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Localized plasmons in nanoparticles: calculation methods
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Introduction

Localized plasmons (LP) — electromagnetic oscillations

of electron plasma of small metallic and semiconductor

particles localized in their small volumes. Such particles

are called nanoclusters, quantum dots, meta-atoms, and

quantum boxes when the dimensions of such a
”
box“

become on the order of tens of nanometers or less. Since

plasma particles motion is limited in three directions, such

objects are called zero-dimensional (0D), in contrast to 1D-

objects — quantum threads or wires, 2D-objects — two-

dimensional electron gas (2DEG), e.g., in the form of

graphene, thin conducting films and etc., as well as 3D-

macro-objects. However, if the quantum wire is limited

in length it also may be considered as LP carrier. Exam-

ple — carbon nano-tube (CNT) of finite length, graphene

fragments limited in two directions and etc. LP are widely

used in medicine, medical physics and physics in general

for the purposes of interaction with laser beams, e.g., LP

in gold particles, fullerenes and CNT [1–5]. Conducting

nanoparticles (nanoclusters) resemble a molecule containing

a multitude of atoms that share conduction electrons [5–
8]. The characteristic size (radius) of such clusters may

vary from one 1 nm (fullerenes C28, C60) to tens and even

hundreds of nanometers. Atoms in such clusters may be

located on their surface (fullerenes, CNTs, graphene) or

in the bulk (metallic nanoparticles). A rigorous approach

to solving the problem of interaction of particles with

sizes of 1 nm (meta-atoms) with an electromagnetic wave

(photoionization) requires solving a quantum problem for

Schrödinger equation (SE) with the wave vector-potential

introduced into the Hamiltonian. However, the classical

approach is quite sufficient to examine excitations with

frequencies that do not exceed optical ones. This approach

is quite accurate for conducting particles with sizes on

the order of 10 nm (e.g., gold nanoparticles), since the

frequencies of the resulting localized plasmons (LPs) fall

within the optical range [1–3] in the domain of surface

plasmonic resonance (SPR). Fullerenes and CNTs may be

characterized as conducting shells. The number of atoms

may vary from several tens (fullerenes C20, C28, C60) to

hundreds of thousands (3.56 · 105 for a copper nanoparticle

with radius r = 10 nm). The considered nanoclusters

support LP — oscillations with complex resonant frequen-

cies [1–8]. It is usually necessary to pair the resonant

frequencies of these particles with the frequencies of lasers,

so their determination is necessary. The rate of oscillations

decay in LPs excited by a short laser pulse is inversely

proportional to the Q-factor. The classical Mie solution is

applicable to the problem of excitation of both dielectric and

metallic particles. In case of fullerenes, an approach based

on the introduction of shell conductivity was examined

in [9]. In addition to approaches relying on electrodynamics,

quantum chemistry methods, which serve as the basis for

conventional software packages like Gaussian 9 are often

used. Using such methods, it is possible to obtain a

spectrum of low-frequency oscillations and excitations of

the cluster lattice.

1. Quantum analysis

If we consider the parallelepiped particleax , ay , a z as an

infinitely deep 3D quantum box (QB), or quantum well

(QW) we’ll obtain the wave function (WF)

ψnx ny nz = Anx ny nz sin(nxπx/ax ) sin(nyπy/ay ) sin(nzπz/a z )

and energy levels

Enx ny nz = (~π)2
[

(nx/ax)
2 + (ny/ay)

2 + (nz /a z )
2
]

/2me .

(1)
Here me — is the mass of an electron. In the cubic QB

with a size of 1 nm, we obtain minimal energy of 0.37 eV

and approximately the same distances between the lower

levels. With the size of 4 nm the energy level will be

0.023 eV, i.e. is already less than kBT at room temperature.
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In such a QB with finite walls height (of the order of

work function (WF) from metal) there are a lot of levels

and they are dissolved because of thermal fluctuations,

thus, forming the conduction band (CB) from zero CB

to Fermi energy (FE). In this case, and for large sizes,

the classical approach can be used. In [2] the criteria of

its use is designated as a cluster with several dozens of

atoms. It may be considered as quite strict. However, with

already 1000 atoms (the cluster of size 1 nm) the actual

distance of 0.1 eV between the levels for metals with WF

3−5 eV, i.e. this size may be considered a limit where

conventional approach may still be used. In the cluster

with a size of 10 nm the number of atoms is already 106 .

So, for the 1D quantum well 13.7 eV deep andt = 0.34 nm

thick (2DEG in graphene) we obtain two levels from the

strict equation [10] E1 = 1.77 eV and E2 = 6.7 eV instead of

3.466 eV and 13.86 eV for an infinitely deep QW. Therefore,

the estimates like (1) are exceeded. As an example of

quantum transition let’s consider a spherical QB of the

radius of r0 with V (r) = 0, r > r0 and V (r) = −V0, r < r0 .
Here, the energy is counted from the free state of the

electron. The characteristic equation for the lower energy

with zero angular momentum (l = 0) is expressed as [10]:

cot
(

r0
√

2me(V0 − |E|)/~
)

= −
√

|E|/(V0 − |E|), (2)

whereas these levels occur when the depth of the QB is

larger than minimal V0 > Vmin = (π~/r0)2/(8me). With

a depth of 4.7 eV (silver ball) its radius shall meet the

condition r0 > π~/
√

(8meVmin) = 0.141 nm. In smaller

particle at this potential the levels do not occur. This means

that such a particle should be considered as a fully quantum

object, i.e. consider electrons in the field of all atoms,

and the approximation of QB is not applicable. In this

case, proportional −Ze2/|r− rm| potentials of individual

atoms with coordinates rm arise, and the problem becomes

purely quantum. Such problems definitely cannot be

solved [10]. A convenient approach to solve them is the

density functional theory [11]. It may account for all the

contributions to kinetic and potential energies associated

with the distribution of electrons with a given density,

as well as energy levels and ionization potential (work
function). We are considering quantum models to determine

the boundary when the classical approach can be applied.

There are many levels in a larger particle with a size of

1 nm or more, and it can be considered as a QB, or even

conventionally as a volume with an electron plasma and a

dielectric permittivity (DP) ε(ω) = εL(ω)−ω2
P/(ω

2−iωωe).
Here, the first term is Lorentz term, and the second one

corresponds to Drude electronic susceptibility. In general,

if the orbital moment (l 6= 0) is present the Schrödinger

equation for the radial portion of the wave function is

expressed as [12,13]:

∂2rr R + 2∂r R/r +
[

2me(E + V0)/~
2 − l(l + 1)/r2

]

R = 0,

(3)

where beyond QW V0 = 0. By designating

κ0 =
√

2me(V0−|E|)/~ and κ = i
√

2me |E|/~, as well

as introducing spherical Bessel functions

ψm(kr) =
√

π/(2kr) Jm+1/2(kr),

ξ (2)
m (kr) =

√

π/(2kr) H(2)
m+1/2(kr),

for equation (3) we have: R = Aψ(κ0r) inside

and R = Bξl(|κ|r) outside of QW. From here

Aψl(κ0r0) = Bξl(iκr0) and Aκ0ψ′

l (κ0r0) = Bi|κ|ξ ′l (i|κ|r0),
i.e. we have a characteristic equation for determination of

levels
κ0ψ

′

l (κ0r0)
ψl(κ0r0)

= i
|κ|ξ ′l (i|κ|r0)
ξl(i|κ|r0)

, (4)

where the second order spherical functions ξl are expressed

via Macdonald functions. Levels for (4) do not depend

on the quantum number l (degenerated). l = 0 and equa-

tion (2) correspond to the minimal negative level. Let’s

consider a metal particle in the form of a cylinder with a

radius of r0 and height h. The SE will be written as follows

∣

∣2me(E−V0)/~
2+ρ−1∂ρ+∂

2
ρρ+ρ

−2∂2ϕϕ+∂2m
∣

∣ψ(ρ, ϕ, z )=0.

(5)
We seek the solution inside in the form

ψm(ρ, ϕ, z ) = R(ρ)H(z ) exp(imϕ).

The method of variables separation gives

[(

2me(E − V0)/~
2 − m2ρ−2

)

R(ρ) + ρ−1R′(ρ)

+ R′′(ρ)
]

/R(ρ) = −H ′′(z )

H(z )
= χ20 .

Its solution has the form

H(z ) = An cos(nπz/h) + Bn sin(nπz/h),

λ0n = h/(πn), Rmn(ρ) = Cmn Jm(κn ρ).

It is classified as even and odd over z . Neumann function

was rejected because of its singularity. Even WF has the

form

ψ(ρ, ϕ, z ) = AmCmn Jm(κn ρ) cos(nπz/h) exp(imϕ),

κn =
√

2me(E −V0)/~2 − (nπ/h)2.

However, it cannot be coupled with the WF in the external

domain, since the separation of variables can no longer

be used there, and the problem of such QW problem has

no analytical solution. From SE the function follows to

determine the energy:

E = −
∫

9∗(r)(V0 + ~
2∇2/2me)9(r)d3r

∫

9∗(r)9(r)d3r
. (6)

It defines the exact levels. There it should be integrated with

the exact WF across the entire space. WF is exponentially-

decreasing when removing from the QW. We will make a

small mistake if we take its value in the well instead of

the exact WF. This value can be expanded in the found
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functions. For example, for the even WF we have an

expansion

9(r) =
∑

m,n

AnCmn Jm(κn ρ) cos(nπz/h) exp(imϕ). (7)

Substituting it in (6) and equating the derivatives with

respect to unknown coefficients to zero, we obtain a

characteristic equation in the form of a determinant equal

to zero, from which we can find all negative energy levels

corresponding to the even WF. Just as for a spherical

particle, there is a criterion here: to apply the classical

approach: r0 and h shall be more than 1 nm. As

a result, when using six basic functions in (7) for a

silver particle with r0 = h/2 = 1 nm, we obtain the value

E1 = −0.186 eV.

The quantum solution of the problem allows us to obtain

energy levels En. When an electromagnetic field is applied

to a particle, due to its smallness, the spatial distribution

of the field on the particle can be neglected and taken

as E = E0 exp(iωt). The field is not strictly harmonic (it
has a spectrum near frequency ω), i.e. begins to act at a

certain moment of time t = t0 and ends at the moment T .
In addition, thermal and other fields act on the particle, so

spontaneous transitions can occur for an excited oscillation.

To determine the probability of levels population at the

moment of time T , the perturbation theory [10,12] is used,
for which it is necessary to calculate the matrix elements

of quantum mechanics perturbations [10,12]. All possible

allowed transitions determine the spectrum of frequencies

(vibrations) of the particle.

2. Classic analysis — problem
formulation based on electrodynamics

In classical approach, of interest are both, the problem

of excitation by a given field Ein(r) = E0 exp(iωt−ikr)
with time dependence exp(iωt) and the problem of natural

oscillations, where complex frequencies ωm = ω′

m + iω′′

m are

sought. The second problem is considered in the present

study. The typical quality factorsQm = ω′

m/(2ω
′′

m) of such

oscillations are low. In excitation problem for small sizes

the dependence exp(−ikr) can also be neglected. However,

the particle can be quite large, or it can be located in a dense

medium where the wave vector k to modulo is significantly

larger than k0 = ω/c . Based on solving the excitation

problem, it is possible to calculate the dipole moment of

a particle and the polarization of a unit volume with such

particles, i.e., the effective DP. In principle, it depends both

on the frequency and on k, as well as the shape of the

particle, i.e. is tensor and determines the spatial dispersion.

For a dense medium consisting of such particles when

determining DP it is required to account for the internal

field [14].
The vector potential of a scattered or intrinsic field has

the form

A(r) =

∫

V

G(r− r′, k0)J(r
′)d3r ′, (8)

where Green’s function (GF) is denoted

G(r, k0) = (4π|r|)−1 exp(−ik0|r|). The fields from (8) are

expressed as

E(r) = Ein(r) + (ik0)
−1η0

(

k2
0A(r) + ∇⊗∇A(r)

)

, (9)

H(r) = Hin(r) + ∇× A(r), (10)

where η0 =
√
µ0/ε0 and excitation fields are introduced. Po-

larization current density J(r) = iωε0
(

ε(r)−1
)

E(r) within

particle volume V is included in (8). These equations allow

formulating several types of volume integral equations (IEs)
and integro-differential equations (IDEs) both for scattering

problems and for problems of free (natural) oscillations

in arbitrary nanoparticles [15]. In the present study, we

examine free oscillations in homogeneous metallic nanopar-

ticles, which are characterized by DP as Drude−Lorentz

ε(ω) = εL(ω)−ω2
P/(ω

2−iωωc), as well as by carbon nan-

oclusters. Lorentz term εL may be considered to be constant

and positive in the IR and optical ranges. Thus, for silver

εL = 9.3, plasmon frequency (PF) ωP = 1.57 · 1016, and

collision frequency (CF) ωc = 3.46 · 1013 Hz. Accordingly,

the DC conductivity of silver is σ0 = ω2
Pε0/ωc = 6.29 · 107,

and real permittivity component ε′(ω) = 0 at frequency of

ω = 5.148 · 1015 Hz. It is often assumed below that the CF

is zero (i.e., dissipation is neglected, and only the radiation

losses are taken into account). In the case of fullerenes and

CNTs, integral (8) should be considered as an integral over

their surface of surface current density j(ω) = σ (ω)Eτ (ω).
Specific (volume) conductivity iωε0

(

ε(r−1)
)

should then

be substituted with surface conductivity σ , which implies

the introduction of an IE for surface electric field Eτ (ω) or

surface current density j(ω). The use of IEs and IDEs leads

to rather complex and implicit algorithms.

In this paper, we compare the rigorous approach based

on equation (8) with IEs and IDEs to an approximate

approach based on the examination of surface plasmons

(SP) with SPR. The frequency of SPR is defined as

ωs pr =
√

ω2
P/(1 + εL)−ω2

c/4 and at low CF ωc is

equal ωs pr = ω̃P = ωP/
√
1 + εL. Such approximation

allows obtaining simple explicit formulae for resonant

frequencies. The approximate approach for conducting

shells may be constructed based on the equations for

surface E-plasmons ks = k0

√

1−4/ζ 2(ω) and H-plasmons

ks = k0

√

1−ξ2(ω)/4, where ξ(ω) = σ (ω)
√
µ0/ε0 is

the normalized surface conductivity of the shell [16].
These equations are strictly valid for sufficiently large

radii of curvature (for flat conductive surfaces such as

graphene). Next, we introduce propagation constants ks

along a certain closed arc s with perimeter Ls on the

surface. Because of closeness we obtain the equations

ks Ls = 2kπ, k = 1, 2, . . ., or ω
√

1−4/ξ2(ω) = 2kπc/Ls ,

ω
√

1−ξ2(ω)/4 = 2kπc/Lx , k = 1, 2, . . .. They are the

ones setting the resonance conditions. Fullerene C60 thus

has Ls = 2.25 nm; i.e., even with deceleration factors on

the order of 100, the minimum possible frequencies lie in

the UV range where normal surface conductivity becomes

irrelevant. However, at UV frequencies with quanta energies
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greater than 3 eV, all carbon atoms are ionized. Therefore,

when a fullerene shell is exposed to hard UV laser, it

may be regarded as plasma in which each atom gives up

four, or even all six electrons. Such a shell is characterized

as a 2DEG [9]. Lower-frequency spectra correspond to

fullerenes with larger radii and greater numbers of atoms.

At a radius r the spheres with a surface S = 4πr2 for the

surface density of atoms of carbon nS = 3.82 · 1019 m−2

and have normalized surface conductivity

ξ = ik0t
(

1−ω2
P/(ω

2−iωωc)
)

. Here ω2
P = e2nS/(ε0met),

where t — thickness of the shell of 0.1 nm (of the order of

atom size). For graphene, we can take t = 0.34 nm — the

distance between graphene layers in alpha graphite, i.e. the

approximate size of the electron shell for πelectrons. In

ω ∼ ωP = 1.2 · 1016 plasmon region, the conductivity

is low: ξ ≈ −iω(t/c)(ω2
P/ω

2) ∼ −i03 · 10−2, therefore,

maximal deceleration of plasmons n =
√

1−4/ξ2(ω) is no

more than 600, i.e. resonant frequencies lie in UV-band.

3. Quasi-static formulae

Quasi-static solutions of Maxwell’s equations correspond

to the localized plasmons; i.e., it is assumed below that

k0r = ωr/c ≪ 1, where r is a certain characteristic particle

size. For further information, it is convenient to introduce

frequency ωr = c/r , corresponding to the reverse time of

the light passing the distance r , as well as characteristic

frequencies ω0 = ωP/
√
εL, ω̃P = ωP/

√
εL + 1, respectively,

volumetric ε(ω0) = 0 and surface ε(ω̃P) = −1 plasmon

resonances. Frequencies ω0 and ω̃P are close, and all

resonances are grouped around them. The formulae may

be written with either of these two frequencies. Dissipation

is neglected here. If it is taken into account, we obtain

ω0 =
√

ω2
P/εL − ω2

c ≈ ωP/
√
εL − ω2

c

√
εL/(2ωP)

and

ω̃P ≈ ωP/
√

εL + 1− ω2
c

√

εL + 1/(2ωP),

which implies that these frequencies become slightly lower.

At a radius of 1 nm, ωr = 3 · 1017 Hz and for metallic

particles with radius r < 10 nm we always have ωP/ωr < 1.

Low-frequency plasmons for CNTs correspond to their

lengths L, since their radii are significantly smallerr ≪ L.
Approximate values of these frequencies are determined

from equation k0L
√

1−4/ξ2(ω) = mπ, m = 1, 2, . . . and

may fall within the IR range (or even the terahertz range if

CNTs are sufficiently long). These are low-Q oscillations.

The quasi-static equation for a dielectric body is

written as E(r) = −∇ϕ(r), ϕ(r) = −∇A(r), neglect-

ing (2) k2
0A(r) compared to ∇⊗∇A(r). Since

∇G(r − r′) = −∇′G(r− r′), the action of operator ∇ on

A(r) in (1) results in a volume integral of G(r− r′)∇′ J(r′)
plus a surface integral of vector flux−G(r− r′) J(r′). On

the surface v(r) J(r) = 0 and surface integral is equal to

zero. By virtue of the law of conservation of charge,

we obtain ∇′ J(r′) = −iωζ (r)δ(r− r′), where ζ (r) is the

surface charge density and point r belongs to the surface.

Indeed, in a particle with a homogeneous DP, there are no

volume charges in a homogeneous particle. Therefore, the

equation for the normal field component on the surface is

ν(r)E(r) = −∇ϕ(r) = − 1

ε0

∮

S

ν(r)∇G(r − r′)ζ (r′)dr ′2.

(11)
This componentEν in (11) is defined as the double

layer potential and undergoes a jump E+
ν /E−

ν = ε when

the observation point crosses the surface — the particle

boundary. Denoting in (11) the integral as I , we have

ε0E+
ν = ε0I + ζ /2 and ε0E−

ν = ε0I−ζ /2. Defining the

jump, we find ζ = 2ε0I(ε−1)/(1 + ε). Thus, the quasi-

static problem may be formulated based on the quasi-static

IE for surface charge density ζ (r) [2,3]:

ζ (r) = 2
1− ε

1 + ε

∮

S

ν(r)∇G(r − r′, k0)ζ (r′)d2r ′. (12)

Equation (12) characterizes a quasi-stationary LP surface

charge distribution [2,3]. Its frequency dependence is

characterized by dependence ε(ω). A jump in the normal

component of the electric field strength is observed in transi-

tion through the particle’s boundary: Eν(r + 0) = εEν(r−0).
Since the surface charge density is related to the field

strength as: ζ (r) = ε0(1−1/ε)Eν(r + 0), IE may also be

formulated and relative to it. Condition ε ≈ −1 is typical

for plasmonics, and the integral at frequency ω̃P should

then be close to zero for a non-zero charge distribution to

exist. Equation (12) allows one to find the frequencies of

quasi-static resonance.

Let us consider a spherical particle. The GF at r > r ′ in
a spherical coordinate system is written as [13]

G(r−r′, k0)=
k0

4πi

∞
∑

n=0

(2n+1)Pn

(

cos(γ)
)

ψn(k0r ′)ξ (2)
n (knr),

∂r G(r− r′, k0) =
k0

4πi

∞
∑

n=0

(2n + 1)Pn
(

cos(γ)
)

× ψn(k0r
′)∂r ξ

(2)
n (knr),

Pn
(

cos(γ)
)

= cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(ϕ − ϕ′).

Taking the distribution of surface charge density

ζnm(r) = Pm
n (θ) exp(−imϕ), we see that this function satis-

fies IE (12). Indeed, performing integration with expansion

of Legendre polynomials in associated Legendre functions,

we obtain

2π
∫

0

Pn
(

cos(γ)
)

exp(−imϕ′)dϕ′ = 2π exp(−imϕ)
(n − m)!

(n + m)!

× Pm
n

(

cos(θ)
)

Pm
n

(

cos(θ′)
)

,
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and then after integration over θ′ we’ll find

1 =
1− ε

1 + ε

−2ik0r2

2n + 1
ψn(k0r

′)∂r ξ
(2)
n (k0r).

This is the equation for resonant frequencies. It

can be seen that they are also degenerate in m.

This yields the following expression for permittivity

ε = −(1−αn)/(1 + αn) or ε = −1 + 2αn/(1 + αn). Here,

αn = −2i
(

k0r2/(2n + 1)
)

ψn(k0r ′)∂r ξ
(2)
n (k0r) is a complex

value. By expressing the functions ψn and ξ
(2)
n through

Bessel Jn+1/2(k0r) and Hankel H(2)
n+1/2(k0r) functions, as

well as using the asymptotic formulae for low arguments

we’ll find in the first order αn = −2π(n + 1)/(2n + 1)2 .
We have α1 = −4π/9, and at large indices αn = −π/(2n).
Now resonance frequencies are expressed as

ωn = ω̃P

√

1

1−2αn/[(εL + 1)(1 + αn)]
+ i

ωnωc

ω̃2
P

≈ ω̃P

√

1 +
2αn

(εL + 1)(1 + αn)
+ i

ωnωc

ω̃2
P

. (13)

Thus, the frequencies of the spectrum (13) condense to the

frequency of the surface plasmon resonance ω̃P .

For metallic spherical particles with DP of

ε(ω) = εL−ω2
P/ω

2 the spectrum of localized plasmons is

properly delineated by the quasistatic formula [2,3]

ωn = ωP/
√

εL + 1 + 1/n−4k0r/5, n = 1, 2, . . . . (14)

Expressed as ω̃P and ωr , we have

ωn ≈ ω̃P

(

1− 1/n − 4(ω̃P/ωr )/5

2(εL + 1)

)

, (15)

i.e. the frequency spectra become dense to the frequencyω̃P ,

and at higher n the frequency (15) is close to (13). To

allow for dissipation, it is required to perform substitution

ωm → ωm + iωc . It is evident that approximate solutions

lead to condition ε(ω) ≈ −1, i.e. ωm ≈ ω̃P . For metals

ω̃P ∼ ωP/3, i.e. this is an optical range.

The frequencies of a metal ball can also be found

approximately by considering the motion of the plasmon

along the equatorial or meridional circles of the ball,

assuming that the propagation constant is described

by Zenneck dispersion equation (DE) kϕ = kθ =

= k0

√

ε(ω)/
(

ε(ω) + 1
)

Then, we apply the resonance

condition 2πrkϕ = 2mπ. Then, for deceleration we’ll get

√

ε(ωm)/
(

ε(ωm) + 1
)

= −αm = mωr/ωm.

Here, the value αm is large, i.e. the ratio is

provided at ε(ωm) = −1−1/(α2
m−1) ≈ −1 or at

ωm = ω̃P/
√

1 + 1/(α2
m−1)/(εL + 1). On the right-hand

side of this implicit equation, we substitute ωm with ω̃P :

ωm ≈ ω̃P

/

√

1 +
1

(εL + 1)[(mωr/ω̃P)2 − 1]
(16)

or

ωm ≈ ω̃P − ω̃P/[2(εL + 1)(mωr/ω̃P)2].

One may also write

ωm = ω0

/

√

1 +
1

εL[1− (mωr/ωm)−2]

or

ωm ≈ ω̃P

/

[

1 + 1/

√

(εL + 1)(mωr/ω̃P)2
]1/2

,

which agrees with (16). Thus, dependence (16) is close

to (14), and the spectral frequencies also condense towards

frequency ω̃P .

Let us consider a cylindrical particle with height h and

radius R. GF in the cylindrical system is expressed as[13]

G =
1

4πi

∞
∑

m=−∞

exp
(

−im(ϕ − ϕ′)
)

×
∞
∫

0

exp
(

−
√

κ2 − k2
0 |z − z ′|

)

Jm(κρ)Jm(κρ′)
√

κ2 − k2
0

κdκ. (17)

If the height is small, h ≪ R, one may neglect the

charge on the side surface and consider only the

componentEz n = Jn(ρk0

√
ε) exp(−inϕ). It satisfies the

two-dimensional Helmholtz equation with ∂z = 0. Thus,

ζn(r) = ε0(ε−1)Jn(ρk0

√
ε) exp(−inϕ). When (17) is differ-

entiated with respect to z , the factor −i
√

k2
0−κ2 sgn(z−z ′)

emerges. We form a functional from (12) by multiplying it

by ζn(r) and integrating over the volume. Integral

I(κ)= − i

h/2
∫

−h/2

h/2
∫

−h/2

sgn(z−z ′) exp
(

−
√

κ2−k2
0 |z−z ′|

)

dz dz ′

is fairly easy to calculate, further details are omitted here.

The integration over angle yields 2πδnm; i.e., the sum

vanishes. The result is characteristic equation

2(1− ε)
∞
∫

0

R
∫

0

R
∫

0

I(κ)Jn(κρ)Jn(κρ
′)ρρ′dρdρ′κdκ

(1 + ε)h
R
∫

0

J2
0(ρk0

√
ε)ρdr

= 1. (18)

It is approximate. It’s accuracy as higher as lower the height.

Writing it as (1−ε)/(1 + ε) = α2
n , we find the resonant

frequencies for large α2
n values. At large n , the Bessel

functions in the numerator of (18) oscillate and the double

integral is small; i.e., α2
n is large. It is somewhat more

difficult to obtain approximations with account for field

variations with height. In the other extreme case h ≫ R,
one may take only component

Eρnk = Jk
(

ρk0

√
ε
)

exp(−ikϕ) cos(nπz/h)
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Let us define

Ĩn(κ)=

h/2
∫

−h/2

h/2
∫

−h/2

cos2(nπz/h) exp
(

−
√

κ2−k2
0 |z−z ′|

)

dz dz ′.

The characteristic equation then takes the form

2(1− ε)
∞
∫

0

R
∫

0

R
∫

0

In(κ)J′

k(κρ)Jk(κρ
′)√

κ2−k2
0

ρρ′dρdρ′κ2dκ

(1 + ε)h
(

1 + (−1)n/(2nπ)
)

R
∫

0

J2
k

(

ρk0

√
ε
)

ρdr

= 1. (19)

The first few resonant LP frequencies are determined

approximately from equation

√

ε(ωm)/
(

ε(ωm) + 1
)

= αm = mc/(ωmR),

i.e. described by the formula (16) with substitution or

r → R. At large radii, αm may assume a moderate value

and even be of the order of unity. This corresponds to

a large permittivity magnitude ε(ωm), which is typical of

a low resonant frequency and small indices m. In this

case ωm = m
(

1 + 1(2ε(ωm))
)

c/R. Let us assume, e.g.,

that m = 1 and R = 600 nm. Then c/R = 5 · 1014 Hz
and ε = −347, 4−59i . Taking ω1 = 5 · 1014 Hz
as a first approximation, we’ll find the clarification

ω1 = 5 · 1014(1−0.0014 + 0.00024i). This is the localized

plasmon of the infrared range. An increase in m again

leads to large αm, and the spectrum condenses around the

plasmon resonance frequency. The losses are low here,

since LP is formed as a resonance of a surface plasmon

that travels almost at the speed of light and features low

losses. The examined particle has another characteristic

size Ls = 4R + 2h. It may be greater than 2πR, and the

first resonant frequencies may be even lower if frequency

�m = mc/Ls lies in the IR range. To verify this, we

write down the resonance condition denoting �m = mc/Ls :

ωm = �m

√

1 + [εL−(ωP/ωm)2]−1. If ωP/�m ≫ εL, the

case ωm ≈ �m will be true. If εL−(ωP/ωm)2 ≈ −1, the

square root becomes small, and ωm ≈ ω̃P ≪ �m. Index m is

azimuthal for a cylinder with an LP along the circumference.

In the case of a plasmon along the diameters and generating

lines, this index characterizes radial axial dependences of

the fields. Radiation losses are expected to be low at large

radii. Let us also consider a cylindrical metallic particle

(capsule) of height h and radius R with two hemispheres of

radius R on the ends. The lower LP frequencies of such a

capsule may be characterized approximately by the equation

ωm

√

ε/(ε + 1) = αm = �m/ωm, �m = mc/(R + h/π). It

is the same as (9) if substitution mωP → �m is performed.

However, modes (16) with substitution r → R are also

possible for this particle.

4. Rigorous formulae

A rigorous classical problem for an arbitrary bulk particle

may be formulated based on an IE or an IDE [15]. The

problem has an analytical solution for a spherical surface.

In the case of excitation of a sphere by a plane wave, this is

the Mie solution. Using Debye potentials and stitching the

fields when modeling a particle with a conducting shell, one

may easily obtain for E-modes and H-modes the equations

for surface LPs in fullerenes:

ξ ∂xψ
−

n (χ0) = i[ f nψ
+
n (χ0) − εψ−

n (χ0)], (20)

ξ ψ−

n (χ0) = i[gn∂yψ
+
n (χ0) − ∂xψ

−

n (χ0)]. (21)

Here ξ = σ η0, χ0 = k0r0, r0 — radius of the

particle, Riccati−Bessel ψ−

n (x) =
√
πx/2Jn+1/2(x) and

Riccati−Hankel ψ+
n (x) =

√
πx/2H(2)

n+1/2(x) functions were

introduced, as well as coefficients

f n =
∂rψ

−

n (χ0)

∂rψ+
n (χ0)

= ε1/4
χ0Jn−1/2(χ0) − nJn+1/2(χ0)

χ0H(2)
n−1/2(χ0) − nH(2)

n+1/2(χ0)
, (22)

gn =
ψ−

n (χ0)

ψ+
n (χ0)

= ε1/4
Jn+1/2(χ0)

H(2)
n+1/2(χ0)

. (23)

This approach was used in [9] to examine LPs in fullerenes

and diffraction on them. Free oscillations for the modes

Enm and Hnm of spherical particles are characterized by

equations [17]

n
k0r

(ε − 1) +
Jn−1/2(k0r

√
ε)

Jn+1/2(k0r
√
ε)

=
√
ε

H(2)
n−1/2(k0r)

H(2)
n+1/2(k0r)

, (24)

Jn−1/2(k0r
√
ε)

Jn+1/2(k0r
√
ε)

=
H(2)

n−1/2(k0r)
√
εH(2)

n+1/2(k0r)
. (25)

Here, n = 1, 2, . . . is the meridional index corresponding to

dependence Pm
n (θ), and with respect to azimuthal index

m with dependence exp(−imϕ) degeneracy is observed.

Equations (24) and (25) for n = 1 may be written as

sin(k0r
√
ε)

sin(k0r
√
ε)/(k0r

√
ε)− cos(k0r

√
ε)

=

√
εk0r

1+i(k0r)
+
1−ε
k0r

=α,

(26)
√
ε

sin(k0r
√
ε)

sin(k0r
√
ε)/(k0r

√
ε)− cos(k0r

√
ε)

=
k0r

1+i(k0r)
= β,

(27)
or as

tan(k0r
√
ε)
(

1− α/(k0r
√
ε)
)

= −α
or

tan(k0r
√
ε)
(

1− β/(k0rε)
)

= −β/
√
ε

Then the first equation at |k0r
√
ε| ≪ 1 takes the form

tan(k0r
√
ε) ≈ α(k0r)3ε/3

and is strictly observed at ε = 0. Let us rewrite the second

equation in the form

√
ε tan(k0r

√
ε) = β

[

tan(k0r
√
ε)/(k0r

√
ε) − 1

]

.
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It is also fulfilled exactly at ε = 0; i.e,. both equations

have a degenerate solution ω = ω0. These equations do not

provide radiation losses. Taking ohmic losses into account,

we may write ω = ω0 + iωc . Given the dissipation, a more

accurate resonant frequency for (27) may be found:

ω′

1 = Re(ω1) = ω0

×
√

1 +
ωc

3ω0

(

3− (k0r)4

1 + (k0r)2

)

− ω2
c

3ω2
0

(

3− (k0r)3

1 + (k0r)2

)

.

Here, k0r = ω0/ωr is fairly small; therefore,

ω′

1 ≈ ω0 + ωc/2. Likewise, we obtain ε−(k0r)2ε2/9 = 0

by revising the root in (26). Since the contribution of the

second term here is small compared to that of the first,

it is sufficient to set the real part of permittivity to zero:

εL−ω2
P/(ω

2 + ω2
c ) = 0, where

ω′ = ω0

√

1−ω2
c/ω

2
0 = ω0−ω2

c /(2ω0),

i.e., dissipation lifts degeneracy. The next n = 2 modes

may be called quadrupole ones. Their resonant frequencies

without dissipation also satisfy the condition ε = 0, but

differ slightly from ω0 due to dissipation. Using the

expansions of cylindrical functions in (24) and (25), one

may demonstrate that the LP spectra condense towards

frequency ω0.

We used Zenneck dispersion equation obtained for a flat

surface to derive some of the formulae for complex particles.

In case of particles in the medium, a modification of this

equation [2] should be taken, allowing for the DP of the

medium. Naturally, this is an approximation. However, it

yields resonant frequencies for small conducting particles

in SPR region that agree well with the results obtained

in other methods, including the exact results for spherical

particles. Resonances in the IR range, where SPs are

slightly decelerated, may be less accurate. In any case, such

plasmons moving along curved surfaces may emit energy,

shifting the resonant frequency and reducing the quality

factor. In the case of IR laser excitation, a low quality

factor is not a critical parameter.

It is preferable to verify the obtained results against

rigorous formulae. Let us consider symmetric mode E0n

of a metallic cylinder. Let’s the electrical field in it assumes

the form:

Ez = E0J0

(

ρ

√

k2
0ε − k2

z n

)

cos(kz nz ),

Eρ = ikz E0J1

(

ρ

√

k2
0ε − k2

z n

)

cos(kz z )/
√

k2
0ε − k2

z n,

Eϕ = 0, where kz n = nπ/h. Inside, it satisfies the Helmholtz

wave equation. Note that the field completely penetrates a

particle smaller in size than the skin layer, and the complex

nature of permittivity should be taken into account in this

case. A different solution satisfying the Helmholtz equation

at ε = 1 and the radiation condition needs to be constructed

outside the resonant cavity (in case of a particle with some

DP of the medium ε̃). There are no tangential electric field

components at the boundary of the cylinder. Also for this

mode Hρ = 0 and Hz = 0. The magnetic field has a single

component. It takes the following form inside the cavity:

Hϕ = −iωε0εE0J1

(

ρ

√

k2
0ε − k2

z n

)

cos(kz z )/
√

k2
0ε − k2

z n.

(28)
Thus, our task is to find this component outside the resonant

cavity and stitch it with (28). Here, Hϕ = ∂z Aρ−∂ρAz .

We define the components of the vector potential in terms

of polarization current densities Jρ(r) = iωε0(ε−1)Eρ(r),
Jz (r) = iωε0(ε−1)Ez (r) as

Aρ = iωε0(ε − 1)

∫

V

cos(ϕ − ϕ′)G(r − r′)Eρ(r
′)d3r ′,

Az = iωε0(ε − 1)

∫

V

G(r− r′)Ez (r
′)d3r ′.

Azimuthally symmetric GF (17) takes the following form in

a cylindrical system:

G =
1

4π

∞
∫

0

exp
(

−
√

κ2 − k2
0 |z − z ′|

)

J0(κρ)J0(κρ
′)

√

κ2 − k2
0

κdκ.

We have the following components of the vector-potential

Aρ(ρ, z ) = − kz nωε0(ε − 1)

4π

√

k2
0ε − k2

z n

E0 Iρ(ρ, z ),

Az (ρ, z ) =
iωε0(ε − 1)

4π
E0 Iz (ρ, z ),

where integrals are designated

Iρ(ρ, z ) =

∞
∫

0

2π
∫

0

h/2
∫

−h/2

R
∫

0

ρ′ cos(ϕ − ϕ′)J0(κρ)J0(κρ
′)J1

(

ρ

√

k2
0ε − k2

z n

)

χ

× exp
(

−χ|z − z ′|
)

cos(kz nz ′)κdκd3r ′,

Iz (ρ, z ) =

∞
∫

0

2π
∫

0

h/2
∫

−h/2

R
∫

0

ρ′J0(κρ)J0(κρ
′)J0

(

ρ

√

k2
0ε − k2

z n

)

χ

× exp
(

−χ|z − z ′|
)

cos(kz nz ′)κdκd3r ′.

Here χ =
√

κ2−k2
0,
√

k2
0−κ2 = −iχ . The first integral is

angle-independent and equal to zero. Indeed, integrating

by ϕ′, we obtain sin(−ϕ)− sin(2π−ϕ) = 0. In the second

integral, integration over angle yields 2π. Integration by z ′

in Iz results in factor

In(χ, z ) = 2

χ cos(kz nz )+ exp(−hχ/2) cosh(χz )

×
(

nπ/h sin(nπ/2)−χ cos(nπ/2)
)

χ2 + k2
z n

,
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therefore, for derivative ∂ρIz (ρ, z ) we have

I ′z (ρ, z ) = −2π

∞
∫

0

R
∫

0

ρ′J1(κρ)J0(κρ
′)J0

(

ρ

√

k2
0ε − k2

z n

)

χ

× In(χ, z )κ2ρ′dρ′dκ.

Integrating in ρ′, we apply the mean value theorem, taking

ρ′J0

(

ρ′
√

k2
0ε−k2

z n

)

at midpoint ρ′ = R/2. As a result, we

get

I ′z (ρ, z ) = πRI0
(

R
√

k2
z n − k2

0ε/2
)

∞
∫

0

J1(κρ)
(

J0(κR) − 1
)

χ

× κIn(χ, z )dκ.
(29)

The integral should be calculated numerically by dividing

the domain of integration in κ into two regions: 0 < κ < k0

and k0 < κ < ∞ with replacement of κ by χ . Since the real

part of permittivity for an LP is close to zero, we introduced

a modified Bessel function. The external magnetic field at

ρ = R is equal

Hϕ(R, z ) =
iωε0(ε − 1)

4
E0RI0

(

R
√

k2
z n − k2

0ε/2
)

×
∞
∫

0

In(z , k0, χ)
J1(κR)

(

1− J0(κR/2)
)

χ
In(χ)κdκ.

(30)
We equate it to component (28) at ρ = R. Here, we’ll

multiply the equality by cos(nπz/h) and integrate it in z
along the interface. The integration result is

Ĩn(k0, χ) =

h/2
∫

−h/2

In(χ, z ) cos(kz nz )dz =
hχ

χ2 + k2
z n

+

(

kz n sin
(

nπ
2

)

− χ cos
(

nπ
2

))

[

kz n sin
(

nπ
2

)(

1+ exp(−hχ)
)

+χ cos
(

nπ
2

)(

1− exp(−hχ)
)]

χ2 + k2
z n

.

At large χ, this integral decreases as 1/χ . The end result is

1− ε

ε
= αn(ω) =

2(h/R)I1
(

R
√

k2
z n − k2

0ε
)

√

k2
z n − k2

0εI0
(

R
√

k2
z n − k2

0ε/2
)

∞
∫

0

Ĩn(k0, χ)

× J1(κR)
(

1−J0(κR/2)
)

√
κ2−k2

0

κdκ

. (31)

Quantity αn in this equation is complex, large in magnitude,

and has a small imaginary part. Thus, ε ≈ 0, and fre-

quencies ωn = ω0/
√

1− [(αn(ω0) + 1)εL]−1. The iteration

Real parts of circular frequencies (in THz) of a silver cylindrical

resonator with R = 4 nm determined using formulae (31), (19),
and (12

N
h = 6, nm

(31) (19) (12)

1 5137.128 4890.883 4891.887

2 5138.009 4891.915 4891.926

3 5138.213 4891.929 4891.933

4 5138.232 4891.933 4891.936

n h = 12, nm

1 5138.078 4891.729 4891.832

2 5138.959 4891.887 4891.912

3 5139.164 4891.916 4891.927

4 5139.183 4891.926 4891.932

method is well-suited for finding the complex roots of

(31). The initial approximation was ω = ω0. Results are

presented in the table. Note also that exact Eqs. (22)
and (23) also allow formulating iterative algorithms for

root refinement. Specifically, the following is derived from

Eq. (23) at n = 1 with three terms in the tangent expansion

taken into account:

ε =
2(k0r)4ε2/15

1 + i(k0r) − (k0r)2/3
= α1.

The initial approximation should be taken from the

condition ε′ = 0, i.e. ω1 =
√

ω2
P/εL−ω2

c . Having a non-

zero complex dielectric permittivity, one may perform the

first iteration. Since the value of α1(ω1) is very small, one

iteration is sufficient.

5. LP in long nanoparticles

Long nanoparticles are those with their length satisfying

relation L ∼ λ and small transverse dimensions: k0r ≪ 1.

Such particles may be regarded as nanoantennas. This is

typical of nanowires, long CNTs, and graphene nanoribbons.

A rigorous approach requires solving IEs in this case. With

small transverse dimensions, they are reduced to Gallen-

and Pocklington-type equations and their modifications [18].
In addition to longitudinal, resonances associated with

transverse dimensions are also possible. By virtue of a

significant length, the longitudinal current density compo-

nent may be considered to be independent of transverse

coordinates and taken in the form of Jz = sin(nπz/L),
n = 1, 2, . . ., i.e. assumed to be transformed to zero

on its ends. This component produces volume charge

density ρV (ω) = i(nπ/L) cos(nπz/L)/ω within a particle.
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Total component Ez within a particle is given by equa-

tion

Ez (ω, z ) =
sin(nπz/L)

iωε0
(

ε(ω) − 1
) =

1

iωε0

L
∫

0

[

k2
0K(ω, z − z ′)

× sin(nπz ′/L) +
(nπ/L)∂z K(ω, z − z ′)

ω
cos(nπz/L)

]

dz ′,

(32)
where kernel

K(ω, ρ, z − z ′) = R

×
∞
∫

0

J0(κρ)J1(κR) exp
(

−
√

κ2 − k2
0 |z − z ′|

)

2

√

κ2 − k2
0

dκ.

We consider this equation within a particle under the

assumption that the left-hand side does not depend on

ρ. Multiplying by ρ and integrating, we obtain the same

equation with kernel

K̃(ω, z − z ′) =
1

R

∞
∫

0

J2
1(κR) exp

(

−
√

κ2 − k2
0 |z − z ′|

)

κ

√

κ2 − k2
0

dκ.

Multiplying (32) by sin(nπz/L) and integrating in z , we

find the characteristic equation

1− (−1)n

(nπz/L)
(

ε(ω) − 1
) =

L
∫

0

L
∫

0

sin(nπz/L)

[

k2
0K̃(ω, z − z ′)

× sin(nπz ′/L) +
(nπ/L)K̃′(ω, z − z ′)

ω
cos(nπz/L)

]

dz ′dz .

The left-hand side vanishes at even indices. The right-hand

side may be simplified via integration by parts:

L
∫

0

K̃′(ω, z −z ′) cos(nπz/L)dz ′ = K̃(ω, z −z ′)
(

(−1)n − 1
)

+ (nπz/L)

L
∫

0

K̃(ω, z − z ′) sin(nπz/L)dz ′.

Integrals over the coordinate are taken analytically, and

a convergent spectral integral remains. It is convenient

to find complex roots using the iteration method. For

this, the initial approximations for it, as above, may

be derived from conditions k0

√

ε/(ε + 1) = nπ/L. This

equation is rather approximate, since it does not take

wire curvature into account. A rigorous approach requires

solving the Sommerfeld equation for a wave along a

wire [19] rather than the Zenneck equation. For Sommerfeld

wave inside a wire, the only component of Hertz electric

vector may be expressed through the Bessel function

as

5z = AJ0

(

√

εk2
0 − k2

z

)

exp(−ikz z ),

while the outside component — it may be expressed

through Macdonald function:

5z = BK0

(

ρ

√

k2
z − k2

0

)

exp(−ikz z ).

Stitching the fields, we find

ε = α = −

√

k2
0 − k2

z
√

k2
z − k2

z

J0

(

R
√

k2
0ε − k2

z

)

K1

(

R
√

k2
z − k2

0

)

K0

(

R
√

k2
z − k2

0

)

J1

(

R
√

k2
0ε − k2

z

)

.

(33)
With a short wire length, assuming kz = nπ/L we find the

resonant frequencies under condition ε ≈ 0. At the same

time, the value

α≈− (nπ/L)
√

(nπ/L)2−k2
0

I0
(

R
√

(nπ/L)2
)

K1

(

R
√

(nπ/L)2−k2
0

)

K0

√

(nπ/L)2 − k2
0 I1(nπR/L)

shall be small. At frequencies significantly lower than the

optical ones, the velocity of a Sommerfeld wave in a wire

is slightly slower than the speed of light. The permittivity

is complex and large in magnitude at these frequencies. In

this case, resonance condition k0 = nπ/L is quite accurate at

small indices and large length, and the resonant frequencies

are low. Equation (33) is inconvenient for use. At R → ∞,

it transforms into Zenneck equation, which is easier to use

as an initial approximation.

Equations for a LP in CNT are formulated in the same

way as in a nanowire, the only difference being that surface

current density j z = sin(nπz/L) is specified. It forms

the surface charge density ρS(ω) = i(nπ/L) cos(nπz/L)/ω.
Volume integrals are then replaced by the surface ones,

since all quantities contain delta function δ(ρ−R). Equa-

tion (32) takes the form

Ez (ω, z ) =
sin(nπz/L)

σz z (ω)
=

1

iωε0

L
∫

0

[

k2
0 K(ω, z − z ′)

× sin(nπz ′/L) +
(nπ/L)∂z K(ω, z − z ′)

ω
cos(nπz/L)

]

dz ′

with kernel

K(ω, z − z ′) = R

×
∞
∫

0

J0(κR)J0(κR) exp
(

−
√

κ2 − k2
0 |z − z ′|

)

2

√

κ2 − k2
0

κdκ.

Dynamic conductivity of CNT σz z (ω) was determined

in [20]. An approximate solution for E-plasmon is derived

from condition kz = nπ/L = k0

√

1− 4/
(

η0σz z (ω)
)2
. It
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also corresponds to the large-radius approximation. In

order to obtain DE in an infinite CNT, let’s write the

current density as Jz = exp(−ikz z )δ(ρ−R) and find the

field component for it:

Ez (R, z ) =
exp(−ikz z )

2πiωε0

∞
∫

0

(k2
0 − k2

z )
J0(κR)J0(κR)

κ2 + k2
z − k2

0

κdκ

=
exp(−ikz z )

σz z
. (34)

Integral (34) exists, since quantity k0 is complex. Reducing

by the exponential factor, we obtain equation

k2
z = k2

0 −
2πik0

η0 σz z (ω)
∞
∫

0

J0(κR)J0(κR)

κ2+k2
z−k2

0

κdκ
. (35)

It is analogous to the equation for a surface E-plasmon

along a graphene plane. For a graphene nanoribbon of small

width W and length L , we can write Jz = sin(nπz/L)δ(x).
Owing to the smallness of width, we neglect the depen-

dence on y and component Jy . We have

W
2πωε0[(−1)n − 1]

σ (ω)(nπ/L)
=

∞
∫

0

dκ

π/2
∫

0

dϕ

L
∫

0

L
∫

0

sin(nπz/L)

× sin2
(

κ sin(ϕ)W/2
)

(kyW )2

exp
(

−i
√

k2
0 − κ2|z − z ′|

)

√

k2
0 − κ2

× sin(nπz ′/L)κ3dz ′dz .

Here, we switched to a polar coordinate system in inte-

gration. The integral over angle is calculated using the

mean value theorem with midpoint ϕ = π/4, which yields

factor π sin2(κπW/8)/2. The integrals over coordinates z
and z ′ are calculated explicitly. Thus, the right-hand side is

represented by a convergent spectral integral.

6. Torus and dumb-bell like particles

A torus with radii R and r can support low-

frequency azimuthal oscillations corresponding to lengths

L = 2π(R + r), L = 2π(R−r) and L = 2πR. In expression

ωr = c/(R + r) complex frequency is derived from the

equation

ω̃n =
√

ω2
n − iωnωc = ωP

√

(nωr/ωn)2 − 1
/

√

(nωr/ωn)2(εL + 1) − εL ≈ ωn − iωc/2. (36)

Here, ωr/ωn > 1 and it is implicit. The solution in the first

approximation can be written, neglecting the roots of unity

and εL in the form:

ω(1)
n = ωP/

√

εL + 1 + iωc/2.

By substituting it into (36), we’ll obtain (convergence takes

place in two iterations)

ωn = iωc/2 + ωP

√

(nωr/ω
(1)
n )2 − 1

/

√

(nωr/ω
(1)
n )2(εL + 1) − εL. (37)

If we neglect dissipation, i.e. take

εLω
2
n − ω2

P = (n2ω2
r /ω

2
n)[(εL + 1)ω2

n − ω2
P ],

then, we get the biquadratic equation

ω4
n − ω2

n

[

ω2
P/εL + n2ω2

r (1 + 1/εL)
]

+ n2ω2
rω

2
P/εL = 0.

Its solution

ω2
n =

ω2
P/εL + n2ω2

r (1 + 1/εL)

2

+

√

ω2
P/εL + n2ω2

r (1 + 1/εL)

4
− n2ω2

rω
2
P

εL

may be transformed at n = 1:

ω2
n =

ω2
P/εL + ω2

r + ω2
r /εL

2
+

|ω2
P/εL − ω2

r |
2

×
√

1 + ω2
r

2ω2
P + ω2

r

[ω2
P − εLω2

r ]
2
.

If the torus is small and ω2
r > 2ω2

P , we get

ω2
n ≈ ω2

r

(

1 + 3/(4εL)
)

− ω2
P/(4ε

3
L).

This solution should be rejected, since the frequency is

significantly higher than SPR frequency. The applicability

of SPR method meets the condition Re(ε < 1). If the torus

is large and ω2
P/εL > ω2

r , then, the frequency lies near SPR:

ω2
n ≈ ω2

P

εL
− ω2

r (1− 1/εL)

2
+
ω2

r

ω2
P

ω2
P/εL − ω2

r

2
.

This approximation is more rough, compared to (37).
Similarly, we can consider fluctuations with the substitution

of R + r → R−r (Fig. 1). Such oscillations create magnetic-

dipole fields. High-frequency oscillations in the form of a

traveling wave along a circle of radius r can exist if they are

synchronized, namely, the fields at points ρ = −(R ∓ R)
and ρ = (R ± r) shall be in phase or reverse phase.

For SP frequencies, running circumferentially we obtain

rks = m. For frequencies along the large circumference

Rkx = n. Therefore, r/R = m/n < 1/2, where m and n are

integers, and the parity of −the odd of the oscillations is

determined by n. Although these ratios are approximate,

they determine the dimensions at which such LP exist.

In particular at m = 1 and n = 3 the oscillations are in

reverse phase at ρ = ±R, and at n = 4 — in-phase. As for

DE (36), these are magnetic dipole fields with distributed
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Figure 1. Resonant frequencies (THz) for contour R + r
(curves 1, 2), R (3) and R−r (4) depending on R (nm) at

r = 2 nm (curves 2–4) and 3 nm (1), as well as frequencies

for contourR + r depending on r (nm) at R = 20 nm (curve 5)
and R = 30 nm (6). Material — silver, ωc = 3.57 · 1016 Hz.
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Figure 2. Q-factors of oscillations, corresponding to Fig. 1

(numbers of curves of resonances and numbers of Q-factors

coincide).

magnetic dipoles, with opposite magnetic dipoles oriented

either in the same direction or in opposite directions. Here,

the origin of the cylindrical system coordinates is taken in

the center of torus. Calculations according to formula (36)
allowing for losses are given in Fig. 1 and 2. It is enough to

use two iterations.

The dumbbell-shaped particles will be considered under

the assumption that the radius of the balls r is much larger

than the radius of the cylinder connecting them. The

length of the cylinder l . Then, there are
”
low-frequency os-

cillations“ ks = k0

√

ε/(ε + 1) = n/(2r + l), n = 1, 2, . . .

and
”
high frequency oscillations“ with Zenneck wavelength

λs = 2π/ks , lying on the circumference 2πr , i.e. ks r = m.

But at the same time, an integer number of half-waves shall

also fit the length of l, i.e. l/r = nπ/m. The orientations of

magnetic dipoles (polarization of oscillations) are different,

as in the case of a torus. The type of dipoles of the

corresponding LP is determined by the pattern of current

flowing in the particle. The higher oscillations correspond

to quadrupoles and multipoles. Since all SP in a non-

magnetic particle correspond to E-SP, the polarization can

be determined by the tangent component of the electric

field to the surface. So, for a spherical particle in a

spherical coordinate system, three polarizations with the

same frequencies are possible: SP moves along the equator,

SP moves along the prime meridian (ε = 0), and SP

moves along the meridian ε = 90◦ . Of course, these are

approximations, since the curved surface has been replaced

by a flat one, and the exact fields have a rather complex

appearance. But if we solve the problem strictly, rotating

the planes by an angle ϕ and θ will also give a threefold

polarization degeneracy. Be designating ωr = c/(2r + l),
we obtain the equation to define the frequencies in the

absence of losses

ω4
n − ω2

n

[

ω2
P/εL + ω2

r n2(1 + 1/εL)
]

− n2ω2
rω

2
P/εL = 0.

After finding solutions to ωn, the losses can be approxi-

mately accounted for by replacing ωn → ωn + iωc/(2ωn).

7. Discussion of results and conclusions

It is demonstrated that SPR method is a fine approxima-

tion for calculating LP frequencies. This is attributable to

the quasi-static nature of these resonances. All the resonant

frequencies described above ωn correspond to the formula

√

ε(ωn)/
(

ε(ωn) + 1
)

= nωr/ωn,

where frequency ωr = c/L is associated with a certain

size L. If it’s large and nωr/ωn ≪ 1, then, resonance stands

for ε(ωn) ≈ 0. This is resonance of the bulky plasmon

ωn = iωc/2 +
√

ω2
P/εL−ω2

c/4, i.e. ωn = ω0 + iωc/2. With

the growth of n the right-hand side increases at nωr/ωn ≫ 1

and condition ε(ωn) ≈ −1 is met. This is SPR. For n → ∞
we have

ω∞ = iωc/2 +
√

ω2
P/(εL + 1) − ω2

c/4 = ωs pr + iωc/2.

For a small particle, the right-hand side is always large,

i.e. ε(ωn) + 1 ≈ 0, and the equality is more accurate the

greater n. Correspondingly, ωs pr — point of condensation

The higher the deceleration of SP, the higher the method

accuracy. The frequencies ωs pr and ω0 differ little, and if the

resonant frequency is close to them, the deceleration of SP
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is significant. An increase in SP deceleration is associated

with a decrease in losses. It is possible to significantly

reduce losses in metal particles (for example, by two

orders of magnitude) using low temperatures. Macroscopic

parameters for nanoparticles were used throughout analysis.

This is a strong assumption. The microscopic polarizability

of a nanocluster may differ significantly from the value

for a bulk sample (where atoms are arranged periodically)
due mostly to the influence of boundaries and changes

in the internal field. Quantum-mechanical methods with

the excitation of the cluster by the field of a plane

monochromatic wave taken into account need to be used to

find an exact solution to the problem. Such problems often

turn out to be impossible to solve even in approximations.

The presence of boundaries and free electrons leads to

a significant change in the collision frequency [2]. Prob-

lems associated with dimensional quantization and ballistic

transport arise in the case of nanoclusters characterized

by conductivity. Electrons involved in conduction move

at the Fermi velocity; i.e., they are characterized by de

Broglie wavelength λ = 2π~/(mevF). Particles with lower

energies are not involved in directional motion. In case of

a large electron free path λ̄
e ≫ L , when moving along the

longitudinal dimension, n = 2L/ λ̄ levels corresponding to it

occur (the effect of dimensional quantization). In addition,

we have m = 2W/ λ̄ levels corresponding to the transverse

dimension W . These latter levels for a long graphene

nanoribbon correspond to the number of longitudinal modes

of conductivity and transverse modes which are quantized.

In reality, for such a QW (graphene nanoribbons), it is

necessary to solve the SE with a vector potential corre-

sponding to the electromagnetic field. If this ribbon (e.g.,
a metallic one) also has thickness t, a three-dimensional

object — a quantum box with approximately 8LWt/ λ̄3

levels emerges. These levels correspond to conduction

electrons. The known result (1) with an overestimation

of energy corresponds to the model of absolutely high

walls with WF ψ = sin(nπz/L) sin(mπy/W ) sin(kπx/t), so
it does not allow to obtain any results for transition

frequencies. If the potential with account for all atoms or the

approximate potential for conductivity electrons (for which

the single-particle Schrd̈inger equation may be solved) in

this QB is known, the energy levels and the transition

frequencies may be determined. The polarizability of such a

meta-atom (quantum dot or QB) in the field of a plane wave

of the optical range may be determined by the perturbation

method. The large number of atoms in a quantum dot offers

hope that a macroscopic permittivity will provide a correct

qualitative result. The macroscopic experimental parameters

of metals near the transition of the real part of DP through

zero shall be approximated fairly accurately. The accuracy

of the approximation used with one term εL deteriorates in

this range, so two or three Lorentz terms should be used.

For a particle that is not too small, when it is still possible

to enter the macroscopic Fermi velocity for it, and the flight

time τ = 2r/vF, for which the macroscopic relaxation time

τr = 1/ωc is significantly less, the collision frequency can

be taken in the form ωc = vF, where vF — Fermi velocity,

considering that the current-carrying electrons are located

in the vicinity of the Fermi level. However, at an elastic

(specular) distance from the walls, the momentum is to

modulo conserved, and losses are associated with elastic

scattering, i.e., with a specular scattering coefficient, so the

real CF ωc will be less. When exposed to rapidly alternating

fields with an amplitude of E0 and a frequency ωn , electrons

oscillate near the lattice ions with this resonant frequency

of ωn, while the peak-to-peak swing decreases with a

frequency of rn = E0(e/me)/|ω2
n−iωnωc | [14]. All electrons

are considered in this model. With the sizes of particle

significantly higher than rn the boundaries stop influenc-

ing ωc . As the frequency grows, the offset decreases,

and the influence of boundaries goes down, i.e., CF ωc

should decrease. In strong fields, the offset is greater,

and in free oscillations, the amplitude decays with time,

i.e. the directional offset of electrons becomes smaller. At

that, CF ωc should decrease. Thus, ωc depends on the

resonant frequency and amplitude of oscillations. With

a small amplitude, the influence of the boundaries does

not affect, and the frequencies ωn change slightly near the

frequency of SPR, which makes it possible to neglect the

dependence ωc(ωn). To assess the LP frequencies we may

use macroscopic value of CF ωc . Obtaining these models

for collision frequencies is a separate difficult task, leading

to nonlinear equations for determining the frequencies ωn.

Let us consider as an example the meta-atom in the form

of graphene 2DEG-domain with dimensions 2DEG and L.
The surface conductivity of graphene derived from linear

dispersion (for electrons and holes in the vicinity of Dirac

points) without regard to inter-band transitions is actually

given by the Drude formula [21]:

σ (ω, µ, ωc , T ) =
σintra(0)

1 + iω/ωc
, (38)

σintra(0) = σ0 =
e2kBT
π~2ωc

ln

(

2

[

1 + cosh

(

µc

kBT

)]

)

. (39)

Here, µc — is the electrochemical potential and T —
temperature. Since, according to Drude, the DC value

σ (0) = σ0 = enSvF, we determine from (38) the sur-

face concentration of conductivity electrons and holes

nS = σ0/(evF). The free path λe in graphene is very long

(about µm). If a cluster is significantly smaller in size,

collisions may be neglected. At low frequency ω/ωc ≪ 1

the conductivity (38) is of ballistic nature σintra(0) for cluster
L ≪ λe and of diffusive nature at L ≫ λe . In general

case σ = σintra(0)(1 + L/λe). At high frequency, the path

length λe decreases, so the conductivity becomes reactive

(inductive), small and ballistic σ = −iσintra(0)ωc/ω. This

corresponds to the fact that the contribution to conductivity

decreases with increasing frequency due to the oscillatory

nature and the reduction in oscillation amplitude (the run

between collisions drops with the decreasing period). Then,
kinetic inductance begins to play an essential role, which,

when the current is directed along a large size in such a

2DEG, has the form LQ = mevFL/(Wσ0e). This inductance
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and quantum capacitance CQ contribute to the surface

conductivity of the graphene fragment:

σ (ω) = −iσ0(1 + L/λe)ωc/ω + iWωCQ + W/(iωLQ),

where CQ = e2µc/(πvF~
2). Writing down the resonance

condition k0L
√

1− 4/σ 2 = nπ, we obtain

ω4
n +

ω2
n

4[WCQω2
n −W/LQ − σ0(1 + L/λe)ωc ]2

=
n2�2

[WCQω2 −W/LQ − σ0(1 + L/λe)ωc ]2
.

Here � = cπ/(2L). Explicit solutions can be obtained if

the quantum capacity is neglected. Transverse resonances

are obtained by substituting L ↔ W . These formulae are

true for small n.
As for Drude−Lorentz formula for DP of a metal, it

is quite accurate in IR and lower-frequency ranges. In

case of optical LPs, it is advisable to take several Lorentz

terms in it to approximate real experimental DP of metals.

Specifically, for silverε′(ω) goes through zero three times,

and a single εL value is clearly insufficient. A complex

frequency dependence of permittivity leads to implicit and

cumbersome formulae. The resonant frequencies for them

should be determined iteratively; two iterations are sufficient

in most cases. As for the introduction of one constant

εL into the given formulae, the corresponding error is

no greater than a few percent, as is the error of the

quasi-static formulae themselves. It should be noted that

the use of rigorous formulae leads to a spectrum that

condenses toward frequency ω0 = ωP/
√
εL, while the quasi-

static approach and SPR method yield to the point of

spectrum condensation ω̃P = ωP/
√
εL + 1. Note also that

particles are often examined in a certain transparent medium

with dielectric permittivity of ε̃. In this case all results

are obtained by substitutions of k0 → k0

√
ε̃ and εL → εL−ε̃.

Finally, we used Zenneck dispersion for a flat interface. At

the same time, we got fairly simple results. Similarly, it is

possible to obtain Zenneck dispersion equation for spherical

and cylindrical particle surfaces if, similarly to derivation of

formula(33), we consider SPs running along the coordinate

ϕ for a cylinder or sphere. Such dispersion equations are

much more complex and implicit, but they correctly take

into account the curvature of the surface and give more

accurate results.
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