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Quantum fluctuations in mode-locked fiber lasers
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Calculation of parameters of quantum fluctuations of pulses generated in fiber lasers with mode synchronization

or in nonlinear fiber ring resonators is presented. Quantum fluctuations are associated with fluctuations in the

amplitudes and phases of longitudinal modes. Using standard mode oscillator quantization, expressions are recorded

for sources of amplitude and phase fluctuations for each longitudinal mode. In this case, phase fluctuations are

calculated by amplitude using Heisenberg relations. It was assumed that the fluctuations in the amplitudes of the

modes obey the Poisson distribution, and the sources of fluctuations in the time-domain are obtained using the

inverse discrete Fourier transform. For a pulse of sech(t)2 , fluctuations in quantum number, pulse maximum time,

chirp and phase are calculated.

Keywords: Mode locking, quantum fluctuations, spectrum of longitudinal modes, sech2--pulse, pulse parameters

fluctuations.

DOI: 10.61011/TP.2025.05.61119.439-24

Introduction

Quantum fluctuations in lasers set the limiting character-

istics of their radiation and largely determine the limits of

their applicability [1]. For single-frequency lasers, quantum

fluctuations determine the width of the laser radiation line

and the level of intensity fluctuations. The calculation of

these parameters based on the quantum laser model for

these types of lasers is well known [1–3]. The equations for

the photon creation and annihilation operators are usually

solved by replacing the operators with matrices in a certain

basis or using a density matrix [1]. At the same time, the

number of quanta in the field is small, since the modes

near the generation threshold are considered. For lasers

generating pulses with a number of quanta of the order

108, the dimension of the matrices is extremely high, which

makes it impossible to use numerical methods. In this

case, various versions of perturbation theory are usually

used: the field is represented as a classical part and a

relatively small part responsible for quantum fluctuations,

and linear equations are obtained for quantum operators,

which, however, are also not very easy to solve [4].

Generation of ultrashort light pulses is possible using

certain optical-physical circuits that lead to synchronization

of longitudinal modes in a fiber laser. The most common

is a circuit in which an annular fiber resonator has an

amplification section, a section for controlling the total

dispersion of the resonator, and a nonlinear device where,

due to the nonlinear rotation of the polarization ellipse, the

pulse is compressed in the time domain. Such optical-

physical configuration was called a laser with additive

modes synchronization [5–10]. In addition to such a

configuration, short light pulses can be generated, for

example, in a ring fiber resonator, which is excited by a

laser with constant intensity [11]. In optical fiber, due to

weak nonlinearity and dispersion, modulation instability is

possible, resulting in modulation components, and the signal

of constant intensity is divided into a sequence of soliton

pulses. The ring resonator makes it possible to increase

the effective distance that the pulses travel in the optical

fiber. The modulation frequency for the parameters of

a conventional single-mode SMF fiber is in THz- range,

and the beat frequency of the longitudinal modes in a

ring resonator with a length of several meters is tens and

hundreds of MHz. That is, harmonic (or multiple) mode

synchronization is observed when the harmonic of the beat

signal coincides with the modulation frequency. The beat

frequency of longitudinal modes is equal 2π/T , were T —
resonator bypass time. Mode synchronization occurs when

conditions for the frequencies and phases of the longitudinal

modes are met:

νn−1 + νn+1 = 2νn, ϕn−1 + ϕn+1 = 2ϕn,

where n — number of the mode. These conditions mean

that the frequencies and phases of the modes are linear

functions of n.
To meet the conditions, nonlinear control of the active

medium dispersion and the presence of four-frequency

interaction of modes νn±1 and νn is necessary. In the

process of the four-frequency interaction the number of

quanta in n-th mode is diminished twofold, however, one

quant appears in each of the modes numbered n − 1 and

n + 1. Due to non-equidistance of the modes during four-

frequency interaction, a field (combination tone) arises at

a frequency near the mode with a frequency of νn+1. The

interaction of fields leads to capture of the frequency of
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this mode by the frequency 2νn − νn−1, which leads to the

equidistance of the spectrum of modes and to the capture

of the phase difference.

Thus, the total field in a laser with a ring fiber resonator

can be expressed as a sum over the longitudinal modes:

E(z , t) =
∑

n

An exp (iϕn)e
[iνnt−iβ(νn)z ],

where β(ν) — constant of main transverse mode prop-

agation, An — actual modes amplitudes, ϕn — modes

phases. The frequencies of the longitudinal modes for a

ring fiber resonator can be determined from the condition

β(νn)L = 2πn, where L is the perimeter of the resonator.

Next, we use the expansion

β(νn+1 − νn) = β1� +
β2

2
�2,

where � — difference in frequencies of adjacent modes,

β1 = ∂β

∂ν
= 1/vg , β2 = ∂2β(ν)

∂ν2
, vg — group velocity. It can

be seen that the spectrum of modes is not equidistant and

the resonator modes do not coincide with the harmonics of

the field. The multi-mode frequency may be calculated as

� =

√

8β2πn/L + v2
g − vg

4β2
.

It should be noted that 2πn/L is a wavenumber of

resonator modes wit the same length, but without fiber
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Figure 1. a — pulse like sech2(t/τ ) at τ = 0.5 ns, b — pulse

sequence spectrum Fig. 1, a with repetition period of 10 ns.

dispersion. However, if the harmonics fall within the

resonance width of the modes
vg (1−R)

L
√

R
, then the pulse

spectrum practically coincides with the spectrum of the

modes. The effect of optical fiber dispersion can be taken

into account by calculating the dispersion parameters and

the group velocity through the effective refractive index, for

example, based on the results [12]. Fig. 1 illustrates the

pulse of sech with a duration of 0.5 ns (Fig. 1, a) and

spectrum of pulses sequence with a repetition period of

10 ns (Fig. 1, b), that we’ll consider coinciding with the

longitudinal modes spectrum. The amplitudes of the modes

are normalized so that the total number of photons per pulse

is Np = 6∞
n=−∞|An|2 = 106.

Quantum fluctuations of modes

Each resonator’s mode is itself a field oscillator with

a spatial dependence exp(iβ(ω)z ) and frequency νn, which

is quantized in traditional way [1,2]. The field may be

normalized so that |An|2 is equal to the number of quanta,

i.e. A2
n = Nn. Quantum fluctuations in the number of quanta

in a mode obey Poisson statistics [1]:

P(n) =
〈N〉n

n!
e−〈N〉, 〈N〉 = Nn, 〈(N − 〈N〉)2〉 = Nn.

Quantum fluctuations in the number of quanta and quan-

tum fluctuations in phases meet the condition 1N1ϕ ≥ 1,

which follows from the conditions for the uncertainty of

the energy and time of measurement 1E1t ≥ ~ [2]. If

fluctuations sources in the modes are uncorrelated, then

we can write an expression for the quantum fluctuations of

the field:

1E =
∑

n

[

1Aneiϕn + Aneiϕn
i

1Nn

]

exp [iνnt − β(νn)z ].

(1)
Then expression may be rearranged to the following form:

1E =
∑

n

Aneiϕn

[

1An

An
+

i
1Nn

]

. (2)

According to [13], the dependence of fluctuations on time

can be expressed as a convolution

1E(t) =

∞
∫

0

dζE(t − ζ )Noise(ζ ), (3)

where Noise(t) — quantum fluctuations sources function

which is a Fourier transformation of 1An
An

+ i 1ϕn

An
. Since

1Nn = 1(A2
n) = 2An1An, then, replacing An by

√
Nn, we

obtain1An
An

= 1Nn

2
√

Nn
. For a large number of quanta in the

pulse, and therefore in each mode, phase fluctuations can be

neglected. Since fluctuations of the mode amplitudes obey

Poisson statistics, we can assume that the random numbers

of quanta in each n- mode lie within ±3
√

Nn of the average
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value Nn . Fig. 2 shows the pulse corresponding to the

average number of quanta in modes, as well as difference

of fields1E±, corresponding to three standard deviations,

i.e. pulses with spectra Nn, 3
√

Nn, −3
√

Nn for Np = 106 .

The range of field changes is indicated by a gray fill. All

realizations of the field’s random value shall lie in the gray

area. Therefore, we may assume that δE is equal to the

averaged value 21Ep.

It should be noted that peripheral modes with a small

average number of quanta make a significant contribution to

quantum fluctuations due to the root in the denominator.

However, their contribution is largely masked by the

contributions of the central modes, in which the relative

fluctuations of the mode intensities are quite small, and the

contribution to the pulse energy is significant.

It is clearly seen that 1E repeats the shape of the pulse

to a certain extent, since values 1Nn for Poisson statistics fit

into dispersion, which is proportional to
√

Nn.

It should be noted that when calculating field fluctuations,

the four-frequency interactions of individual modes should

also be taken into account. Each mode decreases in

amplitude due to interaction, while the two neighboring

modes increase by about half the change in intensity of

the average mode each. This results in leveling the modes

fluctuations and to decrease of 1E approximately by two

times. A rigorous analysis of fluctuations, taking into

account the four-frequency interaction, requires solving a

system of equations, the dimension of which in this case

is — of the order of the ratio of the pulse repetition period

to the pulse duration.

If we write down the pulse as

E(z , t) =
n|c|1/2

2
sech

(

n2|c|
2

(t − t0 − 2pz )

)

× eiθ+i n2|c|
4

z−i p2z+i p(t−t0),

where n =
∫

|E(z , t)|2dt, p — pulse per 1 photon, t0 —
pulse arrival time, θ — phase, c — fiber nonlinearity
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Figure 2. Pulse corresponding to the modes spectrum

{Nn} (Fig. 1, b) and reverse discrete Fourier-transformations
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Figure 3. Functions f 1 (continuous curve), f 2 (dashed curve,

long dashes), f 3 (dashed curve, short dashes), f 4 (dashed curve,

dashes of different length).

coefficient 1E = f 11n + f 21p + f 31t0 + f 41θ, where

f 1 =
∂E
∂n

, f 2 =
∂E
∂ p

,

f 3 =
∂E
∂t0

, f 4 =
∂E
∂θ

.

Functions f 1, . . . , f 4 are shown in Fig. 3. It is

easy to check that these functions are orthogonal, i.e.
∞
∫

−∞
dt f ∗

i (t) f j(t) = Niδi, j , i, j = 1 . . . 4. Using orthogonal-

ity, we obtain:

1n =

∞
∫

−∞

dt1E(t) f ∗
1(t)





∞
∫

−∞

dt f ∗
1(t) f 1(t)





−1

,

1p =

∞
∫

−∞

dt1E(t) f ∗
2(t)





∞
∫

−∞

dt f ∗
2(t) f 2(t)





−1

,

1t0 =

∞
∫

−∞

dt1E(t) f ∗
3(t)





∞
∫

−∞

dt f ∗3(t) f 3(t)





−1

,

12 =

∞
∫

−∞

dt1E(t) f ∗
4(t)





∞
∫

−∞

dt f ∗
4(t) f 4(t)





−1

. (4)

Normalized integrals are equal

N1 =

∫

dt f ∗
1(t) f 1(t) =

12 + π2

18A
,

N2 =

∫

dt f ∗
2(t) f 2(t) =

2A3

3τ
,

N3 =

∫

dt f ∗3(t) f 3(t) =
A(12 + π2)

18τ
,

N4 =

∫

dt f ∗
4(t) f 4(t) = 2Aτ .
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Comparing expressions (2) and (3), we obtain expres-

sions for fluctuations in the pulse parameters [7]:

∫

dt f ∗
i f j = Niδi, j , Ni =

∫

dt| f i |2.

Therefore,

1|N| = N−1
1

∫

dt f ∗1 (1E+ − 1E−) .

After sampling nn(i) = f n(−T + 2T (i − 1)/400),
n = 1, 2, 3, 4, i = 1 . . . 400, the fluctuations of the

pulse parameters are calculated using the formulae:

1n = 0.025

401
∑

i=1

n1i2F pi .

The calculation using these formulas gives the following val-

ues of fluctuations in the pulse parameters: 1A = 0.186A,
1p = −13.6τ /A3, 1t0 = −0.015τ , 1θ = −0.00225/(Aτ ).
It can be seen that fluctuations in the number of quanta

are quite noticeable, 1n/n = 21A/A = 0.372, fluctuations

in the pulse (frequency) with the number of quanta in 106

are small, fluctuations in the pulse arrival time (of the order

of 1 ns), and phase fluctuations are inversely proportional

to the pulse duration and pulse amplitude, and are also

small.

Let’s consider the equivalents of uncertainty ratios:

1n1θ = 0.0004185/τ < 0.655, 1p1t0 = 0.816/τ 2 > 0.25.

Here, the values of constants after the inequality signs

correspond to the results [4]. The difference in uncertainty

ratios indicates that, perhaps, with these parameters, the

pulse is in a
”
compressed“ (nonclassical) state. However,

the full proof of
”
’s non-classical behavior“ requires a more

detailed study, which is planned to be carried out in the

future.

Conclusion

The paper highlights the analysis of behavior of

fluctuations of quantum pulses generated in the fiber lasers

with mode synchronization or in the nonlinear fiber ring

resonators. Since the pulse sequence can be represented as

the result of interference of fields of longitudinal modes, the

amplitude of which is determined by the shape of the pulse,

quantum fluctuations are associated with fluctuations in the

amplitudes and phases of longitudinal modes. Using the

standard quantization of mode oscillators, it was possible

to write expressions for the sources of amplitude and

phase fluctuations for each longitudinal mode. In this case,

the phase fluctuations are calculated from the amplitude

using Heisenberg relations: energy-time (phase). It was

assumed that fluctuations of the mode amplitudes obeyed

the Poisson distribution. The sources of fluctuations in the

time domain are obtained using the inverse discrete Fourier

transformation. For a pulse sech(t)2, the fluctuations of the

pulse parameters (number of quanta, maximum time, chirp,

and phase) have been calculated. These expressions are

quite general and can be applied to any laser system that

generates pulses of this shape. This calculation method can

also be applied to systems that generate pulses in the form

of a hyperbolic pulse and pulses with a different profile.
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