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Coupled chaotic generator and multi-frequency quasi-periodic system
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The interaction of the system with chaos (Kislov−Dmitriev generator) and multi-frequency quasi-periodic

oscillations (ensemble of van der Pol generators) is considered. Bifurcations of doubling of a high-dimensional

invariant torus and the emergence of chaos upon its destruction are revealed. A cascade of specific bifurcations of

a chaotic attractor has been discovered, corresponding to the appearance of a different number of additional zero

Lyapunov exponents. The stability of the Landau−Hopf scenario during interaction with a chaotic subsystem is

shown.

Keywords: chaotic generator, quasi-periodicity, Lyapunov exponents, bifurcations.

DOI: 10.61011/TPL.2025.04.61011.20030

The study of coupled generators is one of the key

problems in both radiophysics and electronics, as well

as nonlinear oscillation theory in general [1,2]. The

advancement of computer technology and the theory of

dynamic systems and its applications to multidimensional

systems [3–8] makes the problem of oscillations relevant

both in the classical scenario of two generators and in

scenarios with greater numbers of them [9–13]. Periodic,

quasi-periodic, and chaotic regimes are all possible for

individual generators in this case. The issue of interaction

of several generators with different types of oscillations

remains understudied. One of the options may be cou-

pling between chaotic and multi-frequency quasi-periodic

subsystems. In the present study, the Kislov−Dmitriev

generator [14] in a chaotic regime was chosen as the first

subsystem. This generator is a closed loop of a nonlinear

amplifier, an RLC filter, and an inertial element. A system of

five coupled van der Pol generators [15] was chosen in order

to enable quasi-periodic oscillations with different numbers

of incommensurate frequencies in the second subsystem.

A similar system was also considered in [16,17]. Note

that the van der Pol equation characterizes not only the

classical generator, but also a large number of systems of

different nature [18]. In system [15], new modes cross suc-

cessively the excitation threshold as the coupling parameter

decreases, so that increasingly high-frequency quasi-periodic

oscillations are generated. This pattern corresponds to the

well-known Landau−Hopf scenario [19]. The presence of

five oscillators allows for several steps of such a scenario

to be implemented. Note that a single oscillator coupled

to the Kislov−Dmitriev generator was examined in [20].

Specifically, the possible stabilizing influence of the van der

Pol generator on the chaotic generator was demonstrated.

Such systems may also be of interest in the context of

practical applications (e.g., in problems of communication

and chaos control).

In accordance with [14,15,20], one may write the follow-

ing equations for the system under consideration:
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Figure 1. Phase portrait of an individual Kislov−Dmitriev

generator in a chaotic regime. T = 10, Q = 20, M = 2.75, and

ω0 = 0.5.
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Relation between regime types and Lyapunov exponents spectrum

Designation Regime type Spectrum of largest Lyapunov

exponents

P Periodic 31 = 0, 32,3,4,5,6,7 < 0

(limit cycle)

2T Two-frequency 31,2 = 0, 33,4,5,6,7 < 0

quasi-periodic

(two-dimensional torus)

3T Three-frequency 31,2,3 = 0, 34,5,6,7 < 0

quasi-periodic

(three-dimensional torus)

4T Four-frequency 31,2,3,4 = 0, 35,6,7 < 0

quasi-periodic

(four-dimensional torus)

5T Five-frequency 31,2,3,4,5 = 0, 36,7 < 0

quasi-periodic

(five-dimensional torus)

6T Six-frequency 31,2,3,4,5,6 = 0, 37 < 0

quasi-periodic

(six-dimensional torus)

C Chaos 31 > 0, 32,3,4,5,6,7 6 0
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Figure 2. Dependence of the largest Lyapunov exponents of system (1) on parameter k of coupling between the quasi-periodic and

chaotic subsystems. µ = 0.25 and 1 = 3. The Kislov−Dmitriev generator parameters are as follows: M = 2.75, T = 10, Q = 20, and

ω0 = 0.5.

Here, x and z are the Kislov−Dmitriev generator variables,

xn are the variables of van der Pol generators, and n varies

from 1 to 4. The 1 parameter controls the mutual frequency

detuning of van der Pol generators (with the frequency of

the first one taken as unity). Parameter k characterizes

the coupling between the Kislov−Dmitriev generator and

the quasi-periodic subsystem. This coupling is established

through the fifth van der Pol generator and is dissipative.

Let us use the following set of Kislov−Dmitriev generator

parameters: T = 10, Q = 20, M = 2.75, and ω0 = 0.5.

It corresponds to the chaotic oscillation regime, which is

illustrated by the phase portrait in Fig. 1. Frequency value

ω0 = 0.5 provides frequency detuning from all van der Pol

generators. Following [15], we set van der Pol generator ex-

citation parameters λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.4,

λ5 = 0.5, and 1 = 3. In this case, as
”
internal“ coupling
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Figure 3. Dependence of the largest Lyapunov exponents of system (1) on parameter µ of coupling between the van der Pol generators.

k = 0.0025 (a) and 0.016 (b).

parameter µ decreases, a step-by-step transition from the

periodic regime to the five-frequency quasi-periodic one

is observed in the quasi-periodic subsystem in accordance

with the Landau−Hopf scenario [15]. Note that the pattern

remains unchanged even if the chosen parameter values are

varied slightly.

In what follows, we identify the regime of system

(1) based on the spectrum of Lyapunov exponents in

accordance with the table. Figure 2 shows the plots of

eight largest exponents as functions of coupling parameter k
of subsystems. The chosen value of parameter µ = 0.25

corresponds to the three-frequency regime in the van

der Pol oscillator ensemble [15]. The region of four-

frequency regime (4-torus) 4T , which has 31,2,3,4 = 0, is

seen on the right in Fig. 2. Thus, the interaction with

the chaotic subsystem led to an increase in the number

of incommensurate frequencies (the torus dimension), and
chaos was suppressed. As coupling strength k decreases,

the four-frequency torus undergoes doubling bifurcations at

points D4T1 and D4T2. These are evidenced by vanishing of

the 35 exponent, which remains negative in the vicinity of

bifurcation points [21]. The torus then collapses, giving rise

to chaos C with 31 > 0. In the present case, chaos has a

non-trivial feature: four zero exponents (32,3,4,5 = 0). Thus,
three other exponents are added to zero exponent 32 = 0

that is
”
mandatory“ for a continuous-time system. The

examples of chaos discussed earlier had only one [22–25]
and two [26] such exponents. Note that rigorous proofs
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are still lacking; therefore, a more correct term, which has

already been used in [24], will be a Lyapunov exponent

”
indistinguishable from zero in numerics.“ The required

accuracy of calculations of exponents was set for this

purpose in the process of plotting the dependences in Fig. 2.

Let us now illustrate the pattern of regimes obtained at

various values of
”
internal“ coupling parameter µ of the

quasi-periodic subsystem and two values of k (Fig. 3). In

the case of small k (Fig. 3, a), classical chaos with 31 > 0,

32 = 0, and the remaining exponents being negative is

observed at strong coupling µ. The type of chaotic regime

changes at point L1: an additional zero Lyapunov exponent

emerges, so that 31 > 0, 32,3 = 0, and the remaining

exponents are negative. At points L2, L3, L4, and L5,

chaotic regimes with two, three, four, and five additional

zero Lyapunov exponents arise successively. These are

certain special bifurcations, which we have designated L
(derived from Lyapunov exponents).

Let us now raise parameter k of coupling of the

quasi-periodic and chaotic subsystems (Fig. 3, b). Chaos

is suppressed in this case. The Neimark−Sacker (NS)
bifurcation of birth of a two-frequency torus with 31,2 = 0

from limit cycle P with 31 = 0 is then found in the right

part of the figure. As µ decreases, a successive cascade

of quasi-periodic Hopf bifurcations QH1,2,3,4 of soft birth

of 3-torus, 4-torus, etc., is observed. The criterion for

a bifurcation of this type is the equality of two negative

exponents through to its threshold [21]. For example,

exponents 33 = 34 and 34 = 35 match on approach to

points QH1 and QH2, respectively. This pattern may be

associated with the Landau−Hopf scenario. This suggests

that the Landau−Hopf scenario observed in the ensemble

of van der Pol generators is stable and is not disrupted in

interaction with chaos if their coupling is relatively strong.

Moreover, one more Hopf bifurcation of birth of a stable

6-torus is added. This is what distinguishes the examined

pattern from the Ruelle−Takens scenario [27].

Thus, in the studied system, the interaction of subsystems

with chaotic dynamics and the Landau−Hopf scenario gives

rise to several significant features: the emergence of a

higher-dimension torus, its doubling, and a cascade of

points with a gradually increasing number of zero Lyapunov

exponents in the chaotic regime. It was also demonstrated

that the Landau−Hopf scenario is stable with respect to

interaction with a chaotic subsystem if their coupling is

relatively strong.
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