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Solving inverse problems in optical spectroscopy of multicomponent solutions to determine component

concentrations is a complex task. One effective approach to solving this problem is the use of artificial neural

networks. However, one of the major challenges in this approach is the limited representativity of experimental

data, due to the complexity and high cost of large-scale physical experiments.

In this paper, algorithms for generating additional model data using variational autoencoders are explored and

compared to enhance the representativity of the training dataset. The results show that the most promising approach

is the use of a standard (unconditioned) variational autoencoder, generating patterns from the uniform distribution

in the latent space. Further research should focus on identifying the optimal distribution in the latent space for

generating patterns.
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Introduction

Currently, environmental pollution by heavy metals repre-

sents a global issue. Key sources of such pollution include

the metallurgical industry, mining, improper waste disposal,

transport, agriculture, and thermal power plants. Significant

threats arise from aerial deposition from both stationary

sources and vehicles; contamination of water resources due

to industrial wastewater discharge into water bodies; sewage

sludge; ash, slag, ore, and slurry waste dumps; as well as

oil spills and brine leaks in oil extraction areas [1].
Pollution of water resources is rapidly increasing world-

wide, making it a critical issue in many regions globally.

Heavy metals in water primarily exist as ions and, unlike

organic pollutants, do not undergo biodegradation. Once

released into the environment, they can accumulate in water,

soil, and living organisms.

Environmental scientists have identified a group of metals

that are particularly hazardous to human and animal health,

including cadmium, copper, arsenic, nickel, mercury, lead,

zinc, and chromium. When heavy metals accumulate in

organisms at high concentrations, they can disrupt nearly all

biological systems, causing toxic, allergenic, carcinogenic,

and gonadotropic effects [2].
Therefore, monitoring heavy metal ion concentrations

in wastewater, natural water bodies, and groundwater is

critically important.

Various methods exist for determining heavy metal

concentrations in water, including chromatography [3], am-

perometry [4], potentiometry [5], flow injection analysis [6],
voltammetry [7], capillary ion analysis [8], and others.

However, no single method currently satisfies all the desired

criteria of high accuracy, selectivity, rapid analysis, low

cost, and minimal operator expertise requirements simul-

taneously. For instance, selectivity can be achieved by using

target-specific reagents (e. g., in flow injection analysis), but
this increases operational costs. Chromatography provides

high analytical accuracy, but its application is limited by

long analysis times, expensive equipment, and complex

experimental procedures.

Optical spectroscopy methods [9] offer a balanced com-

promise, meeting key demands for speed, cost-effectiveness,

simplicity, accuracy, and selectivity. Optical spectroscopy

is widely used for ion concentration measurements in

solutions. Its advantages include non-invasiveness, rapid

analysis, and minimal sample preparation. Additionally, the

method is cost-efficient, as major expenses are associated

primarily with method development rather than routine

implementation. Currently, the most widely used optical

techniques are absorption spectroscopy and Raman spec-

troscopy.

However, when spectroscopy is used to determine the

concentrations of solution components, it becomes neces-

sary to solve an inverse problem (IP). Due to the high com-

plexity of such problems — often ill-posed in nature, with

a complex dependence of the spectral shape on physical

parameters and the lack of an adequate physical model for

analytical description — there exists no sufficiently accurate
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mathematical model capable of predicting the spectrum of

a solution with given component concentrations. Therefore,

only approximation-based approaches are suitable for solv-

ing spectroscopic IPs, including machine learning methods

such as artificial neural networks (ANNs).
The application of machine learning methods requires

a high-quality, representative dataset composed of a large

number of patterns. However, acquiring such datasets

is often challenging in spectroscopic applications due to

the cost-, labor-, and time-intensive nature of experiments.

These experiments require complex instrumentation, and

both sample preparation and data preprocessing demand the

involvement of skilled personnel.

To mitigate the difficulty of obtaining sufficient training

data, standard data augmentation techniques have been

proposed and successfully applied in many domains. These

techniques are data-type dependent and include noise

addition, geometric transformations, color correction, and

scaling for images [10]; pitch and speed modifications for

audio data; time stretching or compression [11]; and time

shifts for time series data [12], among others.

Unfortunately, such standard augmentation techniques are

not readily applicable to problems involving more complex

and domain-specific data. In the case of spectroscopic data

considered in this study, conventional augmentation meth-

ods fall short. Accurate interpolation is infeasible due to the

highly nonlinear and intricate relationship between optical

density and the concentrations of multiple components.

Incorporating data from open-access sources or independent

experiments is also problematic, as domain adaptation is

required to account for variations arising from differences

in experimental setups, instrumentation, and protocols —
suitable external datasets are scarce. Adding noise to

experimental spectra may improve model robustness to

noise, but does not enhance the overall quality of the inverse

problem solution [13].
In such cases, one can turn to methods that expand

existing datasets with synthetic patterns generated by neural

network-based generative models — most notably, varia-

tional autoencoders (VAEs) [14] and generative adversarial

networks (GANs) [15].
While GANs have demonstrated impressive performance

in many generative tasks, they are often less interpretable

and more difficult to train due to issues such as vanishing

gradients, training instability, and mode collapse [16].
The present study focuses on exploring the capabilities

of variational autoencoders for generative modeling of

spectroscopic data.

Variational autoencoders (VAEs) adopt a probabilistic ap-
proach to information encoding, enabling the construction of

efficient latent representations of data. These representations

can then be leveraged to transform the data in ways that

are more suitable for downstream processing with artificial

neural networks (ANNs).
Although synthetic data generated by a VAE do not intro-

duce fundamentally new information — since the generative

model is trained on the existing dataset — their use may

still yield beneficial effects for several reasons. First, due

to the architectural bottleneck inherent in VAEs, which

compresses input data into a lower-dimensional latent space,

the model can act as a denoiser, reducing the influence

of noise in the training data. Second, generated patterns

can help mitigate class imbalance and other distributional

defects in the original dataset, which in turn may lead

to improved performance during the training of machine

learning models.

The goal of the present work is to test the hypothesis that

expanding the training dataset with VAE-generated synthetic

patterns can improve its representativity by reshaping the

underlying data distribution, thereby reducing the error in

solving the inverse problem.

Previous studies [17] have shown that even data standard-

ization — which preserves the shape of the distribution but

alters its statistical properties — can improve the stability of

neural networks and enhance solution quality.

This study investigates several strategies for influencing

the distribution of target parameters through generative

modeling. One approach involves generating additional

synthetic patterns from a normal distribution to reshape

the combined dataset toward normality. This technique

addresses the issue that the training set consists of spectra

corresponding to solutions where each component con-

centration takes on only a few discrete values with fixed

intervals — a parameter
”
grid“. A second strategy explored

here involves generating additional patterns from a uniform

distribution. This is intended to improve data coverage in

underrepresented regions — particularly the
”
tails“ of the

distribution — and thus enhance the model’s generalization

ability by mitigating imbalances in the original dataset.

It is important to note that these considerations apply

to the distributions in the latent space rather than in the

space of original input features or target variables. The

autoencoder is not required to preserve the shape of data

distributions when mapping between latent and observable

spaces. Its role is to construct a compact representation

that efficiently encodes information about the input data.

Nevertheless, modifying the distribution of data in latent

space can indirectly improve the structure and represen-

tativity of data in the original and target domains. Such

improvements can positively impact the training of neural

networks, potentially resulting in better overall performance

on the inverse problem. Evaluating whether this effect can

be achieved is the primary focus of the present work.

In this study, we address an eight-parameter inverse

problem in spectroscopy, which involves the simultaneous

determination of the concentrations of multiple ions in

aqueous solutions of heavy metal salts. The target analytes

include metal ions: Cu2+, Ni2+, Fe3+, Zn2+, Li+, the NH+
4

ion, and and acid residues SO2−
4 and NO−

3 , based on their

optical absorption spectra. We explore methods for improv-

ing dataset representativity using variational autoencoders

(VAEs).
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This work builds on our previous studies. In [18], we

investigated the use of conditioned VAEs for training set

expansion in a classification problem. In [19], conditioned
VAEs were employed in conjunction with a latent-space

sampling procedure inspired by the partial least squares

(PLS) method. In the present study, we compare strategies

based on both conditioned and standard (non- conditioned)
VAEs, using latent-space sampling from different prior

distributions.

1. Working Principle of Variational
Autoencoders

1.1. VAE

An autoencoder is a fully connected neural network

comprising two main components: an encoder, which maps

information from the original data space into a lower-

dimensional space called the latent space, and a decoder,

which reconstructs the data from the latent space back to

its original form. The effectiveness of this transformation

is ensured by the loss function used during training, which

minimizes the discrepancy between the input and output of

the autoencoder.

The architecture of a variational autoencoder (VAE)
(Fig. 1) is similar, with two key distinctions: (1) a

specialized loss function allows the model not only to

minimize the reconstruction error between the input and

output, but also to ensure that the latent representations of

the data follow a distribution close to a multivariate normal

distribution; (2) instead of producing a direct representation

of a specific pattern, the encoder outputs the parameters of

a normal distribution in the latent space that best describes

the training data.

The loss function for a VAE consists of two terms:

the first term, the mean squared error between the input

and reconstructed output, enforces data reconstruction; the

latent space

coder decoder
data

Figure 1. VAE.

second term, the Kullback-Leibler divergence DKL [20], pe-
nalizes deviations between the distribution of latent variables

ωD (h1, h2, . . .) and a multivariate normal distribution ωN

(h1, h2, . . .).
Thus, the total loss function L for these networks is

defined as:

L =
1

N

N∑

i=1

(xi − yi )
2 + DKL(ωN, ωD),

where {xi} denotes the input vectors, {yi} — the re-

constructed output vectors, DKL is the Kullback-Leibler

divergence, ωN represents the multivariate normal prior dis-

tribution, ωD is the distribution of the latent representations,

and N is the number of patterns in the dataset.

It is important to note that training a network to

solve an inverse problem requires knowledge of the target

variable values corresponding to each input spectrum in

the training set. For the original experimental spectra,

this information is known a priori — for example, if the

solutions were specifically prepared and the true component

concentrations are known, or if the concentrations were

determined by an independent analytical method. However,

for spectra generated using a VAE, the target variables are

not inherently available. Therefore, an additional method

is required to assign appropriate target values to each

generated spectrum.

1.2. cVAE

In a conditioned variational autoencoder (cVAE), the

decoder receives not only the latent representation of the

data but also the corresponding target variables of the

inverse problem — i. e., the component concentrations that

the generated spectrum is expected to represent (Fig. 2).

target values

coder decoder
data

Figure 2. cVAE
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This conditioning mechanism allows the cVAE to generate

spectra associated with predefined target values [21], which

is particularly valuable when using the generated data to

train models for solving inverse problems. As a result,

the challenge inherent to standard (unconditioned) VAEs —
assigning target values to generated spectra — is no longer

present.

Furthermore, conditioning enables the generation of

patterns with target variable values chosen to shape the

distribution of the dataset directly in the target space,

rather than in the latent space. Provided the decoder

operates reliably, this allows for more precise control over

the representativity and balance of the training data in terms

of the desired physical parameters.

2. Physical experiment

The physical experiment conducted to obtain the data for

this study involved measuring the optical absorption spectra

of aqueous solutions containing various combinations and

concentrations of the following salts: Zn(NO3)2, ZnSO4,

Cu(NO3)2, CuSO4, LiNO3, Fe(NO3)3, NiSO4, Ni(NO3)2,
(NH4)2SO4, NH4NO3.

2.1. Spectrophotometry of multicomponent
aqueous solutions of inorganic salts.
Registration of optical absorption spectra

The spectra were recorded using a Shimadzu UV-1800

spectrophotometer in the spectral range of 190−1000 nm

with a 1 nm step size and a slit width of 1 nm. Mea-

surements were performed in a thin cuvette (optical path
length: 1mm) using distilled water as the reference. Thus,

each sample — represented by an optical absorption spec-

trum — was characterized by 911 features corresponding

to the absorbance values at specific wavelengths (spectral
channels).
Figure 3 shows the optical absorption spectra of selected

aqueous solutions.

2.2. Dataset

A total of 3.744 aqueous solutions of inorganic salts were

prepared using distilled water. These solutions contained

various concentrations of the following ions: Zn2+, Cu2+,

Li+, Fe3+, Ni2+, NH−

4 , SO
2−
4 , and NO−

3 . The concentrations

of each ion ranged from 0 up to a maximum value

specified in Table 1, with varying step sizes. The selected

concentration ranges reflect the typical ion concentration

intervals found in industrial water systems used in non-

ferrous metallurgy facilities.

Table 2 presents information on the number of one-, two-

, three-, and so on, component solutions, i. e., solutions

containing the specified number of components.

Thus, the experimental dataset consists of 3744 optical

absorption spectra of multicomponent aqueous solutions

containing various combinations and concentrations of the
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Figure 3. Examples of optical absorption spectra of the

studied aqueous solutions. The presented spectra correspond to

solutions with the following ion concentrations in mol/L (M):
Spectrum 1: Zn2+ − 0.23, Cu2+ − 0, Li+ − 0.12, Fe3+ − 0.22,

Ni2+ − 0.49, NH+
4 − 0, SO2−

4 − 0.49, NO−

3 − 1.23. Spectrum 2:

Zn2+ − 0.47, Cu2+ − 0, Li+ − 0.35, Fe3+ − 0, Ni2+ − 0.73,

NH+
4 − 0.2, SO2−

4 − 0.83, NO−

3 − 1.29. Spectrum 3: Zn2+ − 0,

Cu2+ − 0.44, Li+ − 0.23, Fe3+ − 0, Ni2+ − 0.24, NH+
4 − 0.8,

SO2−
4 − 0.64, NO−

3 − 1.12.

Table 1. Characteristics of datasets.

Ion Maximal Number of samples with

concentration, M non-zero ion concentration

Zn2+ 1.089 2373

Cu2+ 0.955 2373

Li+ 0.466 2373

Fe3+ 0.862 2373

Ni2+ 0.972 2373

NH4+ 0.801 2373

SO2−
4 1.373 3361

NO3− 4.906 3740

following ions: Zn2+, Cu2+, Li+, Fe3+, Ni2+, NH+
4 , SO

2−
4 ,

and NO−

3 . Each pattern is described by 911 features.

3. Computational Experiment

3.1. Cross-validation

The original dataset was split into training, validation,

and test subsets in a 7:2:1 ratio, resulting in the set sizes

presented in Table 3.

Technical Physics, 2025, Vol. 70, No. 5



12-th International Symposium on Optics and Biophotonics 23−27 September, 2024, Saratov, Russia 943

Table 2. The number of one-, two-, three-, and so on, -component

solutions.

The number of components The number of solutions

1 24

2 240

3 1080

4 1590

5 726

6 84

Table 3. Sizes of the training, validation, and test datasets.

Dataset The number of patterns

training 2620

validation 749

test 375

To ensure a robust evaluation of the inverse problem

solution quality, all experiments employed eight-fold random

resampling for cross-validation, following the Monte Carlo

approach [22].

In all experiments involving the generation of additional

data, the number of generated spectra was chosen so as

to double the size of the experimental training dataset, i. e.,

2,620.

3.2. Preprocessing of Input Data

To facilitate effective training of the regression neural

networks and to accelerate convergence during optimiza-

tion, a normalization procedure was applied to the optical

absorption spectra as a preprocessing step. Specifically, the

absorbance values in each spectral channel were rescaled to

the range [0,1] [26].

The lower bound of zero is physically justified by the

fact that absorbance values are inherently non-negative; the

absence of absorption at a given wavelength corresponds to

a zero value in the corresponding spectral channel.

For each feature x in the dataset, the minimum xmin and

maximum xmax values were computed. Each feature was

then transformed according to the following equation:

xnorm =
x − xmin

xmax − xmin

The concentration values of the ions were retained in their

original form for all patterns.

3.3. Output Dimensionality Reduction

In this study, the inverse spectroscopy problem was for-

mulated as a regression task and solved using artificial neural

networks — specifically, multilayer perceptrons acting as

universal function approximators. A standard approach for

reducing output dimensionality in multi-parameter regres-

sion tasks was adopted: autonomous determination [23], in
which a separate model is trained for each target variable.

Consequently, eight regression neural networks were trained

in total — one for each ion considered in the problem.

3.4. Increasing Dataset Representativity via

Pattern Generation

In this study, to improve the performance of inverse

spectroscopy problem solutions using neural networks, we

apply data representativity enhancement techniques based

on training set expansion through variational autoencoders

(VAEs).

Artificial spectra are generated using a VAE and subse-

quently added to the experimental training set. Regression

neural networks are then trained on the expanded dataset.

3.4.1. Reference IP Solution — Training Regres-

sion Neural Networks on Experimental Data Only

For each of the eight components — Zn2+, Cu2+, Li+,

Fe3+, Ni2+, NH+
4 , SO2−

4 , NO−

3 — a regression neural

network in the form of a multilayer perceptron was trained

using only the experimental data.

3.4.2. Expanding Dataset with VAE

The first approach involved training regression neural

networks (NNs) on a dataset expanded using a standard

(non-conditioned) variational autoencoder (VAE).
The dataset expansion algorithm using a VAE consists of

the following steps:

Step 1. Training reference regression NNs autonomously

to estimate ion concentrations on the original training set of

experimental optical absorption spectra.

Step 2. Training the VAE on the original training set of

experimental spectra.

Step 3. Generating synthetic patterns using the VAE

decoder from random vectors in the latent space, sampled

according to the parameters of the multivariate normal

distribution learned by the VAE encoder. If the normalized

optical density in any spectral channel was negative, it was

set to zero; if it exceeded 1, it was clamped to 1.

Step 4. Determining ion concentrations corresponding to

the generated spectra using the reference regression NNs

trained in Step 1. If the predicted concentration of any ion

fell outside the permissible range, the pattern was discarded.

The minimum allowed concentration was zero, and the

maximum was the highest observed concentration of that

ion in the entire experimental dataset.

Technical Physics, 2025, Vol. 70, No. 5
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Figure 4. Computational workflow for dataset expansion using VAE: 1. Training reference regression NNs on experimental spectra;

2. Training VAE on experimental spectra; 3. Using the VAE decoder to generate synthetic spectra from latent vectors sampled from the

target distribution; 4. Applying reference NNs (trained in Step 1) to estimate target parameters for generated spectra; 5. Training regression

NNs on the expanded dataset (doubled in size by adding synthetic spectra generated in Step 3 to the experimental spectra).

Step 5. Training regression NNs autonomously on the

expanded training set (double the original size), consisting
of half of experimental spectra and an equal number of

VAE-generated spectra following the described procedure.

Additionally, an alternative version of Step 3 was tested,

where latent vectors were sampled from a uniform distribu-

tion instead of a normal distribution.

The computational workflow for dataset expansion using

the VAE is illustrated in Fig. 4.

3.4.3. Expanding Dataset with cVAE

The algorithm for dataset expansion using a conditioned

Variational Autoencoder (cVAE) consists of the following

steps:

Step 1. Training the cVAE on the original training set of

experimental optical absorption spectra. During training,

the corresponding known values of target parameters (ion
concentrations) associated with these spectra are used.

Step 2. Generating synthetic patterns using the cVAE

decoder from random vectors in the latent space, sampled

according to the parameters of the multivariate normal

distribution in the latent space learned by the cVAE

encoder. For generating additional patterns, concentration

sets already present in the experimental training dataset

were selected. If the normalized optical density in any

spectral channel was negative, it was set to zero; if greater

than 1, it was clamped to 1.

Step 3. Training regression neural networks au-

tonomously to predict ion concentrations on the expanded

training set. This doubled-size dataset consists of half

of experimental spectra and an equal number of spectra

generated by the cVAE following the described procedure.

The computational workflow for dataset expansion using

the conditioned VAE is illustrated in Fig. 5.

3.5. Model Parameters

3.5.1. Architecture of Regression Neural Networks

Multilayer perceptrons (MLPs) were used as regression

neural networks. Each MLP architecture consisted of two

hidden layers with 64 and 16 neurons, respectively, followed

by a single-neuron output layer. The hidden layers employed

Technical Physics, 2025, Vol. 70, No. 5
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Figure 5. Computational workflow for dataset expansion using a conditioned VAE (cVAE): 1. Training the cVAE on the training

set of experimental spectra; 2. Using the cVAE decoder to generate synthetic spectra from latent vectors with the target distribution,

corresponding to specified concentration sets; 3. Training regression NNs on the expanded dataset (doubled in size by adding synthetic

spectra generated in Step 2 to the experimental spectra).

sigmoid activation functions, while the output layer used a

linear activation function.

3.5.2. VAE Architecture

Encoder: The encoder is implemented as a multilayer

perceptron (MLP) with a single hidden layer. The hidden

layer consists of 256 neurons with sigmoid activation, while

the output layer contains 2× LS = 2× 91 neurons with

linear activation. Here, LS denotes the dimensionality of the

latent space. The output of the encoder is a two-dimensional

vector of length LS = 91, where one component represents

the mean µ and the other the variance σ
2 of a normal

distribution along each coordinate of the latent space.

Decoder: The decoder is also an MLP with a single

hidden layer. The input layer contains LS = 91 neurons

with sigmoid activation. The hidden layer has 256 neurons

with sigmoid activation, and the output layer consists of

911 neurons with linear activation. The input to the decoder

is a one-dimensional latent vector h = v
g
noise× σ + µ, of

length LS = 91, where v
g
noise is a random vector of

dimensionality LS = 91, sampled from a standard normal

distribution.

3.5.3. cVAE Architecture

Encoder: The encoder is implemented as a multilayer

perceptron (MLP) with a single hidden layer. The hidden

layer consists of 256 neurons with sigmoid activation, while

the output layer contains 2× LS = 2× 91 neurons with

linear activation. Here, LS denotes the dimensionality of the

latent space. The output of the encoder is a two-dimensional

vector of length LS = 91, where one component represents

the mean µ and the other the variance σ
2 of a normal

distribution along each coordinate of the latent space.

Decoder: The decoder is also an MLP with a single

hidden layer. The input layer contains LS+ 8 = 91 + 8

neurons with sigmoid activation. The hidden layer has

256 neurons with sigmoid activation, and the output layer

consists of 911 neurons with linear activation. Here, LS

denotes the dimensionality of the latent space, 8 — the

number of target parameters (i. e., the number of ions

to be predicted). The input to the decoder is a one-

dimensional latent vector h = v
g
noise× σ + µ, of length

LS = 91, where v
g
noise is a random vector of dimensionality

LS = 91, sampled from a standard normal distribution and

an 8-dimensional vector containing the specified set of

concentrations.

3.5.4. Model Training Parameters

In all neural network training experiments, the stopping

criterion was defined as reaching 250 epochs after the last

decrease in the validation loss. The Adam optimization

algorithm [24], a variant of stochastic gradient descent, was

used with a learning rate of 0.001 and a batch size of

64 patterns.

The loss function for the regression neural networks was

the mean squared error (MSE), defined as:

MSE=
1

N

∑N

i=1
(ytrue

i − ypred
i )2,

where ytrue
i is the ground truth value for the i-th pattern;

ypred
i is the output of the network for the i-th pattern; N —

dataset size.

The loss function for variational autoencoders is the

sum of the mean squared error (MSE) and the Kullback-

20 Technical Physics, 2025, Vol. 70, No. 5
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Figure 6. Examples of spectra generated by VAE and cVAE.

M
A

E
, 
M

0
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E + VAE(n)

2+Zn 2+Cu 2+Li 2+Fe 2+Ni +NH4
2–SO4

–NO3

E

E + VAE(u)

E + oVAE(n)

Figure 7. Error metrics obtained solving the inverse spectroscopy problem using the reference method (E) and with dataset expanded

using: − VAE with sampling from a normal distribution in the latent space (E+VAE(n)), − VAE with sampling from a uniform distribution

in the latent space (E+VAE(u)), and − cVAE with sampling from a normal distribution (E+cVAE(n)).

Leibler (KL) divergence DKL:

L =
1

N

∑N

i=1
(xi − yi )

2 + DKL(ωN, ωD),

where {xi} — input vector, {yi} — output vector, DKL —
Kullback-Leibler (KL) divergence, ωN — normal distribu-

tion, ωD — data distribution in the latent space, N — dataset

size.

4. Results

To evaluate the quality of the IP solution, the Mean

Absolute Error (MAE) was used. MAE calculates the

average absolute difference between the predicted values

of the target variable (network outputs) and the true values.

MAE is defined by the equation:

MAE =
1

N

∑N

i=1
|ytrue

i − ypred
i |

where ytrue
i is the ground truth value for the i -th pattern;

ypred
i is the output of the network for the i -th pattern; N —

dataset size.

4.1. Generated Spectra

The spectra generated using both VAE and conditioned

VAE (cVAE) exhibit visual similarity to the experimental

Technical Physics, 2025, Vol. 70, No. 5
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spectra (Fig. 6). Furthermore, the generated spectra

demonstrate reduced noise levels in the short-wavelength

region compared to their experimental counterparts.

4.2. Regression Task accuracy

The error metrics obtained for solving the inverse spec-

troscopy problem using the reference method and with

dataset expansion using synthetic spectra generated by VAE

and cVAE are presented in Fig. 7.

These results indicate that the performance of regression

neural networks using VAE-generated synthetic spectra

sampled from a normal distribution in the latent space

remains essentially unchanged compared to the reference

method, within the limits of experimental uncertainty. The

inclusion of synthetic patterns in the training set did not lead

to any statistically significant improvement or degradation in

the model’s accuracy.

On the other hand, generating synthetic spectra from a

uniform distribution in the latent space yields, on average,

better results than generation from a normal distribution.

For Zn2+ and Li+ ions, a statistically significant improve-

ment over the reference method was observed.

In contrast, the use of a conditioned VAE leads to an

increase in test error, in some cases substantially. This issue

may potentially be mitigated by refining the strategy for

selecting concentration sets used during generation.

Conclusion

In this study, we address the inverse problem of spec-

troscopy for multicomponent aqueous solutions of salts

containing eight ions: Zn2+, Cu2+, Li+, Fe3+, Ni2+, NH+
4 ,

SO2−
4 , and NO−

3 . The problem is approached using

artificial neural networks. We investigate the possibility of

expanding the experimental spectroscopic training dataset

using variational autoencoders (VAEs). The objective is

to improve the accuracy of the inverse problem solution

relative to a reference model trained solely on the original

experimental data.

We propose and describe algorithms for dataset expan-

sion based on both standard and conditioned variational

autoencoders (cVAEs). Using trained VAEs, we produce

synthetic spectra that are subsequently combined with

experimental spectra during the training of regression neural

networks designed to solve the inverse problem.

To test the hypothesis that the proposed methods can

improve dataset representativity by altering data distribution,

a series of experiments were conducted involving the train-

ing of regression neural networks on different training sets:

(1) the original experimental dataset; (2) a dataset expanded
using a conditioned variational autoencoder (cVAE); and
(3) datasets expanded using a standard (non- conditioned)
variational autoencoder (VAE) with pattern generation from

either a normal or a uniform distribution in the latent space.

Accuracy metrics for the inverse problem solution were

obtained for each case.

The cVAE-based dataset expansion approach resulted in

decreased accuracy compared to the reference method.

The method using a VAE with latent-space sampling from

a normal distribution produced results comparable to the

reference model. In contrast, VAE-based dataset expansion

approach with uniform sampling in the latent space led to a

slight but statistically significant reduction in prediction error

for the Zn2+ and Li+ ions on the test set. However, for most

target components, the accuracy metrics of networks trained

on expanded dataset remained within the error bounds of

the reference metrics.

These results suggest that the proposed approach holds

promise, but further investigation is needed to optimize the

conditions and parameters of the computational experiment.

In particular, future work should focus on identifying opti-

mal latent-space sampling strategies for generating synthetic

spectra and effectively expanding the training dataset.
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