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Dynamic microcavities in collision of unipolar rectangular pulses

of self-induced transparency in a dense gas medium
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In contrast to conventional multi-cycle pulses resonantly exciting quantum transitions in a medium, unipolar light

pulses with a non-zero electric area can be used for ultrafast excitation of quantum systems. The interaction of such

pulses with a resonant medium can give rise to many interesting effects that have been actively studied in recent

years. These include the possibility, recently predicted by the authors, of creating dynamic microresonators that

arise when such pulses collide in a medium. In this paper, based on the numerical solution of the Maxwell-Bloch

system of equations, we study the dynamics of such resonators in a dense three-level medium during a collision

of unipolar rectangular pulses acting like 2π-pulses of self-induced transparency. In contrast to earlier studies, we

consider the case of an
”
asymmetric“ collision, when the pulses enter the medium at different moments of time and

collide not in its center. The possibility of forming structures of various shapes in different regions of the medium

after each subsequent collision is shown.

Keywords: extremely short pulses, attosecond pulses, dynamic microresonators, optical switching, optical

memory.
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Introduction

The generation of electromagnetic pulses of attosecond

duration made it possible to study and control the movement

of electrons in atoms, molecules and solids [1–3], which led

to the emergence of attosecond physics [4–7] and the Nobel

Prize award for work in this field in 2023 [8]. Typically,

the received pulses contain several half-waves of a field of

opposite polarity. Pulses of extremely short duration in a

given spectral range — unidirectional (semi-cyclic) pulses

from a single half-wave of the field are needed to study

ultrafast processes occurring in quantum systems. They

have a non-zero electric area, defined as the integral of the

electric field strength over time E(r, t) at a given point in

space [9–12]:

SE =

∫
E(r, t)dt. (1)

Such pulses, if their duration is less than the period of

electron rotation in the Bohr orbit, can effectively transfer

a mechanical moment to the electron [13–18]. This may

make it possible to study the dynamics of atomic systems at

ultra-short time intervals, less than the Bohr period [13–18].
Such pulses can be used for ultrafast excitation of quantum

systems, studying the dynamics of bound electrons in atoms,

molecules, and nanoscale structures [19–22], ultra-high-

resolution holography [23], creating ultrafast attosecond

switches [24], for generation of electron-positron pairs [25],

for ultrafast petahertz electronics systems [26] and other

applications.

The issues of the existence and generation of such

impulses have been well studied to date, the results

of recent studies are summarized in recent reviews in

Ref. [27–29] and the chapter of the monograph of the

Russian Academy of Sciences [30]. For example, such

pulses can be obtained by rapid deceleration of electrons in

thin targets [31,32], in nonlinear processes in plasma [33],
in nested quantum wells [34], in quantum dots [35], in

environments with magnetic hysteresis [36], superradiation
of stopped polarization [37–39] and by other methods. The

possibility of controlling the time shape of such pulses

is also considered — obtaining unidirectional pulses of

unusual shapes (rectangular and triangular) in the optical

and terahertz ranges [37–41] and in the form of solitons [42].
The interaction of unusually shaped pulses is poorly under-

stood today, but they can also be used to control quantum

systems —atoms [43] and quantum qubits [44,45].

It should be noted that the physics of the interaction

of unidirectional pulses with quantum systems on such

small time scales (half a cycle of field oscillations) differs

significantly from the case of multi-cycle pulses. Many

traditional optical phenomena become impossible or follow

completely different scenarios, which makes the interaction

of such pulses with the environment an important urgent

task [27–30]. Recent studies (see reviews and mono-
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graph [27–30]) has led to the study of a number of new

phenomena that may have promising applications in modern

ultrafast optics and attosecond physics.

One of these phenomena is the possibility, which has

been actively studied recently, of creating high-quotient

dynamic microresonators (DM) that occur when unidirec-

tional pulses collide with a medium (see [46–52] and the

review in Ref. [53]). DM are formed under conditions

of coherent interaction of unidirectional pulses with the

medium, i.e. when the pulse durations and delays between

them are less than the time of the phase memory of the

medium (relaxation time of the polarization of the medium)
T2.

When pulses collide in a medium, regions of the order

of (or less than) the wavelength of the resonant transition

can occur in it, for which the population difference has

an almost constant value. It abruptly changes outside this

region to another constant value or to a periodic
”
Bragg“

population difference lattice. Such a structure is a
”
dynamic

microresonator“ (DM) [46–52], the parameters of which

can be controlled by subsequent collisions between pulses

and in other ways (which leads to the use of the term

”
dynamic“). The Q factor of such structures at a high

concentration of working atoms of the medium can reach

1000 and higher [52]. It should be noted that such
”
quasi-

resonators“ can occur during the nonlinear self-action of a

single pulse in a medium, which leads to a deceleration

of the pulse in the medium and its subsequent complete

stop [54]. These circumstances make such structures an

interesting object of study with promising applications for

creating memory cells based on atomic coherence [55],
ultrafast attosecond switches [48] and other applications

discussed in the review [53].
DM was studied in Ref. [46,50] during the collision of

unidirectional pulses of unusual shape in a two- and three-

level medium. The formation of
”
Bragg“ microresonators

localized in space during the collision of single-cycle 2π-

pulses of self-induced transparency (SIT) was studied in

Ref. [48]. The possibility of DM formation was shown

in Ref. [49] even in the case of non-overlapping semi-

cyclic pulses in a three-level environment. A simple

analytical approach based on an approximate solution of

the Schrodinger equation in the weak field approximation

was proposed in Ref. [51], predicting the formation of DM

at each resonant transition of a multilevel medium. This

approach was expanded in detail in subsequent paper in

Ref. [52], which studied the behavior of DM in both strong

and weak fields at different polarities of colliding pulses

and concentrations of two-level atoms. The results of early

studies of the dynamics of DM in case of the collision

of semi-cyclic pulses in a medium are summarized in the

review in Ref. [53] and the cited literature.

The above studies [46–48,50–53] considered the case

of
”
symmetric“ pulse collision, when the pulses enter the

medium simultaneously and collide in its center. In this

case, the DM is always localized in the center of the

medium, in the area of pulse overlap, and is symmetrical

relative to it. The results of numerical calculations in

Ref. [52], which examined the dynamics of DM during a

symmetrical collision of rectangular SIT pulses in a two-

level environment, showed that the shape of the induced

DM and their localization in space remained qualitatively

similar to each other after each subsequent collision. Only

the characteristics of the induced structures changed — the

depth of the lattices, their spatial frequency. The search

for new possibilities for controlling the parameters of these

structures is considered in this paper.

This paper studies the behavior of DM is studied in the

case of a
”
asymmetric“ collision of unidirectional pulses of

unusual time shape with duration in the attosecond range

in a dense three-level medium based on the numerical

solution of a system of equations for the density matrix of a

three-level medium, together with the wave equation. The

impulses enter the medium towards each other at different

points in time and collide not at the center of the medium.

This makes it possible to obtain a DM of a different shape

than in the case of a symmetrical collision. The parameters

implemented in atomic hydrogen were used as parameters

of the three-level medium.

An unusual behavior of DM has been found — DM

can occur in another area inside the medium after each

subsequent collision between pulses. Moreover, the shape

of each subsequent DM may be very different from the

previous one. These results, in contrast to those previously

obtained in the case of symmetric collisions, make it

possible to more broadly control the parameters of induced

DM, vary their shape, characteristics, and create them in

different areas of the environment. These results show the

possibility of using unidirectional pulses of an unusual time

shape (rectangular), whose interaction with the medium

has been poorly studied to date, for ultrafast control of the

properties of quantum systems.

The equations of the model, the
considered system and the justification of
the applicability of the assumptions used

To study the dynamics of the DM under the action of

unipolar pulses, it is necessary to numerically solve the

system of material equations for the medium together with

the wave equation for the electric field strength, which

describes the evolution of the electric field in the medium

without using the traditionally employed slowly varying

amplitude and rotating wave approximations. The material

equations use a system of equations for the density matrix,

the medium is modeled in a three-level approximation. This

system of equations has the following form [56]:

∂

∂t
ρ21 = −

ρ21

T21

− iω12ρ21 − i
d12

~
E(ρ22 − ρ11)

−i
d13

~
Eρ23 + i

d23

~
Eρ31, (2)
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∂

∂t
ρ32 = −

ρ32

T32

− iω32ρ32 − i
d23

~
E(ρ33 − ρ22)

−i
d12

~
Eρ31 + i

d13

~
Eρ21, (3)

∂

∂t
ρ31 = −

ρ31

T31

− iω31ρ31 − i
d13

~
E(ρ33 − ρ11)

−i
d12

~
Eρ32 + i

d23

~
Eρ21, (4)

∂

∂t
ρ11 =

ρ22

T22

+
ρ33

T33

+ i
d12

~
E(ρ21 − ρ∗

21)

−i
d13

~
E(ρ13 − ρ∗

13), (5)

∂

∂t
ρ22 = −

ρ22

T22

− i
d12

~
E(ρ21 − ρ∗

21) − i
d23

~
E(ρ23 − ρ∗

23),

(6)
∂

∂t
ρ33 = −

ρ33

T33

+ i
d13

~
E(ρ13 − ρ∗

13) + i
d23

~
E(ρ23 − ρ∗

23),

(7)
P(z , t) =2N0d12Re ρ12(z , t) + 2N0d13Re ρ13(z , t)

+2N0d23Re ρ23(z , t), (8)

∂2E(z , t)
∂z 2

−
1

c2

∂2E(z , t)
∂t2

= 4
π

c2

∂2P(z , t)
∂t2

. (9)

The solved system of equations (2)−(9) contains the

following parameters: z — longitudinal coordinate, N0 —
particle concentration, P — medium polarization, E —
electric field strength, ρ21, ρ32, ρ31 — off-diagonal elements

of the density matrix determining the dynamics of the

polarization of the medium, d12, d13, d23 — transition

dipole moments, ~ — reduced Planck constant, ω12, ω32,

ω31 — resonant transition frequencies, variables ρ11, ρ22,

ρ33 — populations of 1st, 2nd and 3rd environmental states

accordingly, Tik — relaxation times. The relaxation times

can have values of tens and hundreds of nanoseconds in

gases and cryogenically cooled quantum dots [57]. These

values are much longer than the processes considered in

this paper, so the final values of relaxation times below are

neglected.

The integration domain of length L = 12λ0 was consid-

ered in the numerical calculations. The studied three-level

medium located between points z 1 = 2λ0 and z 2 = 10λ0.

A vacuum was located between the medium and the

boundaries of the integration region. Rectangular pulses

were modeled by a hyper-Gaussian function and were

emitted into the medium from the left and right boundaries

of the integration region towards each other in the form

E(z = 0, t) = E01e
−

(t−11)20

τ 20 , (10)

E(z = L, t) = E02e
−

(t−12)20

τ 20 . (11)

The delays 11 and 12 regulated the moments of pulse

entry into the medium. The point at which the pulses

collided can be varied by selecting the delay values. It is

Parameters used in numerical calculations

Frequency (wavelength λ0) ω12 = 1.55 · 1016 rad/s

of transition 1 → 2 (λ12 = λ0 = 121.6 nm)

Dipole moment d12 = 3.27D

of transition 1 → 2

Frequency (wavelength) ω13 = 1.84 · 1016 rad/s

of transition 1 → 3 (λ13 = 102.6 nm)

Dipole moment d13 = 1.31D

of transition 1 → 3

Frequency (wavelength) ω23 = 2.87 · 1015 rad/s

of transition 2 → 3 (λ23 = 656.6 nm)

Dipole moment d23 = 12.6D

of transition 2 → 3

Concentration of atoms N0 = 1020 cm−3

Field amplitude E01 = 210000 ESU

E02 = 210000 ESU

Parameter τ τ = 200 as

Delay 11 11 = 2.5τ

Delay 12 12 = 5.5τ

obvious that 11 = 12 in the case of a symmetric collision,

when the pulses simultaneously enter the medium. In

our consideration, the pulse collision points will alternate

between two positions z I and z II, the distance between

which is determined by the delay between the pulses related

to their propagation velocity: |z I − z II| = (|11 − 12|)/c i .

Zero boundary conditions were selected at the boundary

of the integration domain that
”
reflected“ pulses back into

the medium, which made it possible to set a sequence of

pulses.

We consider a three-level model of the medium, the

parameters of which (frequencies and dipole moments of

transitions) correspond to the three lower levels in the

hydrogen atom (without taking into account the fine and

hyperfine splitting of levels). These parameters are shown

in the table and are taken from Ref. [58].
We used the concentration value N0 = 1020 cm−3, at

which a high Q-factor value of the induced DM is achieved.

It should be noted that similar concentrations of hydrogen

atoms are achieved when placed in a matrix at very low

temperatures [59,60]. However, the conclusions obtained

below are universal and can be found in any medium with

a high phase memory time T2 [53]. Also, the results of

numerical calculations provided in Ref. [18] have shown that

the occurrence of a quasi-resonator and the phenomenon of

light stopping are preserved when taking into account the

effects of a local field in a dense medium. This circumstance

makes it possible to neglect the effects of the local field in

such tasks.

The three-level model discussed above takes into account

only the three lower energy levels of the medium and
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does not take into account the ionization of the medium.

The justification for the applicability of low-level models

in such tasks is provided, for example, in Ref. [49,53,61].
Indeed, the analytical approach proposed in Ref. [50,52]
is based on an approximate solution of the Schrodinger

equation, it predicts the occurrence of DM at each resonant

transition of a multilevel medium due to the interference

of electrical pulse areas. Population lattices still occur

in strong fields, shown by the results of the numerical

solution of the Schrodinger time problem, even when

taking into account the ionization of the medium, which

can be minimized by selecting the delay value between

pulses [62].
From a physical point of view, the preservation of the

effects of DM formation in multilevel media is explained by

the following simple arguments [49,53,61]. An extremely

short unidirectional pulse acting as an impact excitation,

passing through the medium, leaves behind oscillations

of atomic coherence (off-diagonal elements of the density

matrix that determine the behavior of the polarization of

the medium) at each resonant transition of the medium,

which exist during the time of the phase memory of

the medium T2. Each such subsequent pulse will co-

herently control these oscillations, which will lead to the

formation of a Bragg-like lattice of population differences

and the occurrence of DM at each resonant transition

of the medium, which corresponds to the theoretical

predictions [49,53,61].
We also note that in practice, pulses with a shape close

to unidirectional are most often obtained, containing a long

trailing edge of the opposite polarity [43]. In the general

case, such a front can affect the dynamics of the system,

however, the results of numerical calculations show that if

this front is long enough and weak, then its influence is not

significant [38], therefore, pulses without a trailing edge are

considered below. It should be noted that the propagation

of unidirectional pulses over considerable distances without

significant loss of unidirectionality can be realized in coaxial

waveguides [28–30] and is described by the one-dimensional

wave equation [63].
After describing the equations of the model of the system

under consideration and substantiating the approximations

used, we proceed to analyze the results of computational

modeling.

Results of computational modeling, case
of collision of rectangular SIT pulses with
the same initial polarity

The first series of numerical calculations used pulses of

the same initial polarity, E01 = E02. The pulse parameters

(their duration, amplitude) are selected so that the pulses

act like 2π-pulses of McCall and Khan SIT at the main

transition 1-2 [64]: the first half of the pulse transfers the

medium from the ground state to the excited state, the

second half of the pulse returns the medium to the ground

state. From a practical point of view, the creation of create

high-Q DM [52] requires high concentration of working

atoms, N0 ∼ 1020 cm−3, as shown in the table. In most

early studies, the dynamics of DM was studied in the case

when the concentration of medium particles was low, since

the shape of the pulses changes in case of propagation at

high concentrations, which leads to blurring of the structures

of DM.

Thus, a high density of the medium and a constant

pulse shape during propagation are necessary for obtaining

high-Q structures. SIT pulses can be used to solve this

problem, since they can propagate in an environment

without changing shape. And although the pulses we

are considering are not solitons in the strict sense (for
unidirectional SIT solitons, see, for example, [65,66]), they
act like SIT pulses and can propagate in a medium without

significant shape changes. Therefore, we consider the

dynamics of DM under the action of rectangular SIT pulses

in a dense medium in the numerical calculations below.

It should be noted that the considered system is complex

and contains a rich dynamic of possible solutions for

different parameters. Below, we will limit ourselves to

considering the dynamics of the system with the parameters

given in the table, in the case of an asymmetric collision of

rectangular SIT pulses in an atomic gas. Consideration of

the remaining possible parameters is beyond the scope of

this study.

The results of numerical calculations are shown in

Fig. 1-4, which illustrate the dynamics of polarization and

population differences at all resonant transitions of the

medium.

The first pulse collision occurs at time t = 5.9 fs at a

point in the medium z I = 6.74λ0, the second pulse collision

occurs at time t = 10.62 fs at point z II = 6.74λ0, etc. at

alternating points in the medium, the distance between

which depends on the delay between the interacting pulses.

The propagation directions for the first four pulses are

marked with arrows in Fig. 1, a. The instantaneous values

of the population difference distribution after the first and

second passage of the pulses are shown in Fig. 2, a and 2, b,

respectively, the collision points are marked with vertical

lines in the figures.

It can be seen from Fig. 1 and 2, a that after the first

collision outside the pulse overlap region, the population

difference at each transition, although it has the form of a

Bragg-like lattice, nevertheless has an almost constant value

(n = 0.8 ∼ 1). A localized DM of a non-standard shape

occurs in the overlap area. The DM disappears after the

second collision, as can be seen in Fig. 2, b, but an area of

constant population difference appears already at the point

of the second collision. It is also worth noting that after the

second collision and beyond, there is a significant difference

in the behavior of the inversion of the populations of the

levels 1-2 and 1-3, which suggests the possibility of creation

of different structures at different transitions of the medium.

12 Optics and Spectroscopy, 2025, Vol. 133, No. 2
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Figure 1. Spatial and temporal dynamics of population differences: (a) ρ11 − ρ22 , (b) ρ11 − ρ33 , (c) ρ22 − ρ33 and polarization of

(d) P(ESU) of a three-level environment.
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Figure 2. Instantaneous distribution of population differences after (a) the first and (b) the second passage of the pulses; the cross

sections are marked with strokes in Fig. 1, a and 1, b. Blue: ρ11 − ρ22, red: ρ11 − ρ33 . The calculation parameters are listed in the table.

Results of computational modeling, case
of collision of rectangular pulses with
opposite initial polarity

The behavior of DM was studied in this section when the

colliding pulses had different initial polarities, E01 = −E02.

All other parameters coincide with the case above; the

results of modeling are shown in Fig. 3.

The instantaneous values of the population difference

distribution after the first and second passage of the pulses

are shown in Fig. 4, a and 4, b, respectively, the collision

points are marked with vertical lines in the figures.

As can be seen in Figs. 3 and 4, a (in contrast to the case

of pulses of the same polarity), after the first collision, the

population differences outside the pulse overlap region are

expressed differently for transitions 1-2 and 1-3 and have a

more significant amplitude (n = 0 ∼ 0.6). A DM appears

in the overlap area, which, as can be seen in Fig. 4, b, loses

its structure after the second collision. The new DM that

appears in the area of the second collision also does not

have the correct structure, as does the population difference

grid that appears on the sides.

It is worth noting that, as can be seen in Fig. 3 and

4, b, the shape of the lattices on the sides becomes more

”
chaotic“ with each subsequent collision; already starting

from the second collision, it is impossible to talk about the

presence of any period of structure. Such a sharp distortion

of the structures was not observed for pulses of the same

polarity.

Discussion of results and conclusions

As the results of numerical calculations have shown,

during an asymmetric collision of pulses in a medium, struc-

Optics and Spectroscopy, 2025, Vol. 133, No. 2
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Figure 3. Spatial and temporal dynamics of population differences: (a) ρ11 − ρ22, (b) ρ11 − ρ33 , (c) ρ22 − ρ33 and polarization (d) P(ESU)
of a three-level medium for the case of a collision of pulses of opposite polarity.
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Figure 4. Instantaneous distribution of population differences after (a) the first and (b) of the second pulse passage; the cross sections

are marked with strokes in Fig. 3, a and 3, b. Blue: ρ11 − ρ22 , red: ρ11 − ρ33 . The calculation parameters are listed in the table.

tures with an asymmetric profile appear — the parameters

of the induced Bragg structures are different to the left and

right of the collision region between the pulses. As can be

seen from the figures, each subsequent pulse collision can

occur at different points in the medium other than the point

where the first pulse collision occurred. This leads to the

fact that the resulting DM pulses are localized in different

regions of the medium.

This feature has not been observed before in the case

of symmetric pulse collisions. This unusual behavior of

the system opens up new opportunities for controlling

the parameters of the induced DM. It allows creating

not only controllable profile structures, but also controlling

their location inside the medium — enabling structures

in one place, then disabling them and creating them in

another place. It is difficult to propose a detailed physical

explanation of all the features of the system behavior

observed above because of the complexity and nonlinearity

of the considered system. To date, analytical solutions have

been obtained only in the approximation of a weak and

given field [50–52].

Conclusion

Thus, the dynamics of DM in an asymmetric collision

of unidirectional SIT-like 2π-pulses in a dense three-

level medium is theoretically studied in this paper. The

parameters of the medium were chosen to be the same as

in the hydrogen atom. It is shown that, unlike the previously

considered case of symmetric collision, the medium exhibits

DM of an
”
asymmetric“ form the parameters of the density

matrix Bragg lattices (grating depth and shape) differ on the

left and right sides of the region where the pulses overlap.

12∗ Optics and Spectroscopy, 2025, Vol. 133, No. 2
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The localization of the induced DM changes with each pulse

collision between two points.

The studied phenomena and the use of an asymmetric

collision open up new possibilities in controlling the prop-

erties of dynamic resonators and show the possibilities of

using unidirectional rectangular pulses of light to control the

properties of matter.
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