous layer at. The results are presented

in Fig. 2 as asterisks.

Some results of calculation of non-linear DGs are given

in Fig. 5, 6. The width of the dielectric strips L = d/2,
thickness h = d, linear part of the dielectric permittivity

εlin = 9, dielectric permittivity of the substrate 2.25; s -
polarization —vector E is perpendicular the plane of inci-

dence along the dielectric strips, magnetic field in the plane

of incidence; p-polarization — vector H is perpendicular

to the plane of incidence. At p-polarization — transverse

resonance is observed — reflectance is close to unity

(Fig. 5). Even a small non-linearity leads to a significant

change in characteristics. This is especially noticeable near

the resonance.

The error of perturbation method (Fig. 6) is several

percent, with the exception of short wavelengths with s
polarization.

Conclusions

Analytical and numerical-analytical methods have been

developed for solving nonlinear boundary value problems

Technical Physics, 2025, Vol. 70, No. 5
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Figure 2. Reflection from the non-linear layer. The incidence is normal. R p — power reflectance coefficient. Curve 1 — U0 ≪ 1, 2 —
U0 = 0.5, 3 — U0 = 1, 4 — U0 = 1.5, 5 — U0 = 2. Asterisks — calculation in the program for nonlinear diffraction grating.
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Figure 3. Comparison of the calculation results obtained by iterative method (solid curves) and perturbation method (curves with

asterisks). Digits of curves — normalized strength of external field.
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dielectric strips versus normalized wavelength. Self-action. U0 = 1.

Characters p, s denote p- and s -polarization of the incident wave.

Curves without symbols — iteration method, with symbols —
linear approximation.
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Figure 6. Reflectance of the main spatial harmonic with nonlinear

dielectric strips versus normalized strength of electrical field under

normally incident plane wave on the diffraction grating. Self-action.

1 — λ/d = 1.8, 2 — λ/d = 2.1. Characters p, s standing after the

curve number denote p- and s -polarization of the incident wave.

Curves without symbols — iteration method, with symbols —
linear approximation.

of electromagnetic wave reflection from a graphene layer

and a dielectric layer, problems of diffraction on a dielectric

body. It was demonstrated that non-linear IDE may be

transformed to IDE with a linear integral term and a non-

linear free term. This greatly increases the calculations rate.

Computer programs in C language have been developed

for numerical modeling of these objects. The perturbation

method error was tested.
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