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Design and simulation of a multichannel DOE for aberration analysis

with increased diffraction efficiency
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The efficient methods for calculating complex transmission function of a phase diffractive optical element (DOE)
with a given multichannel intensity distribution have been designed. Based on numerical modeling, testing of the

multichannel phase DOE designed for detecting wavefront aberrations, has been carried out. Numerical modeling

was used to estimate the diffraction efficiency and root-mean-square error characteristics of DOEs. The possibility

of using the partial coding algorithm to design the DOE matched with 25 and 49 basis functions has been shown.

The smallest error of 15% is achieved with diffraction efficiency values of 52%. The maximum diffraction efficiency

of 85% using the proposed algorithm can be achieved with the error value equals to 31%.
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Introduction

The computation of the phase diffractive optical element

(DOE) proposed in this paper is relevant because of many

reasons. First, to provide a possibility of using simple

methods for their fabrication. It is known that the diffraction

efficiency of the elements significantly depends on the

accuracy of manufacturing the phase relief [1,2]. Secondly,
there is a need to develop methods for calculating phase

DOEs consistent with a linear combination of a finite modes

number with specified weights. This is required to form a

given amplitude-phase distribution in the beam cross-section

based on an arbitrary variation of the mode composition and

the weight contribution of each of the modes [3–5]. Thirdly,
to ensure high energy efficiency based on the use of phase

DOEs in optical circuits based on liquid crystal spatial light

modulators and digital micromirror devices for experimental

testing of numerical results.

Various methods of phase DOEs computation are known:

geometric-optical approach based on the analytical solution

of the eikonal equation and construction of a ray path

from points on DOE surface to points in a given im-

age [6,7]; direct search algorithms [8,9]; error diffusion [10],
pseudorandom coding [11], composition method [12,13],
differential evolution [14], and their various modifications

and combinations [15]. At the same time, iterative methods

can be considered the most versatile tool for computation of

DOEs in various applications [16–23], although they do not

guarantee convergence to a global minimum and require

repeated use of the direct and reverse operators at each

iteration, which leads to significant time and computational

costs.

In the framework of this paper, the partial encoding

method is considered, which is itself a non-iterative and

fairly fast digital holography algorithm[24–27], designed for

use with spatial light modulators. The method is designed

to replace the amplitude-phase transmission function by

the phase modulation function, taking into account the

replacement of part of the counts according to a certain

rule, depending on the amplitude value. This approach

ensures that some of the amplitude information about the

encoded aberration is preserved and allows getting increased

diffraction efficiency.

1. Theoretical fundamentals

The partial encoding method [26], focused on applications

with spatial light modulators, is expressed as follows:

g̃(x , y) =

{

exp{i arg[g(x , y)]}, |g(x , y)| ≥ α,

exp{i arg[g(x , y)] + iµ}, |g(x , y)| < α,
(1)

µ =

{

π, sgn(Si j) > 0,

0, sgn(Si j) < 0
(2)

Si j ∈ [−0.5; 0.5], (3)

where g(x , y) — initial amplitude-phase transmission func-

tion; α — parameter corresponding to the amplitude

threshold value where a phase jump will be added to

the point; µ — magnitude of the phase jump; Si j —
pseudo-random value the sign of which impacts the value

of the phase jump; g̃(x , y) — calculated phase transmission

function.
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Figure 1. Amplitude (a), phase (b) of the amplitude-phase DOE (7) and its action; c — intensity in the focal plane (4).

To calculate the diffraction efficiency and the error of

diffraction pattern formation using a multichannel DOE, it

is necessary to simulate its effect on the analyzed aberrated

wavefront. In the framework of this work, the focal plane

is considered as the resulting field formation plane. The

diffraction calculation is based on Fourier transformation:

F(u, ν) =

+∞
∫

−∞

+∞
∫

−∞

f (x , y) exp[−iκ(ux + νy)]dxdy

=ℑ[ f (x , y)], (4)

where κ = 2π/λ — wavenumber, λ — wavelength.

The diffraction efficiency is the ratio of the intensity

F(u, ν) = ℑ
[

g̃(x , y)
]

obtained in the focal plane of the cal-

culated phase DOE to the intensity F0(u, ν) = ℑ
[

g(x , y)
]

obtained in the focal plane of the amplitude-phase DOE:

ε =

(x

�

|F(u, ν)|2dudν

)(x

�

|F0(u, ν)|2dudν

)

−1

, (5)

where � — near diffraction orders integration domain

Diffraction efficiency is usually measured by the total inte-

gral intensity. However, given the specifics of multichannel

DOEs [28–30], the intensity between the diffraction orders

is either close to zero if the diffraction orders are separated

from each other by a considerable distance; or is noise itself

and does not participate in the transmission of a useful

signal. Therefore, the computation of diffraction efficiency

for a multichannel DOE consistent with aberrations is

carried out only in the near diffraction orders integration

domain.

Achieving high diffraction efficiency can lead to loss of

useful information due to the replacement of a large number

of DOE samples with an additional phase jump. Therefore,

it is necessary to calculate and track the error in forming

the intensity pattern in the focal plane of DOE:

δ =

(x

�

(

|F(u, ν)|2 − |F0(u, ν)|2
)2

dudν

)1/2

×

(x

�

|F0(u, ν)|4dudν

)

−1/2

. (6)

2. Numerical modeling

Let’s consider the amplitude-phase complex transmission

function for a multi-channel DOE consistent with the wave

aberrations Zpq with the value Ck , expressed as

g(x , y) =

P
∑

p=0

p
∑

q=p0

K
∑

k=1

exp[−iκCkZpq(x , y)]

× exp[i(ak pqx + bk pqy)], (7)

where indices (p, q) stand for the type of encoded aber-

ration Zp,q , which in this paper correspond to Zernike

polynomials [30,31]; index k stands for the magnitude of

aberration defined by coefficient Ck ; αk pq, βk pq — spatial

carrier frequencies directing the corresponding aberrated

wavefronts into different diffraction orders. The presented

Zernike polynomials can be easily correlated with classical

aberrations. The classification of aberrations by order is

given in accordance with the OSA standard [32]. To

describe most of the aberrations, Zernike polynomials of

the 4th degree are usually sufficient for smooth optics.

The greatest contribution to the turbulent degradation of

the image is made by lower-order aberrations — these are

the slopes of the optical radiation wavefront, followed by

the aberrations of defocusing and coma, astigmatism, the

contribution of other aberrations is significantly less to the

turbulent blurring of the image [33].
Let’s calculate the amplitude-phase complex transmission

function of the 25-channel DOE (7), which is consistent

with five types of aberration of various magnitudes (5 types

Technical Physics, 2025, Vol. 70, No. 5
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Figure 2. Phase (a) of the phase DOE calculated using algorithm (1)−(3) at α = 0 and its action; b — intensity in focal plane (4).
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Figure 3. Phase of DOE calculated using (1)−(3) at various α, its action (intensity in the lens focal plane), consistency between the

diffraction efficiency and error.

of aberration magnitudes in the range from 0.1 to 1). The

single-index record of Zernike polynomials is the following

relation: t = (p(p + 2) + q)/2. The paper outlines Zernike

functions corresponding to t for p0 ≤ q ≤ p; where p0 = 0,

if p — even; p0 = 1, if p — odd. The results of numerical

simulation are shown in Fig. 1.

To calculate the phase DOE we may use algorithm

(1)−(3), by varying the value of parameter α in the range

from 0 to 0.5. The complex transmission function of the

phase DOE for α = 0 was calculated, which is equivalent to

the
”
kinoforma“ computation method which corresponds

to replacing the calculated amplitude distribution in the

Technical Physics, 2025, Vol. 70, No. 5
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Figure 4. Amplitude (a), phase (b) of the amplitude-phase DOE (7) and its action; c — intensity in the focal plane (4).
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Figure 5. Phase (a) of the phase DOE calculated using algorithm (1)−(3) at α = 1/π and its action; b — intensity in focal plane (4).

hologram plane with the amplitude distribution of the

illuminating beam. This term is associated with various

kinoform, i.e. diffractive phase elements [34–37]. It

was found that diffraction efficiency (5) makes ε = 85.23,

however, the error (6) exceeds δ = 31.25. Figure 2 shows

the phase of the calculated DOE and its effect (intensity

distribution in the focal plane; the frame highlights the

area of integration of the diffraction order (p, q, k) with

maximum intensity).

Within a number of numerical experiments the complex

transmission function of a phase DOE was calculated at

various α 6= 0. Figure 3 shows DOE phases and their effects

(intensity distribution in the focal plane of the lens); the

corresponding efficiency values ε shown on the histogram;

and the error shown on the graph. It was demonstrated

that the highest diffraction efficiency in 85% was reached

at α = 0.05, however the error makes 31%. Further

increase of parameter α to 0.35 leads to a decrease in

diffraction efficiency and error. Minimal error was 15%

at α = 0.31, while diffraction efficiency error was 52%.

A further increase in parameter α results in subsequent

decline of diffraction efficiency to 20% with a simultaneous

increase in error to 42%, which is associated with sampling

problems (a larger number of pixels is required, exceeding

the standard dimensions of spatial light modulator matrices).
Thus, optimal parameters for the partial coding method

have been determined in relation to multi-channel elements

consistent with several types of aberrations of various

magnitudes. With the parameter value α = 1/π , it is

possible to calculate multi-channel DOE with minimal error

and with increased diffraction efficiency.

Let’s increase the number of DOE channels to (7) to

49, i.e. 7 types of aberrations with 7 different weights are

encoded in the complex transmission function. The results

of numerical modeling are shown in Fig. 4.

Let’s calculate the phase DOE with an optimal ratio

of diffraction efficiency and error. Fig. 5 illustrates the

numerical modeling results.

Based on the results obtained, the diffraction efficiency

and error were calculated. It was found that an error in

17% is achieved at the values of diffraction efficiency near

50%, which is fully corresponds to the optimal ratio.

Conclusion

The computation of a phase multichannel DOE intended

for use in optical circuits based on liquid crystal spatial

Technical Physics, 2025, Vol. 70, No. 5
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light modulators is carried out. To increase the diffraction

efficiency of DOE, partial coding methods are considered,

which are a more general case and cover not only the class

of focusing DOE, but also various mode beam shapers,

as well as spatial filters for decomposing the light field.

Based on the considered partial coding algorithm, phase

multichannel DOE has been developed, consistent with

the 25 and 49 basic functions in the form of wavefront

aberrations. It was found that the lowest error in 15%

is reached at indicators of diffraction efficiency near 52%.

This type of DOE can be used for adaptive compensation

of wavefront distortions [38,39]. The maximum diffraction

efficiency of 85,% can be achieved based on the developed

algorithm with error values equal to 31%. In this case,

the calculated DOE can be used as a consistent filter for

the detection of pronounced types of aberrations by the

presence of bright correlation peaks [40,41].
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