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A method for studying the spatial correlation properties of a stochastic wave field with a wide angular spectrum

based on a correlation analysis of the spatial distribution of the complex amplitude of this field formed using

numerical modelling is proposed and tested. A comparison of the results of determining the transverse correlation

properties of a monochromatic field in its various sections based on the proposed method with the results obtained

based on analytical formulas showed their very good agreement. The distribution of the complex amplitude of

the optical wave field with a wide angular spectrum of spatial harmonics was numerically simulated for various

intervals of variation of the random initial phases of the harmonics in the range from 0 to 2π radians. The correlation

properties of the fluctuation components of the generated disturbance fields in the lateral plane of the wave field

are investigated numerically. It is established that the length of the lateral correlation of field fluctuations does not

change with a variation of the interval of the initial phase difference. Studies have shown that the lateral spatial

coherence — the shape of the coherence function and the length of the coherence, of a quasi monochromatic wave

field is determined by the numerical aperture value of the field and the shape of its angular spectrum.
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Introduction

The surfaces of natural, technical, and biological objects

are usually not smooth in terms of optics. Surface

irregularities are often comparable to the wavelength of

optical radiation, and therefore they scatter light. When

such surfaces are illuminated by laser (coherent) radiation,

speckle structures appear in the reflected field, which are

the result of wave interference from individual surface

inhomogeneities [1–5]. Spatial variations in the thickness of

an object, refractive index, and reflectivity or absorbance of

the medium also lead to light scattering. Laser radiation has

a high degree of spatial and temporal coherence, therefore,

light waves formed when such radiation is scattered by an

optically inhomogeneous object are capable of interfering,

since they turn out to be mutually coherent. Therefore,

during the scattering of laser radiation, the wave fields

formed in free space and in optical systems are speckle-

modulated [1–5].

In practice, which is always the case, radiators emit

non-monochromatic waves of different frequencies, and

a dynamic speckle structure appears in the radiation of

such a source, which has a stochastic character with a

fluctuation time (coherence time) τc , inversely proportional

to the width 1ω of the frequency spectrum of such

radiation, τc ≈ 2π/1ω [6–8]. This is the approximate

time of quasi-stationarity of instantaneous speckle struc-

tures. The radiation of a quasi-monochromatic source

at frequency spectrum width 1λ = 2 · 10−4 µm and av-

erage wavelength λ0 = 0.55 µm has a coherence time

τc = lc/c = λ20/c1λ ≈ 10−11 s. In real conditions, instan-

taneous speckle structures turn out to be experimentally

unobservable due to the short coherence time τc and the

relatively long reaction time of existing photodetectors.

During one microsecond (this is approximately the min-

imum reaction time of existing photodetectors), N ≈ 105

realizations of instantaneous speckle-modulated patterns

change, and an image averaged over N realizations of

instantaneous speckle-modulated patterns is recorded.

However, instantaneous speckle structures can be nu-

merically simulated and investigated qualitatively and

quantitatively using integral diffraction transformations of

fields [9,10]. In [11], it was shown using numerical

experiment that in a partially coherent optical wave field,

instantaneous speckle structures are always formed that

change over time, which determine the spatiotemporal

fluctuations of the field and, accordingly, its spatial coherent

properties.

Mathematical modeling is a necessary tool for studying

the processes occurring in various optical systems [12–
16]. Modeling the formation of wave fields in free space

and in optical systems makes it possible to study the

properties of these fields and the optical systems that form

them, for example, in optical high-resolution interference

microscopy [17–19]. The diffraction processes that take

place in optical systems are the basis for modeling complex

measured signals in the interference measuring systems and

obtaining accurate results for system-level studies [20,21].
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Currently, modeling is the basis for the development of fairly

new methods of imaging, such as lens-free image acquisition

methods, for example, ptychography jcite22, and ghost

imaging [23]. At the same time, the frequently used paraxial

approximation of diffraction integrals used to describe wave

fields no longer satisfies the tasks of describing wave fields

with wide angular spectra [22].

Quantification of the decorrelation of optical wave fields

with wide frequency and angular spectra in optical systems

is critical in terms of application method when such fields

pass through the interface of media with different refractive

indices [24,25], for the development of correlation interfer-

ence microscopy [18,19,26,27], determination of geometric

and optical parameters of objects[28.29], assessment of

optical fields effect on biological objects at the cell level [30],
analysis of terahertz wave fields, when the fields with a large

numerical aperture are formed [31].

The purpose of this work was to develop and test a

method for studying the spatial correlation properties of

a quasi-monochromatic wave field with a wide angular

spectrum based on numerical modeling and correlation

analysis of spatial distributions of the complex amplitude

of this field in its cross sections without using paraxial

approximation and to develop methods for studying the

spatial correlation properties of wave fields based on

computer modeling as an alternative or augmentation to the

in-situ experiment. The work also aimed at studying the

influence of the width of the wave field angular spectrum

on the transverse correlation properties of this field using

the proposed method of correlation analysis.

1. Method for numerical modelling of
optical speckle-modulated wave fields
and diffraction structures in the far
diffraction region

A spatial partially coherent wave field is created by an

extended spatially incoherent or partially coherent polychro-

matic light source [6,7]. In the diffraction region of such

sources, a spatial partially coherent wave field is formed

with limited spatial coherence lengths, which are determined

by both the width of the angular spectrum and the width of

the frequency spectrum of this field [32]. Spatial incoherent
self-luminous primary sources of the wave field are thermal

light sources, gas-discharge lamps, and LEDs having a

wide frequency spectrum of radiation. In accordance with

Huygens-Fresnel principle, secondary extended light sources

are formed, in practice, for example, a thin diffuser or pupil

of an optical system, which can serve as a source of a

partially coherent wave field.

With coherent illumination of the diffuser, elementary

scattered secondary waves turn out to be mutually coherent

and interfere in space. In the scattered wave field

there is formed an irregular interference speckle-modulated

structure which is distinguished by a pronounced stochastic

character due to the random spatial arrangement of scat-

tering centers and their random optical properties [1–5].
If the diffuser is stationary and its scattering elementary

centers are unchanged in time, then the speckle-modulated

structures formed in the scattered field have a stationary

character. Otherwise, a dynamic speckle structure is formed

in the scattered field [1,4]. Figure 1 shows an optical scheme

for the formation of a speckle-modulated pattern in x , y
plane in the far diffraction region during scattering of laser

coherent radiation.

The field of complex amplitudes E(x , y, z , t = 0) in

the far diffraction region can be defined as a super-

position of plane waves for all components of the fre-

quency spectrum of this field with all possible spatial

frequencies (kx , ky , kz ) within the field angular spectrum

with a given numerical aperture NAi with random initial

phases of spatial harmonics ϕ0(kx , ky ) from 0 to 2π

radians:

E(x , y, z , t = 0) ∼

k2
∫

k1

g(k)
[x

E(kx , ky )P(kx , ky )

× exp[i(kx x + ky y + kz z )]dkx dky

]

dk, (1)

where g(k) — frequency spectrum, P(kx , ky ) —
aperture function of the wavefield angular spectrum,

E(kx , ky) = A(kx , ky) exp(ϕ0(kx , ky)) — complex ampli-

tude of plane wave, k = 2π/λ — wavenumber correspond-

ing to the wavelength λ of monochromatic wave field; kx ,

ky and kz — spatial frequencies — projections of wave

vector k on axis X , Y and Z respectively, that may be

expressed as follows:

kx = k cosα sin θ,

ky = k sinα sin θ,

kz =
√

k2 − k2
x − k2

y = k cos θ, (2)

where α and θ — azimuth and zenith angles which specify

the direction of wave vector k in space (Fig. 2). Azimuth

angle α varies from 0 to 2π, zenith angle θ — from 0 to

D L

S
f

z

I(x, y)

Figure 1. Scheme of speckle structure formation in the far

diffraction region.
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Figure 2. Wave vector of plane wave incident at an angle of θ

to the axis z , and its components in 3D space.

some aperture angle θA, equal θmax — maximal angle of

plane waves propagation, the superposition of which makes

the wave field (1).

The formula (1) defining the field of complex amplitudes

of the wave field E(x , y, z , t = 0) can be written in discrete

form

E(x , y, z , t =0)∼

k2
∑

k=k1

ky max
∑

ky =ky min

kx max
∑

kx =kx min

g(k)A(kx , ky )P(kx , ky)

× exp(ϕ0(kx , ky)) exp[i(kx x +kyy +kz z )].

(3)

Based on formula (3) numerical modelling of speckle-

modulated diffraction structures was performed for the

discrete representation of the wave field. The wave field

was formed by adding and interfering plane waves of

various directions within the numerical aperture of the

wave field for all components of the frequency spectrum.

To simulate the rectangular shape of the aperture, plane

waves with all discrete values ky and kx were formed

during the formation of the wave field in the intervals

ky min−ky max and kx min−kx max, respectively, within the

boundaries of the rectangular numerical aperture NAi ,

which corresponds to the wave vector kNAi . To model

the curved shape aperture, e.g. round shape, first a

square area with a given numerical aperture NAi on the

square’s sides was determined, then all points within the

circle inscribed in this area with discrete values ky and

kx were selected in this area, which meets the condition

kxy ≤ |kNAi |, kxy =
√

k2
x + k2

y — projection of the wave

vector k onto the plane (x , y) (Fig. 2). The angular

apertures of a more complex-shape field can be simulated

in a similar way. Figure 3 shows fragments of simulated

images of speckle structures in the plane (x , y) for the

quasi-monochromatic wave field 1k ≈ 0, which represent

the intensity distribution of the speckle modulated field

I(x , y) = |E(x , y)|2.

2. Method for studying the wave field
spatial coherence based on
correlation analysis of the spatial
distribution of its complex amplitude

Minimal transverse ε⊥ and longitudinal ε‖ sizes of instan-

taneous speckles are defined, accordingly, by the lengths of

transverse ρ⊥and longitudinal Lc spatial coherence of the

wavefield [33]. The size of the speckles coincides with

the size of the cross-correlation region of the scattered

field, since the amplitude and phase of the field remain

approximately unchanged within a single speckle. The

transverse coherence length ρ⊥ is determined by the

average wavelength λ0 of frequency spectrum and the

width of angular spectrum 2θi of the wave field [7,9].
The dependence ρ⊥ on the frequency spectrum width is

manifested only with a sufficiently large width of frequency

spectrum [32,34] and a small numerical aperture NAi . The

magnitude of transverse correlation of the wave field with

the square aperture of angular spectrum is determined by

the formula [32,34]:

ρ⊥ ≈
λ20

n1(2λ0 + 1λ) sin(θi )
≈

λ0

2n1 sin(θi)
=

λ0

2NAi
, (4)

where 1λ — frequency spectrum width in the wavelength

scale. For the length of the transverse correlation of

a monochromatic wave field with a circular aperture of

angular spectrum, we may write the expression [32,34]:

ρ⊥ ≈ 1.22
λ0

2n1 sin(θi )
= 1.22

λ0

2NAi
, (5)

Minimal longitudinal size of instantaneous speckles ε‖,

and, hence, longitudinal length of coherence Lc are depen-

dent on both, the width of frequency spectrum and width

of angular spectrum of field [32,34]:

Lc ≈

[

1λ

λ20
n1 +

2n1

λ0
sin2

(

θi

2

)]−1

≈

[

1

lc
+

1

ρ‖

]−1

, (6)

where lc — length of the wavefield temporal coherence in

the medium with refractive index of n1

lc ≈ vτc ≈
λ20

n11λ
=

lcv

n1

, (7)

a b c

Figure 3. Fragments of speckle-modulated diffraction structures

modulated in the numerical experiment λ0 = 0.63 µm, 1k ≈ 0,

with the aperture of the field angular spectrum: a — circular

square, b — circular triangular, c — rectangular.
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v — light speed in the medium, τc — time of coherence,

lcv — length of wavefield temporal coherence in vacuum,

ρ‖ — length of the wavefield longitudinal coherence in the

medium, depending only on the width of angular spectrum:

ρ‖ ≈
λ0

2n1 sin
2(θi/2)

=
λ0

n1 −
√

n2
1 − NA2

i

. (8)

The correlation properties of a speckle-modulated field,

as a kind of spatial random field, can be established using

an autocorrelation function according to the autocorrelation

theorem [5,10]. To find the function of autocorrelation

Ŵ(1x , 1y) of the wave field E(x , y) in x , y plane the

following expression may be written

F{Ŵ(1x , 1y)} = F
{x

E(x , y)E∗(x − 1x , y − 1y)dxdy
}

=F{E(x , y)}·[F{E(x , y)}]∗= |F{E(x , y)}|2

= |E(kx , ky )|
2 = I(kx , ky ),

(9)
where Ŵ(1x , 1y) =

s
[E(x , y)E∗(x − 1x , y − 1y)dxdy —

an autocorrelation function of complex perturbations

E(x , y), E(kx , ky ) — a complex spatial frequency spectrum

of the perturbation field, I(kx , ky ) — spatial frequency

spectrum in terms of intensity (power), F — forward

Fourier transformation, ∗ — complex conjugation sign.

To both sides of the equation (9) apply the inverse Fourier
transformation

F−1{F{Ŵ(1x , 1y)}} = F−1 {F{E(x , y)} · [F{E(x , y)}]∗}

= F−1
{

|F{E(x , y)}|2
}

,

(10)
from where we get the formula for calculating the auto-

correlation function from the calculated field of complex

amplitudes E(x , y):

Ŵ(1x , 1y) = F−1 {F{E(x , y)} · [F{E(x , y)}]∗}

= F−1
{

|F{E(x , y)}|2
}

= F−1
{

|E(kx , ky)|
2
}

= F−1{I(kx , ky)}, (11)

where

F−1{I(kx , ky)}=
x

I(kx , ky) exp[−i(kx1x +ky1y)]dkxdkx .

The expression (11), written in shortened form, is the

Wiener-Khinchin theorem [6]:

Ŵ(1x , 1y) =
x

I(kx , ky) exp[−i(kx1x + ky1y)]dkxdkx .

(12)

The function (11) of the wave field autocorrelation in XY
plane passing through the pointz = 0, at a moment of time
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Figure 4. Autocorrelation function of the complex amplitude of

wave field in cross-section; λ0 = 0.55 µm, 1k ≈ 0, square aperture

of the field angular spectrum, numerical aperture NAi = 0.5.

t = 0, may be written in discrete form

Ŵ(1x , 1y, z = 0, t = 0)

=

x2
∑

x=x1

y2
∑

y=y1

E(x , y, z = 0, t = 0)

× E∗(1x − x , 1y − y, z = 0, t = 0)

= F−1
{

F(E(x , y, z = 0, t = 0))

× [F(E(x , y, z = 0, t = 0))]∗
}

. (13)

Formula (13) was used in numerical calculations of the

autocorrelation function of a speckle-modulated wave field.

The normalized three-dimensional autocorrelation function

of the speckle field, the aperture function of the angular

spectrum of which has the shape of a square ring found

from the formula (13), is shown in Fig. 4.

In full-scale and numerical experiments, the transverse

sizes of speckles and, consequently, the lengths of transverse

ρ⊥ and longitudinal Lcspatial coherence of the wave field

can be determined from the width of the speckle field auto-

correlation function, as half the width of the function central

maximum. The use of fast Fourier transform algorithm

in numerical experiment to calculate the autocorrelation

function significantly reduces the calculation time of the

wave field correlation parameters.

3. Study of cross-correlation of a
quasi-monochromatic wave field with
a wide angular spectrum

Section 3 outlines the findings of numerical modeling

of correlation properties of a wave field in its cross-

section. The cross-sectional field of complex amplitudes

E(x , y) simulated in a numerical experiment, according to

formula (3), was formed as a superposition of plane waves

with various spatial frequencies kx , ky within the spatial

spectrum of a field with a given angular numerical aperture

NA and random initial phases ϕ0(kx , ky) in the range

Technical Physics, 2025, Vol. 70, No. 5
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Figure 5. Modelled speckle patterns of wavefield in cross-

section for the square aperture of angular spectrum with numerical

apertureNAi , equal: a — 0.2, b — 0.5, c — 0.8; size of fragments

of speckle patterns 20× 20µm. Functions of field transverse

correlation (d): ρc — length of field transverse correlation

(coordinate of the first minimum Ŵ(1y)), λ0 = 0.55 µm, 1k ≈ 0.
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correlation (d): ρc — length of field transverse correlation
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Figure 7. Coherence transverse length versus various frequency

spectrum widths.

from 0 to 2π radians. The fragments of modelled speckle-

modulated patterns are given in Fig. 5, a−c and 6, a−c.

The wave field cross-correlation function was calculated

using the formula (11). In the numerical experiment, the

effect of numerical aperture on the magnitude of field

correlation was examined. Figures 5, d and 6, d show the

normalized cross-correlation functions of the simulated wave

field with a numerical aperture having a different magnitude

and shape.

Figure 7 shows curves of the transverse coherence length

versus numerical aperture ρ⊥(sin θ) = ρ⊥(NAi), plotted

using formula (4), for different widths of the frequency

spectrum in the wavelength scale 1λ.

The coherence lengths ρc , determined from the curves of

coherence function Ŵ(1y) (Fig. 5, d and 6, d), correspond to

the theoretical values with high accuracy in the numerical

experiment, defined by the formula (4). The accuracy of

determining ρc depends on the ratio between the size By of

the analyzed field and the size of spatial fluctuations — field

speckles, εy ≈ ρc . The spread 1ρc of values ρc obtained

for different field realizations decreases with increasing ratio

By/εy , since in this case the efficiency of the averaging

operation used to calculate the correlation function of

Ŵ(1y) field goes up (Fig. 6, d). Thus, at relatively large

numerical field aperture NAi = 0.2 we have large speckles,

ρc ≈ 1.68 µm, and we get 1ρc ≈ 0.09 µm, whereas at

NAi = 0.8 small speckles are obtained, ρc ≈ 0.42 µm, and

the spread of 1ρc ≈ 0.02 µm with the same size By of the

analyzed field.

4. Study of cross-correlation of
a quasi-monochromatic wave field
with a wide angular spectrum at
various intervals 1ϕ of random initial
phases

In this paper, a numerical experiment was performed to

study the formation of speckle structures in the cross-section

of a circular aperture wave field with a gradual increase of

random initial phases 1ϕ of plane waves, from the totality

Technical Physics, 2025, Vol. 70, No. 5
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a b c

d e f

Figure 8. Fragments of modelled speckle patterns of wavefield in cross-section for round aperture; interval of random initial phases 1ϕ

and brightness of the speckle pattern: a — 0.4π, +95%; b — 0.8π, +95%; c — 1.2π, +95%; d — 1.4π, +95%; e — 1.8π, +60%; f —
2π, +30%; λ0 = 0.55 µm, 1k ≈ 0, round shape of the angular spectrum aperture with NAi = 0.5, size of speckle pattern fragments —
20× 20µm.

of which the wave field is formed. Fragments of the formed

speckle structures at various intervals of 1ϕ random initial

phases are shown in Fig. 8.

As can be seen in the Figure, the mature speckle field is

formed in the interval of random initial phases distribution

1ϕ = 2π rad (Fig. 8, f), and in case of small interval 1ϕ

the interference zero order maximum is clearly observed

(Fig. 8, a−c). With a further increase in the interval1ϕ, a

gradual decrease of maximum intensity in the center of the

pattern is observed (Fig. 8, d, e), as well as transition to a

mature speckle pattern at the interval 1ϕ = 2π rad. Figure

9 shows the normalized cross-correlation functions of the

simulated wave fields along the coordinate 1y , respectively,
for fragments of speckle patterns, which are shown in Figure

8. As can be seen from the graphs, the cross-correlation

lengths of the field ρc (coordinates of the first minimum

Ŵ(1y)) practically coincide for all intervals of random initial

phases of plane waves 1ϕ.

The results of numerical modelling show that the trans-

verse coherence length of the quasi-monochromatic wave

field obtained by superposition of plane waves with different

random phases 1ϕ does not depend on the phase variation

interval — phase dispersion, but depends on the width and

shape of the wave field angular spectrum.

Conclusion

The paper describes the testing of the proposed method

for studying the spatial correlation of a stochastic wave

field having wide angular spectrum based on a correlation
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wave field intensity distribution in cross-section (b); 1ϕ —
interval of random initial phases of the field harmonic components,

λ0 = 0.55 µm, 1k ≈ 0, round-shaped aperture of the angular

spectrum NAi = 0.5.
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analysis of the spatial distribution realization for the complex

amplitude of this wave field, formed (computed) using nu-

merical modeling. The transverse correlation properties of a

monochromatic field found based on correlation analysis of

the simulated distributions of the complex amplitude of this

field compared with the properties obtained on the basis

of analytical formulas showed their very good consistency.

Using the proposed method, it is demonstrated that the

transverse spatial coherence — the shape of the coherence

function and coherence length of the quasi-monochromatic

wave field — is determined by the magnitude of the

numerical aperture and the shape of its angular spectrum.

The study includes numerical modeling of distribution of

the complex amplitude of a quasi-monochromatic wave field

in its cross-section with an interval of random initial phases

of the field harmonic components in the range from 0 to 2π

radians. Studies have shown that the length of transverse

correlation of field fluctuations depends on the width and

shape of the wave field angular spectrum and does not

change with variation of the difference interval of initial

phases of the field spatial harmonic components.

Studies have demonstrated that numerical modeling is

a tool that to a great extent corresponds to the real

processes of speckle structures formation and their spatial

spectra, and is a good addition to the real experiment in

ongoing research [35,36]. This circumstance is an important

factor, since when implementing a full-scale experiment,

certain technical difficulties may arise during preparing and

implementing the experiment. Studies have proven the

effectiveness and prospects of numerical methods for the

formation of optical speckle-modulated wave fields and

diffraction structures and examination of spatial correlation

properties of a stochastic wave field having wide angular

spectrum for further development and use of the proposed

numerical methods as an alternative and augmentation of a

full-scale experiment.

Funding

The work was carried out within the framework of

the State Assignment of the Ministry of Science and

Higher Education of the Russian Federation (theme

No. 121022000123-8 Precision diagnostics, sensors and

process control in technical and living systems based on pho-

tonic technologies, including the solution of thermophysical

problems).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] J.W. Goodman. Speckle Phenomena in Optics: Theory and

Applications (SPIE PRESS, Washington, 2020)
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