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The mathematical modeling of the resonance fluorescence spectra associated with the dynamic interaction of

two two-level nanoparticles is carried out. The cases of weak and strong pumping of a single particle by a long

pulse of monochromatic light with a carrier frequency equal to or close to the frequency of its own transition are

considered. Expressions for the contours of the spectra of collective and two components of selective resonant

fluorescence are obtained — as a function of the frequency of the recorded photon of fluorescence — as a result of

using solutions of the Schrodinger equation system for the amplitudes of states of a composite system of particles,

a quantized irradiation field and a resonant fluorescence field. Based on the analysis of graphical images of the

obtained functions, the characteristic features of the shape and position of the maxima of the contours of the

spectra at different values of the parameters of the structure and interaction of particles and the irradiation field are

determined.
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Introduction

Mathematical modeling of the resonance fluorescence

spectrum of two-level interacting nanoparticles (models of

molecules, atoms, ions, and semiconductor quantum dots)
irradiated with monochromatic light reflects the dependence

of a number of characteristics of the RF frequency filtration

field on the values of irradiation parameters and particle

parameters. The results of calculations of this depen-

dence can be used for comparison with the corresponding

experimental data of the RF for obtaining information

about the mutual arrangement of particles, the nature of

their interaction with each other and with the radiation

field. A comparison of the results of such calculations

obtained during modeling using various variants of the

light conversion mechanism by particles allows drawing

conclusions regarding the confirmation of the adequacy of

the accepted modeling.

Researchers quite often consider the dipole-dipole in-

teraction of stationary atoms the distance between which

is less than the wavelength of the irradiated light, equal

to the wavelength of the atoms’ proper transitions. The

guideline for such modeling is usually the modeling of

the RF spectrum of one two-level atom conducted in

numerous studies. The expression for the RF spectrum

of an atom is determined based on consideration of the

Fourier component of the RF field correlation function,

which is expressed in terms of the steady-state solution of

the governing equation for the atomic density matrix (in
the Markov, Born approximation), taking into account the

decay of the atom excited state according to Lindblad. The

dependence of the stationary population of an atom on the

frequency of the recorded photon of fluorescence is also

used as the definition of the RF spectrum. According to the

results of these studies, it was found that the RF spectrum

has the form of the one line in case of a low radiation

intensity with the spectrum contour having the form of

almost one line, and in case of a high radiation intensity,

when the frequency of oscillation of the population levels

of an atom is much greater than the decay rate constant

of its excited state, the RF spectrum has the form of a

combination of three contours (
”
peaks“): central (with a

maximum frequency equal to the frequency of irradiation)
and two

”
lateral“, the maximum frequency of one of them is

greater and the other is less than the frequency of irradiation

by the frequency of radiation. The width of the central

peak is equal to half, and the width of the lateral peaks is

equal to three quarters of the value of the decay constant.

These conclusions are consistent with the data of the

corresponding measurements of the RF spectrum of one

atom, therefore, in modeling the RF spectrum of two atoms,

the main provisions of the general theoretical approach

noted above are used in modeling the RF spectrum of one

atom, and the corresponding computational formalism takes

into account the interaction of atoms, for example, dipole-

dipole. The paper with the title
”
Collective atomic effects

in resonance fluorescence: Dipole-dipole interaction“ is one

of the first of such studies [1].
The RF spectrum of a composite system of two identical

two-level atoms interacting with each other and with

a quantized field of monochromatic irradiation with a

frequency equal to the frequency of natural transitions of
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stationary atoms, the distance between which does not

exceed the wavelength of irradiation, is modeled in this

study. The dynamic dipole-dipole interaction of atoms and

the following collective states of the system were taken

into account: 1) a state in which both atoms are in their

ground states, and the irradiation field contains a certain,

rather large number of photons, 2) two states, in each of

which one of the atoms is in an excited state, the other —
mainly, and the irradiation field contains one photon less

initial, and 3) a state in which both atoms are excited,

and the irradiation field contains two photons less than

the initial one. This study determines such energy levels

and corresponding eigenstates of the system which reflect

the splitting of the degenerate excited energy levels of the

system due to the dipole-dipole interaction of atoms with

each other and with the irradiation field. These states

are used as the basic states for the formulation of the

control equation for the density matrix of the system, which

takes into account the decay of excited states of atoms

according to Lindblad. Approximations which are valid for

one or another relative value of the atomic parameters and

the radiation intensity were used for solving this equation.

Various methods of solving the equation were chosen for

cases when a clear separation of lateral contours of the

spectrum from the central contour was expected in case

of a particular force of interaction of atoms with separation

of these contours from each other and when their significant

overlap was expected. The obtained stationary solutions are

applied for composing an expression for the time-average

value of the correlation function of the dipole operator of

atoms, used for determining the expression for the first-

order correlation function of the field in the wave zone.

The expression for the RF spectrum is obtained using the

Fourier transform of this correlation function. As a result

of the analysis of the obtained expression, it is concluded

that the RF spectrum looks (in the general case) as two

groups of contours that are symmetrically offset relative to

the central contour on both sides with the peak frequency

being equal to the frequency of irradiation of atoms in

case of different values of the parameters of atoms, their

interaction and radiation intensity. The displacement of the

peaks of the lateral contours is greater than the frequency

of the Rabi transitions in atoms and the greater the energy

of the dipole-dipole interaction of atoms. When considering

the case of irradiation with light of such intensity that the

Rabi frequency is 14 in units of the spontaneous emission

rate constant of each atom, Fig. 2 in [1] shows the images

of example spectra at 11 different values of the parameter

characterizing the strength of the dipole-dipole interaction

between the atoms. It is noted in the abstract to this work

that the significant difference between the RF spectrum of

two atoms and the RF spectrum of one atom predicted

by the simulation is inconsistent with the conclusions of

previous study (reference is given in the literature list),
which used the same general approach to modeling the RF

spectrum of two atoms, but without taking into account their

dipole-dipole interaction.

In subsequent years, a number of studies of various

authors simulated the spectrum of single-photon collective

resonance fluorescence from two interacting two-level atoms

resonantly irradiated by monochromatic light. These simu-

lations employed a classical description of the irradiation

and accounted for both the coherent and incoherent parts

of the dipole-dipole interaction between stationary atoms

separated by a distance no greater than the wavelength

of the driving field. The expression for the spectrum and

the computational formalism were chosen based on the

corresponding descriptions of modeling the RF spectrum

of a single atom. One of the latest of such papers provides

an image of the RF spectrum (Fig. 1, b in [2]) for the case

of irradiation, when the Rabi frequency is 30 times higher

than the decay rate constant of excited states of atoms, with

a selected characteristic value of the dipole-dipole energy

interactions of atoms. This spectrum looks like a central

contour with a maximum at the irradiation frequency and

three lateral contours symmetrically located on both sides of

the central one. Two of these lateral circuits are located in

the frequency range shifted from the irradiation frequency

to the Rabi frequency, and the third lateral circuit is — at

twice the Rabi frequency. All contours in the area of their

maxima look like
”
peaks“, but overlap with each other at

about half their height. The height of the maximum of the

central peak slightly exceeds approximately the same height

of the peaks in the region shifted by the Rabi frequency,

and the height of the maximum of these peaks significantly

exceeds the height of the peak shifted by twice the Rabi

frequency.

A theoretical approach to modeling the collective RF

spectrum of two atoms, which differs from the one used in

Ref. [1,2], is applied in Ref. [3]. This paper considers the RF

of a composite system of atoms irradiated with classically

described monochromatic light and the RF photon field. The

following states were distinguished among the collective

states of this composite system: 1) a state in which the

field contains an RF photon, and both atoms are in their

ground states; 2) two states, in each of which one atom is

in an excited state, the other — in the ground state, while

the field contains an RF photon; 3) a state in which both

atoms are excited, and the field contains an RF photon.

A governing equation is compiled for the elements of the

density matrix of such a composite system using these states

as the basic ones. Radiative decay of the excited atomic

states was introduced by reducing the system’s density

matrix over the zero-photon field states while accounting for

the considered incoherent dipole-dipole interaction between

the atoms. Using a computational formalism similar to the

formalism used earlier in a number of works with this

approach to modeling the RF spectrum of a single atom,

stationary solutions of the control equation for the density

matrix of the system are obtained. It was taken into account

that a number of approximations were used that were valid

for the selected relative values of the atomic parameters and

their position relative to the direction and polarization of

the irradiation. For example, the impact of non-diagonal
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elements of the density matrix on the diagonal ones is

neglected and the colonization of the collective state level at

which both atoms are excited is excluded. The expression

for the spectrum was defined as the dependence of the

sum of the stationary populations of the first three of the

collective states of the system noted above on the frequency

of the RF photon. The expression defined in this way for the

RF spectrum is written in an analytical form. It is obtained

if the following conditions are met: 1) precise resonance

with intrinsic transitions of identical atoms, 2) neglect of

atomic level shifts due to their dipole-dipole interaction,

3) the Rabi frequency is much higher than the radiative

decay constant of the excited state of each atom. The form

of the obtained RF photon frequency function is shown

in the figure (Fig. 1 in [3]), which illustrates the authors’

concluding remark that the spectrum contains wide side

bands symmetrically arranged relative to the central band

with a shift by the Rabi frequency and an additional, wider

band with a small maximum. shifted by about twice the

Rabi frequency. It was noted in the final part of this paper

that such a prediction regarding the shape of the RF contour

does not agree with predictions of the shape of the RF made

in a number of different works for the same values of atomic

parameters and irradiation that were obtained using several

other general approaches (references to 5 such papers are

given).
In addition to the differences in RF spectral patterns re-

ported in [1–3], there are also varying conclusions about the

general characteristics of these RF spectra across different

studies that we would like to add. This applies, for example,

to the following conclusions: 1) the difference between the

RF spectrum of two atoms and the RF spectrum of one

atom with low radiation intensity is more pronounced than

with the difference with high radiation, 2) the asymmetric

shift of the lateral contours relative to the central one, 3) the
origin of the lateral contours, which are shifted on both sides

of the central one by twice the frequency of radiation. In the

absence of a comparison of the obtained spectra with the

corresponding experimental data, which would clarify the

origin of these inconsistencies, it can be assumed that these

differences are attributable to differences in the approaches

and (or) computational formalism used in the mentioned

studies.

Bearing in mind the mentioned disagreement, it is of

interest to have the results of modeling the RF spectrum

of two atoms, which was performed using a theoretical

approach to considering RF of two atoms, which differs

from the approaches used in Ref. [1–3]. As such, we

can take the approach used in modeling the RF excitation

spectrum of two atoms in Ref. [4] and the dynamics of

population and coherence of states of two atoms in case of

RF in Ref. [5].
The goal of this study is the modeling of the RF spectrum

of two atoms when applying the theoretical approach to

the consideration of RF, which is used in Ref. [4,5].
Among the main differences between this modeling and

the one used in the above studies, we would like to

note the following: 1) using quantum consideration of

the states of both the irradiation field and the scattered

field, 2) composing an expression for the RF spectrum

as a dependence of the separately considered population

of the ground state of each atom on the frequency of

the detected RF photon, attributing it to radiation from

one atom or another (
”
selective RF“), 3) determination

of these populations as a result of a rigorous solution of

the Schrodinger equation system for the amplitudes of the

considered states of a composite system of atoms and a

radiation field, 4) consideration of RF atoms with different

frequencies of their own transitions under both strictly

resonant and quasi-resonant irradiation.

The following parts of this paper provide a detailed

description of all the details of performing the accepted

modeling when applying the computational formalism of

studies in Ref. [4,5], using terms such as
”
nanoparticle“

(or just a particle) and
”
RF spectrum“ used in Ref. [4,5].

Graphical images of the obtained RF photon frequency

functions are presented, which illustrate examples of the

dependence of the characteristic features of the shape and

position of the maxima of the contours of the collective and

selective RF spectra on the values of the parameters of the

structure and interaction of particles and fields of resonant

and quasi-resonant irradiation.

Model of a complete composite system

The Hamiltonian of a complete composite system of

two
”
point“ stationary two-level particles (particle A and

particle B with their non-overlapping wave functions),
which interact with each other and with a quantized

radiation field, is written as

H = H f + W +
∑

j=A,B

(H j + V j),

where H f is the Hamiltonian of the radiation field; W is

the energy operator of the dynamic interaction between

particles, HA(HB) is the Hamiltonian of particle A(B),
VA = −(edA is the energy operator of the electrodipole

(dA is the operator of the dipole moment of particle A)
interaction of particle A with the transverse components of

the radiation field and a similar expression VB = −(edB) for
particle B . The orientation of the dipoles of the particle

transitions and the direction of the irradiation can be such

that it excites only the particle A. The distance between the

particles can be less than or on the order of the wavelength

of spontaneous fluorescence of an isolated particle and an

isolated particle B .

By the operator W , which induces reversible transitions

between particles in excited states, we shall mean the energy

operator of dipole-dipole interaction between particles. This

could be, for instance, the operator adopted in Ref. [1]
to describe interactions between particles separated by

distances comparable to the wavelength of their intrinsic

transitions; or the operator used to describe interactions
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between closely spaced particles, such as: two alkaline-

earth atoms whose fluorescence intensity beats were studied

in Ref. [6]; or a pair of CdSe/ZnS quantum dots whose

relative geometry was determined through analysis of their

RF spectra in Ref. [7].
The eigenstates of a particle A with energies E1

and E4 are denoted by |1〉 and |4〉, and the eigen-

states of a particle B with The energies E2 and E3

denote |2〉 and |3〉. For clarity, consider a pair of

particles with E4 ≥ E3, E3 ≥ E2, E2 = E1 and use the

notation ~ωnm = (En − Em), where n, m = 4− 1, n > m,

ω41 − ω32 ≡ 21, 0 ≤ 1 ≪ ω41, ω32.

The initial irradiation field contains an integer (N > 1) of

photons λ with a frequency ωL such that |ωL − ω41| ≪ ω41;

λ is a set of indices characterizing the wave vector of a

photon and the state of its polarization. The state of the

field containing N of photons λ is denoted by |λ〉, and the

state of the field containing N − 1 of photons λ is denoted

by |0〉.
Let’s use |12µ〉 to denote such a state of a complete

composite system when the radiation field contains N − 1

of photons λ and one photon µ (µ 6= λ) RF, and a pair of

particles are in their
”
collective“ ground state |12〉. For the

sake of brevity, here and further, where this does not lead to

misunderstanding, the index
”
0“ is omitted in the notation

|12µ〉.
Assuming that the particles and the radiation field under

consideration are located in the volume space L3, let us

denote the matrix element of the operator VA by the states

of the complete composite system |12λ〉 and |420〉 as

〈12λ|VA|420〉 = iL−3/2
√

2πN~ωL(dλ)14 ≡ V 420
12λ ≡ i~�,

where (dλ)14 is the matrix element for states |1〉 and |4〉
(which is based on the real value) of the projection of the

operator d on the direction of photon polarization λ, � is

”
work frequency“. Let us use the following notation for the

matrix element VA, using the states |12µ〉 and |420〉

〈12µ|VA|420〉 = iL−3/2
√

2π~ωµ(dµ)14 ≡ V 420
12µ ,

where (dµ)14 is the matrix element of the operator VA

according to the states |1〉 and |4〉 of projections of the

operator d on the direction of photon polarization µ, ωµ is

the photon frequency µ. Let us use the following notation

for the matrix element VB , using the states |12µ〉 and |130〉

〈12µ|VB |130〉 = iL−3/2
√

2π~ωµ(dµ)23 ≡ V 130
12µ ,

where (dµ)23 is the matrix element of the projection of the

operator D onto the direction of photon polarization µ by

states |2〉 and |3〉. For brevity, V 420
12λ will be written as V 40

1λ ,

V 420
12µ will be written as V 40

1µ and V 130
12µ as V 30

2µ .

Just as in Ref. [4,5], the Hilbert space of states |0σ 〉 of

the marked field |0〉 and the photon field σ , emitted in case

of the RF by a particle A interacting with the particle B ,

and the states |0ν〉 of the field |0〉 and the photon field ν

emitted by the particle B in case of the considered RF. Let

E
4

E
1

l

s
m

n

E
3

E
2

Figure 1. A diagram of the relative position of the energy levels

of particles, indicating transitions when the corresponding states

change.

us omit the index
”
0“ in the notation of these states, as well

as in the notation of states |µ〉. The corresponding matrix

elements have the following form:

〈12σ |VA|420〉 = iL−3/2
√

2π · ~ωσ · (dσ )14 ≡ V 40
1σ ,

V 30
2ν = 〈12ν |VB |130〉 = iL−3/2

√

2π · ~ων · (dν)23 ≡ V 30
2ν .

The matrix elements of the operator W between

the states |420〉 and |130〉 will be denoted as

〈42|W |13〉 = 〈13|W |42〉 ≡ ~w .

Fig. 1 schematically shows the relative position of the

energy levels E1÷E4 marked by horizontal line segments

of the considered pair of particles. Circular curves indi-

cate nonradiative, reversible transitions between particles

in excited states due to the action of the operator W .

Vertical lines with arrows represent radiation transitions in

a complete composite system, which are accompanied by

a change in the state of the radiation field and the field of

collective or selective resonant fluorescence.

System of equations and its solutions

We will consider the modeling of the dynamics of the

occupancy of states of a complete composite system based

on the use of solutions to the Schrodinger equation system

for the amplitudes bk(t) of the population of the eigenstates

of the accepted Hamiltonian. This system has the following

form in the accepted resonant approximation:

i~ḃk(t) =
∑

l

〈k|(VA + VB + W )l〉|bl(t)

× exp[i(Ek − El)t]/~] + i~δkiδ(t),

where i, k, l are the indices of the basic orthonormal states

of the complete composite system: i are initial states |12λ〉,
k and l are states |420〉, |130〉, 12µ〉; The energy of these

states is denoted as Ei , Ek , El ; δ(t) — Dirac function,

δki is the Kronecker symbol, δki = 0 for k 6= i and δki = 1

for k = i . The time is counted from the moment t = 0.
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Regarding the role of the heterogeneous member i~δkiδ(t)
and the preservation of normalization

∑

k
|bk(t)|2 = 1 — see,

for example, § chapter 16 4 in Ref. [8].
The system of equations for the amplitudes of the basic

states |12λ〉, |420〉, |130〉, |12µ〉 under the initial condition

b12λ(+0) = 1 has the following form:

i~ḃ12λ=V 40
1λ b420(t) exp[i(E420 − E12λ)t/~]+i~δ(t),

i~ḃ420(t) = V 1λ
40 b12λ · exp[i(E12λ − E420)t/~]

+
∑

µ 6=λ

V 1µ
40 b12µ(t) · exp[i(E420 − E12µ)t/~]

+ W 13
42 b130(t) · exp[i(E420 − E130)t/~]

i~ḃ130(t) =
∑

µ 6=λ

V 2µ
30 b12µ(t) · exp[i(E130λ − E12µ)t/~]

+ W 42
13 b420(t) · exp[i(E130 − E420)t/~],

i~ḃ12µ(t) = V 40
1µ b420(t) · exp[i(E12µ − E420t/~]

+ V 30
2µ b130(t) · exp[i(E12µ − E130)t/~].

With the accepted basis for describing the states of a

complete composite system, the above system of equations

reflects the consideration of the excitation by irradiation

of only particles A. Such excitation can be realized by a

certain choice of the appropriate configuration of the relative

arrangement of particles, the direction of propagation and

polarization of photons λ or by choosing the frequency ωL,

if the particles are such that 1 ≫ γ4. It should be noted

also that this system of equations describes the dynamics

of the probability amplitudes of the reduced basic states of

the complete composite system when one of the irradiation

photons is converted into the corresponding RF photon,

without taking into account various other particle states and

the radiation field and, accordingly, other radiation processes

of the RF photon. For example, such processes, about which

the following remark is given on page 249, chapter 10 in

Ref. [9]:
”
an atom can coherently interact with a field many

times before spontaneously emitting a photon“.

When using the Fourier representations of the amplitudes

bk(t) and δ(t), the functions,

bk(t) = i(2π)−1

+∞
∫

−∞

Gki(E) · exp[i(Ek − E)t/~]dE

and

i~δ(t) = i(2π)−1

+∞
∫

−∞

· exp[i(Ei − E)t/~]dE,

the matrix Gki(E) is determined by solving a system of

equations

(E − Ek) · Gki(E) =
∑

l

(VA + VB + W )ki Gli(e) + δki .

Turning to the solution of this system of equations, we

use the following expressions:

i~γ4(E) = −
∑

µ

|V 40
1µ |

2ς (E − E12µ),

~γ3(E) = −
∑

µ

|V 30
2µ |

2ς (E − E12µ),

~γ̃(E) = −
∑

µ

V 40
1µV 2µ

30 ς (E − E12µ),

where ς (E) = P/E − iπδ(E), P/E is the main value

of the function 1/E . Leaving in these sums only the

terms proportional to δ(E), after performing the specified

summation (see [8]), the resulting expressions will mean

the constants γ4 = 2ω3
41d2

41/3~c3, γ3 = 2ω3
32d2

32/3~c3,

γ̃ = 2ω3
41d41d32/3~c3, which characterize, respectively, the

rate of spontaneous radiative decay of the state |4〉 of

an isolated particle A, the rate of spontaneous radiative

decay of the state |3〉 of an isolated particle B and the

rate of
”
joint“ spontaneous radiation decay of these states.

Such use of the above expressions when describing the

RF of two interacting particles with the accepted condition

0 ≤ 1 ≪ ω41, ω32 seems to be as justified as the similar use

of the constant γ4 = 2ω3
41d

2
41/3~c3 instead of the expression

i~γ4(E) = −
∑

µ

|V 40
1µ |

2ς (E − E12µ),

which is accepted when describing the RF corresponding to

one isolated two-level particle in Ref. [8] — see the notes

on page 230 and the text of the footnote on page 231.

Using the introduced notation, let us write the system

of equations for Gki(E) (omitting the reference to the

dependence of Gki on E) as

(E − E12λ) · G12λ = V 40
1λ G420 + 1,

(E − E420 + iγ4) · G420 = V 1λ
40 G12λ + ~(w − uγ̃)G130,

(E − E130 + iγ3) · G130 = ~(w − i γ̃)G420,

(E − E12µ) · G12µV 40
1µ G420 + V 30

2µ G130.

Solving this system of equations, we find

G12µ(E) =
[

V 40
1µV 1λ

40 EI + V 30
2µV 1λ

40 ~(w − i γ̃)
]

× ς (E − E12µ/F(E)),

where

F(E) = E0

[

EIEII − ~
2(w2 − γ̃2) + 2i~wγ̃

]

− ~
2�2EI ,

E0 = E − E12λ,

EI = E − E130 + i~γ3,

EII = E − E420 + i~γ4.

Using this expression for G12µ(E) and the ratio

lim
t→∞

ς (E−E12µ)· exp[i(E12µ−E)t/~]= −2πiδ(E−E12µ),

Optics and Spectroscopy, 2025, Vol. 133, No. 2
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∞
∫

−∞

f (E) · δ(E − E12µ)dE = f (E12µ),

for t ≫ 1/γ4 we obtain

b12µ(ωµ, t = ∞) = i(2π)−1 lim
t→∞

∞
∫

−∞

G12µ(E)

× exp[i(E12µ − E)t/~)]dE = −i~−1�

×
[

V 40
1µ (ωµ + 21 + iγ3) + V 30

2µ (w − i γ̃)
]

/Fµ(ωµ),

where ωµ ≡ ωµ−ω41
, ωL ≡ ωL − ω4,

Fµ(ωµ)=(ωµ−ωL) [(ωµ+21 + iγ3)(ωµ+iγ4)

−w2 + γ̃2 + 2iwγ̃
]

−�2(ωµ + 21 + iγ3).

It should be noted that if w = γ3 = 1 = γ̃ = 0, then

b12µ(ωµ, t = ∞) has the form of an expression for the

amplitude of the RF state of one isolated particle A:

bRF
A (ωµ, t = ∞) =

V 40
1µV 1λ

40

~2(ωµ − ωL)(ωµ + iγ4) − |V 40
1λ |

2

=
V 40
1µV 1λ

40

~2(ωµ + iγ4) [ωµ − ωL + iŴµ(ωµ)]
,

where Ŵµ(ωµ) = i|V 40
1λ |

2/(ωµ + iγ4).
The function bRF

A (ωµ, t = ∞) has the form of expression

(20.10) given on page 231 in [8] after substituting expres-

sions (20.6) and (20.7) given on page 230 into it.

The amplitude b12µ(ωµ, t = ∞) is the sum of the terms,

displaying
”
interfering alternatives“ (see pages 25, 26 in

Ref. [10]) of the probability of photon emission from the

RF through the
”
radiation channel |4〉 → |1〉“ particle A and

”
radiation channel |3〉 → |2〉“ particle B with the occupancy

of the collective ground state of the particles. In practice, the

detection of the RF field state can be such (see the remark

on page 468 in Ref. [9], paragraph 21.1.3 of Chapter 21) that
it

”
perceives only radiation at the junction |4〉 → |1〉 and

ignores radiation at the junction |3〉 → |2〉, or vice versa,

perceives radiation at the junction |3〉 → |2〉 and ignores

radiation at the junction |4〉 → |1〉, choosing one or another

”
path of radiation“ RF photon by one or another particle

with its ground state occupied. With this detection of
”
, we

know (or can find out)grqq, which of the particles emitted

the RF photon, and it seems natural to assume that when

modeling the characteristics of this selective RF instead of

the amplitude b12µ(ωµ, t) two of such amplitudes should be

used separately: b12σ (ωσ , t) and b12ν(ων,t), which reflect

the evolution of each of the above states |12σ 〉, |12ν〉 and

at t = ∞ have the following form:

b12σ (ωσ , t=∞)=−i~−1�
[

V 40
1σ (ωσ+21+iγ3)

]

/Fσ (ωσ ),

b12ν(ων , t = ∞) = −i~−1�V 30
2ν w/Fν(ων), ,

where ωσ ≡ ωσ − ω41, ων = ων − ω41; the function

Fσ (ωσ ) has the form of the function Fµ(ωµ), in which γ̃ = 0

and the frequency ωµ are replaced by ωσ , and the function

Fν(ων) has the form of the function Fσ (ωσ ) when replacing

ωσ with ων .

The given expressions b12σ (ωσ , t = ∞) and

b12ν(ων , t = ∞) were obtained in Ref. [5] as solutions of

the corresponding system of equations for the amplitudes

of the basic states |12λ〉, |420〉, |130〉, |12σ 〉 and |12ν〉. The
squares of the modules of the above solutions determine

”
non-interfering alternatives“ probabilities (see pages 25,

26 in Ref. [10]) of detecting an RF photon emitted by

a particle A or a particle B with information about a

certain value of the probability of occupation of the ground

state of each of the particles as part of the probability

of occupation of their collective ground state in case of

detection of a photon of the collective RF (see the remark

on this in the Introduction of Ref. [11]). It should be noted

that selective RF accompanies, for example, bimolecular

secondary photoreaction, since we can find out which of

the molecules of the reaction center emitted a photon of RF:

a reagent molecule or a molecule of the reaction product

that differs from it in chemical properties. In the case of

irradiation of a reagent molecule with a short pulse leading

to spontaneous fluorescence of a pair of molecules of the

reaction center, the dynamics of the states of the complete

composite system was modeled in Ref. [12] based on the

analytically obtained solutions b12σ (t) and b12ν(t) of the

corresponding system of equations at initial the condition

b420(t = 0) = 1.

Contours of the spectra

The RF spectrum will be called the dimensionless

frequency functions of the RF photon formed by the square

of the modulus of the corresponding amplitude of the steady

state of the complete composite system. The RF spectrum

of one isolated particle is denoted by SRF
A (ωµ), the spectrum

of the collective RF of a pair of particles is denoted by

Sµ(ωµ), the spectrum of the component of the selective

RF particle A is denoted by Sσ (ωσ ), the spectrum of the

component of the selective RF particle B is denoted Sν(ων).
The frequency is measured in units of γ4.

Using the above expression bRF
A (ωµ, t = ∞), when re-

placing the function Ŵµ(ωµ) by its real part (as in Ref. [8]
pages 230-231) we obtain

SRF
A (ωµ) = |bRF

A (ωµ), t = ∞|2

= ~
−4|V 40

1µ |
2|V 1λ

40 |
2/[(ω2

µ + γ2
4 )[(ωµ − ωL)

2 + Ŵ2
µ(ωµ)]

= ~
−2�2|V 40

1µ |
2/{[ωµ(ωµ − ωL) −�2]2 + γ2

4 (ωµ − ωL)
2}.

This function has the form of the function (20.12) in

Ref. [8] and is consistent with the expression for the

contour of the RF spectrum of an isolated two-level

particle irradiated with monochromatic light, which was
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obtained in Ref. [13] see (3′′). If we take out the

multiplier [(ωσ − ω0)
2 + (γ/2)2] in the denominator of the

fraction (3′′), then after reducing this fraction, the resulting

expression as a function of ωσ will match the above

expression |bRF
A (ωµ, t = ∞)|2 .

To compare the contour SRF
A (ωµ) with the emission

spectrum contour SSF
A (ωη) of a spontaneously fluorescing

(SF) photon η from a particle A, we express the spectrum,

following Ref. [8] (see (18.13), §18, Chap. 5), as a

Lorentzian profile with its maximum at ~
−2|V 40

1η |
2 (in units

of γ2
4 ) for ωη = 0 and a half-width 2γ4 :

|b1η(ωη, t = ∞)|2 ≡ SSF
A (ωη) = ~

−2|V 40
1η |

2/(ω2
η + γ2

4 ), ,

where ωη = ωη − ω41 and in the matrix element V 40
1η it is

assumed that ωη = ω41.

The condition for maintaining the normalization

of amplitudes b1η(ωη, t = ∞) is the equality
∑

η

|b1η(ωη, t = ∞)|2 = 1, in which summation is performed

taking into account all equally probable directions of photon

propagation η (with two states of its polarization) and all

possible values of its frequency ωη . The result of this

summation looks like replacing the numerator ~
−2|V 40

2η |
2

in the above expression b1η(ωη, t) = ∞ with the constant

γ4/π (see (20.9a) on page 230 in Ref. [8]) followed by

integration by dωη of the resulting expression. Finally we

obtain
∞
∫

−∞

γ4dωη/[π(ω2
η + γ2

4 )] = 1..

Using the above expressions bχ(ωχ , t = ∞), χ−µ, σ ν we

obtain

Sµ(ωµ) = ~
−2�2

{

|V 40
2µ |

2
[

(ωµ + 21)2 + γ2
3

] )

+ |V 30
2µ |

2(w2 + γ̃2) + 2|V 40
µ ||V 30

2µ |

× [w(ωµ + 21) − γ3γ̃]
}/

|Fµ(ωµ)|
2,

Sσ (ωσ ) = ~
−2�2|V 40

1σ |
2
[

(ωσ + 21)2 + γ2
3

] )/

|Fσ (ωσ )|2

Sν(ων)~
−2ω2|V 30

2ν |
2w2/|Fν(ων)|

2.

The functions Sχ(ωχ) reflect rather complex (for an-

alytical consideration) dependences of the position and

shape of the contours of the spectra on the values of the

parameters of the particles, the irradiation photon, and the

RF photon in question. Therefore, the determination of

such dependencies is based on the analysis of a set of

graphic images (drawings) of functions Sχ(ωχ), which are

obtained using yotx.ru and MATLAB 6.5 systems. As

an initial general idea of the characteristic form of these

dependencies, images of Sχ(ωχ) functions for individual,

particular values of particle parameters and the irradiation

field are considered, when choosing which conditions for

photon registration by collective or selective RF seem to

be the simplest. At the same time, we would like to note

that it can be concluded judging by the appearance of the

above expressions for the spectra that the shape of their

contours is determined mainly by the type of dependence

on the ωχ of functions |Fχ(ωχ)|
2, since the values of these

functions vary in a fairly wide frequency range around

ωχ = 0 much more than the values of the functions |V 40
1χ |

2,

|V 30
2χ |

2 and |V 40
1µ ||V

30
2µ |. Therefore, when obtaining images of

contours Sχ(ωχ), it was assumed that the functions |V 20
1χ |

2,

|V 30
2χ |

2 and |V 40
1µ ||V

30
2µ | are constant, taken at ωχ = ω41, and

are considered as parameters characterizing the structure of

particles.

First of all, the drawings obtained by graphical repre-

sentations of functions SRF
A (ωµ) are considered. In these

functions, the frequency values, as noted above, are written

in units of γ4 and, accordingly, the values of the parameters

~
−2|V 40

1µ (ωµ = ω41)|
2 and �2 are written in units of γ2

4 ; the

value of the function SRF
A (ωµ) represents a positive real

number for some value of its argument, so that positive

real numbers are deposited along the ordinate axis (in the

Cartesian coordinate system used for drawings), and along

the abscissa axis — values ωµ in units γ4 (as shown in the

figures in the next section of this paper).
For the case of resonant irradiation (ωL = 0), the fol-

lowing conclusions are made, for example: the contour

SRF
A (ωµ) has a maximum 102 at ωµ = 0 with half-width

2× 10−2 with an irradiation intensity characterized by the

value � = 0.1; the contour SRF
A (ωµ) has two components

at ωµ = −0.7 and ωµ = 0.7 with maxima equal to 1.3 with

� = 1; the contour SRF
A (ωµ) has two peaks with � = 10:

at ω = 10 and ω = −10 with maxima equal to 1 and half-

width equal to 1.

As usual, we will use the name
”
weak pumping“ to

irradiate a particle A with a pulse of light of such intensity

that � < 1, and
”
strong pumping“ — for irradiation of such

intensity that � > 1.

The following conclusion is drawn based on the type

of the noted features and the totality of the obtained

figures at other values of �: in case of weak resonant

pumping of an isolated particle A, the spectral line of

its RF is significantly narrower than the spectral line of

its SF. In the limit � → 0, the contour SRF
A (ωµ) has the

form of a Lorentzian representation approaching a δ Dirac

delta function: δ(ω) = lim
δ→0

ε/[π(ε2 + ω2)]. At � → 1, the

contour SRF
A (ωµ) approaches the contour SSF

A (ωµ), and at

� ≫ 1, the contour SRF
A (ωµ) splits into two components

with maxima equal to 1, at ω = ±� with a half-width of 1.

Images of functions SRF
A (ωµ) in case of quasi-resonant

irradiation (ω 6= 0) are also considered. For example, when

irradiated with a frequency of ωL = 10 at � = 0.1, the

contour SRF
A (ωµ) has a maximum of 104, which is located

at ωσ = 10 with a half-width of ≈ 2× 10−4 . Based on the

totality of the obtained figures, it is concluded that with

weak pumping by quasi-resonant irradiation, the frequency

of the maximum of the SRF
A (ωµ) function coincides with

the frequency of irradiation, the value of this maximum

is greater, and its half-width is smaller compared with
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Figure 2. An example of the shape of the contours of the

collective and selective RF spectra of identical, weakly interacting

particles when the particle is weakly pumped by resonance

irradiation (details in the text).

the corresponding values of the SRF
A (ωµ) function under

resonant irradiation. When strongly pumped, the spectrum

SRF
A (ωµ) has two components. The maximum of one of

them is located at ωµ > �, and the other is located at such

a negative frequency value ωµ that |ωµ| > �; the maximum

of the first of them is slightly greater than the maximum of

the second.

When using the WolframAlpha integral computation

system, the fulfillment of the normalization condition was

verified. Taking into account (see above) the replacement

of ~
−2|V 40

1µ (ωµ = ω41)|
2 with γ4/π when summing over all

photon propagation directions µ, this reduced to checking

the equality

π−1

+∞
∫

−∞

SRF
A (ωµ)dωµ = 1.

Illustrations and discussions of the shape
of the contours of the spectra

Some of the examples of images of contours SRF
A (ωµ)

are shown with thin black shaded curves in the figures

below, among the examples of images of function Sχ(ωχ).
The positive real numbers are plotted along the ordinate

axis in these figures (as noted above), and frequency ω in

units of γ4 is plotted along the abscissa axis, implying that

ω ≡ ωµ when considering the function Sµ(ωµ), ω = ωσ

when considering the function Sσ (ω) and ω = ων when

considering the function Sν(ων). The function Sσ (ωσ ) is

represented by a red curve, the function Sν(ων) is shown

by a green curve, the function Sµ(ωµ) is shown by a black

curve. Different functions Sχ(ωχ) are shown by either thin

or thickened curves for visual comparison.
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Figure 3. An example of the type of contours of RF spectra of

particles with different decay of excited states of particles in case

of a weak pumping of the particle by resonance irradiation.

Images of functions Sχ(ωχ) of identical particles

(γ3 = γ4 = γ̃ , 1 = 0), whose interaction is characterized

by different values of w, in case of resonant irradiation

(ωL = 0) of such intensity that � = 0.1. It is assumed

that the orientation of the non-parallel dipoles of the

particle transition and the choice of photon parameters

χ÷µ, σ, ν are such that, taking into account the inequality

0 ≤ 1 ≪ ω41, ω32, when considering the function Sµ(ωµ),
the condition |V 40

1µ | = |V 30
2µ | = ~γ4 can be considered valid,

the condition |V 40
1σ | = ~γ4 and |V 30

2ν | = 0 can be considered

valid when considering the function Sσ (ωσ ), and the

condition |V 30
2σ | = ~γ4 and |V 40

1σ | = 0 can be considered valid

when considering the function Sσ (ωσ ). Images of such

functions Sχ(ωχ) with weakly interacting particles (w = 1)
are shown in Fig. 2.

It should be noted that in the considered case, the contour

Sσ (ωσ ) almost exactly coincides with the contour Sν(ων),
therefore, these contours are shown by a single red curve

in Fig. 2. The maximum of the contour of the collective

RF, equal to 5× 102, is shifted by 5× 10−3 from ωµ = 0

and has a half-width of 5× 10−3, and the maxima of the

contours of the components of the selective RF are at

ωσ = ων = 0 and coincide with a maximum of SRF
A (ωµ),

but they have a half-width twice as large. At the same time,

the following equation is obtained

π−1

∞
∫

−∞

Sµ(ωµ)dωµ ≡ Sµ = 1,

π−1

∞
∫

−∞

Sσ (ωσ )dωσ ≡ Sσ = 0.50125,

π−1

∞
∫

−∞

Sν(ων)dων ≡ Sν = 0.49875.
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It should be noted that the value Sµ represents the

population of the collective ground state of a pair of particles

in a collective RF, the value Sσ represents the population of

the ground state of a particle A, the value Sν represents

the population of the ground state of the particle B with

selective RF (as in Ref. [5]), so that the above equalities

indicate that the condition for maintaining normalization

of the amplitudes of the states of the complete composite

system for the steady-state collective (Sµ = 1) and selective

RF (Sσ + Sν = 1). By comparing the values of Sσ and the

value of Sν , it is possible to judge the prevalence of photon

emission by a selective RF particle. The equality Sµ = 1 will

not be further used to shorten the record when the equality

Sσ + Sν = 1 is verified.

In the case of RF particles with w = 5 the maximum

Sσ (ωσ ) coincides with the maximum of SRF
A (ωµ), equal

to 1× 102, while the maximum of Sν(ων) is equal to

2.5× 103, and the obtained values of Sσ = 0.03865 and

Sν = 0.96135 reflect the prevalence of radiation photon

selective RF particle B ; it is expressed even more strongly

in the case of RF particles with w = 10, at which the values

Sσ = 0.00995 and Sν = 0.99005 are obtained.

As a result of consideration of the noted and the totality

of the corresponding patterns, it was concluded that the

contours Sχ(ωχ) of identical particles have sharply increased

maximum values and reduced half-width values compared

with the corresponding contour values SRF
A (ωµ). The

photon emission from selective RF can be attributed with

approximately equal probability to both the particle A and

the particle B in case of a weak particle interaction, but

the probability of radiation from the particle B significantly

prevails in case of a strong particle interaction.

The opposite pattern takes place in case of a quasi-

resonant irradiation of identical particles. For instance, a

photon of selective RF is almost completely emitted by the

particle A in case of irradiation of particles with w = 1

with light with a frequency of ωL = 10: the contour Sσ

coincides with the corresponding contour SRF
A (ωµ) (see

above). However, as shown by the graphical representations

of contours Sχ(ωχ), an increase of the force of particle

interaction leads to a decrease of the height of all contours

Sχ(ωχ) and an increase of their half-width compared to

the corresponding values of the contour SRF
A (ωµ); thus,

for example, the values of Sσ = 0.80156 and Sν = 0.19844

were obtained for particles with w = 5, and Sσ = 0.50249

and Sν = 0.49751 were obtained for particles with w = 10,

i.e. the emission of a photon by selective RF is distributed

approximately equally between the two strongly interacting

particles under quasi-resonant irradiation, whereas in case

of a resonant irradiation of such particles (see above), the
emission is strongly dominated by the particle B .

Images of contours of Sχ(ωχ) particles with different

decay rates of the excited state are considered, for example,

for particles with parameters 1 = 0, w = 1, γ3 = 4, γ4 = 1,

with weak pumping of particle A by resonance irradiation.

Corresponding ratios have been adopted: |V 40
1µ |

2 = |V 40
1σ |

2,
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Figure 4. An example of the type of contours of RF spectra of

strongly interacting identical particles in case of a strong pumping

of the particle with the resonance irradiation.
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Figure 5. An example of the type of contours of RF spectra of

strongly interacting identical particles when the particle is strongly

pumped by quasi-resonant irradiation.

|V 30
2ν |

2 = 4, |V 40
1σ ||V

30
ν | = 2, written in units of ~

2γ2
4 . Ex-

pressions Sσ = 0.80008 and Sν = 0.19992 were obtained.

The contour images of the RF spectra of such particles are

shown in Fig. 3.

Comparing Fig. 3 with Fig. 2, we conclude that an

increase of the value of γ3 from γ3 = 1 to γ3 = 4 leads

to a blurring of the contours of Sχ(ωχ) with a decrease

observed at γ3 = 1 of the prevalence of photon emission by

a selective RF of particle A.
The study considers the images of contours Sχ(ωχ) in

case of a resonant irradiation with � = 0.1 of particles with

significantly different frequencies of their proper transitions,

for example, at 1 = 10, w = 1, γ3 = 1. Considering that

1 ≪ ω32, ω41, the values of the matrix elements of the op-
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Figure 6. An example of the type of contours of RF spectra of

particles with different values of their own transition frequencies

when the particle is strongly pumped by resonance irradiation.

erator V for transitions between states of particles with RF

photon emission are chosen the same as when considering

the images of Sχ(ωχ) shown in Fig. 2. In this case, the

profile Sσ (ωσ ) almost exactly replicates the profile SRF
A (ωµ),

with a maximum 102 at ωσ=0 and a half-width of 2× 10−2.

Meanwhile, the maximum of the profile Sν(ων) at ωµ = 0

is 2× 10−1, with a half-width of 2× 10−2. The maximum

of the contour Sµ(ωµ) at ωσ = 0 is 1.1× 102 with a

half-width of 2× 10−2 . Sσ = 0.99751 and Sν = 0.00249

were obtained, and Sσ = 0.94131 and Sν = 0.05896 were

obtained with a stronger particle interaction characterized

by the value of w = 5, so that the prevalence of the

considered photon emission by the particle A decreases with

the increase of the particle interaction strength.

Similar results were noted when considering the contours

of RF spectra with weak pumping of a particle A by quasi-

resonant irradiation.

Images of the functions Sχ(ωχ) of identical particles,

the interaction of which is characterized by the value

w = 1, are considered under resonant irradiation with such

intensity that � = 10. The values of the matrix elements

of the operator V for transitions between states of particles

with RF photon emission are chosen the same as when

considering the images Sχ(ωχ) shown in Fig. 2. The

spectra of Sµ(ωµ) and Sσ (ωσ ) practically coincide with the

spectrum of SRF
A (ωµ), which has two maxima at ωσ = ±10,

equal to 1, with a half-width of 1. The spectrum Sσ (ωσ )
has three maxima: one at ω = 0 and two at ω = ±10. Each

of these maxima has a height of ≈ 0.01. Sσ = 0.98076,

Sν = 0.01924 were obtained. Each of the spectra Sµ(ωµ)
and Sν(ων ) has three maxima in the case of particles with

w = 10: one at ω = 0 and two at ω ± 14. The spectrum

of Sσ (ωµ) has two maxima at ωσ = ±14. Sσ = 0.33775,

Sν = 0.66225 were obtained. The images of these spectra

are shown in Fig. 4. For convenience of considering the type

of functions Sχ(ωχ), their values along the ordinate axis are

limited to 1.2, while the maximum Sµ(ωµ) for ωµ = −14

is 6.

As shown by the graphical images, when quasi-resonant

particles are irradiated with A light with a frequency of

ωL = 10 at � = 10, the photon of selective RF particles,

the interaction of which is characterized by the value of

w = 1, is almost completely (as in the case of weak it

is emitted by the particle A: the contour Sσ coincides

with the corresponding contour SRF
A (ωµ), which has two

maxima, one of which is equal to ≈ 0.5 at ωµ ≈ −6 and

the other is equal to ≈ 2.5 for ωµ ≈ 16. Sσ = 0.98209,

Sν = 0.01791 were obtained, and for RF particles with

w = 10, Sσ = 0.54104 and Sν = 0.45896 were obtained,

which indicates (just as in the above case of weak pumping,

on the attenuation of the prevalence of the considered

photon emission by the particle A. The appearance of

contours Sχ(ωχ) for this case is shown in Fig. 5. For

convenience of considering the type of functions Sχ(ωχ),
their values along the ordinate axis are limited to 3, while

the maximum Sµ(ωµ) at ωµ = −12.5 is 5.

Images of functions Sχ(ωχ) for particles with different

decay rates of the excited state under strong pumping by

resonance irradiation are considered. A conclusion has been

made: just as in case of weak pumping, an increase of the

value of γ3 leads to blurring of the contours with an increase

of the emission of a photon by the RF particle A.
Images of Sχ(ωχ) under resonant irradiation of particles

with different frequencies of their own transitions are

considered. For example, Sσ = 0.99359, Sν = 0.00641

was obtained for RF particles with parameters 1 = 10,

w = 1, γ3 = 1 under such irradiation that � = 10, and

Sσ = 0.73098, Sν = 0.26902 were obtained for RF particles

with parameters 1 = 10, w = 10, γ3 = 1, which indicates

the prevalence of RF photon emission by the particle A, as
in the above case of weak pumping of particles with the

same parameters. The images of these spectra are shown in

Fig. 6.

It is difficult (as noted above) to write down each of

the noted patterns of the relationship of spectrum char-

acteristics with particle parameters, irradiation conditions,

and recording of the RF photon in a simple analytical

form. For example, the increase of the probability of

photon emission by a selective RF particle B with an

increase of the force of particle interaction noted by the

results of consideration of graphical images of functions

Sχ(ωχ) is determined not only by the fact that the resulting

expression Sν is proportional to w2, but also because the

same expression is inversely proportional to the sum of

the terms, one of which is also proportional to w2. In

such a situation, it is difficult to form a clear idea of

the physical meaning of the pattern in question. Similar

difficulties occur when considering other patterns of the

mentioned relationship, noted as a result of consideration

of graphical representations of functions Sχ(ωχ). However,

establishing the physical meaning of such patterns would

make a significant contribution to the theory of collective
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and selective interaction of interacting particles, therefore,

an attempt to advance in this direction is proposed in a

separate paper.

Concluding remarks

Examples of graphical images of contours of RF spectra

of two interacting nanoparticles are given. The analysis

of the type of these images allowed obtaining a general

idea of the type of characteristic spectra under simple

conditions of photon registration of collective or selective

RF. It is useful to keep this idea in mind when assigning

the observed contours to a particular component of the RF

spectrum. The expressions obtained for the contours of the

RF spectra reflect information about the dependence of the

position of the contour maxima, their number, magnitude,

and half-width on the values of the particle parameters,

their irradiation, and detection of the RF photon. This

information can be used to obtain estimates of the param-

eters of the structure and properties of nanoparticles based

on experimental data from their RF spectra, as well as to

select the values of particle parameters when considering

the possibility of using them as a material for various

optoelectronic devices.
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