10

Исследование люминесцентных свойств фторидного стекла ZBLAN:Er³⁺/Ho³⁺ при лазерном возбуждении на длине волны 1.94 µm

© В.А. Еголин, А.П. Савикин, С.В. Курашкин, А.В. Маругин

Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия e-mail: vitaly.egolin@mail.ru

Поступила в редакцию 08.07.2024 г. В окончательной редакции 07.05.2025 г. Принята к публикации 02.06.2025 г.

Синтезирована серия образцов фторидного стекла состава ZBLAN:1%Er³⁺, ZBLAN:1%Ho³⁺, ZBLAN:1%Er³⁺ + X%Ho³⁺ (X = 0.25, 0.5, 1 mol.%). На основе спектров пропускания соединений ZBLAN:1%Ho³⁺ и ZBLAN:1%Er³⁺ определены параметры интенсивности Джадда-Офельта для ионов Ho³⁺ и Er³⁺ в синтезированных образцах. Проведены исследования ап-конверсионной люминесценции стекла ZBLAN:Er³⁺/Ho³⁺ при возбуждении излучением Tm³⁺:YAP-лазера с длиной волны 1.94 μ m. В спектрах ап-конверсионной люминесценции в видимом диапазоне наблюдались полосы в областях 545 и 655 nm. Наибольшую интенсивность имели красные линии на длине волны 655 nm, соответствующие переходам ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺ и ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺. Величина пороговой плотности мощности визуализации излучения Tm³⁺:YAP-лазера снижалась при увеличении концентрации ионов Ho³⁺ и в образце ZBLAN:1%Er³⁺ + 1%Ho³⁺ составила 30 W/cm².

Ключевые слова: теория Джадда-Офельта, ап-конверсионная люминесценция, визуализация ИК излучения, фторидное стекло, редкоземельные элементы.

DOI: 10.61011/OS.2025.06.60918.6868-25

Введение

Материалы, легированные ионами редкоземельных элементов (РЗЭ), используются в устройствах генерации, передачи и управления оптическими сигналами. На их основе делают лазеры, волоконно-оптические усилители, люминофоры и т.д. Интерес к таким материалам также обусловлен созданием визуализаторов излучения ближнего и среднего ИК диапазонов (см., например, [1–3]). Это связано с расширением использования ИК лазеров в экспериментальных исследованиях в молекулярной лазерной спектроскопии. Принцип действия подобных визуализаторов основан на явлении апконверсионной люминесценции ионов РЗЭ в аморфных или кристаллических матрицах [4,5].

Эрбий и гольмий являются одними из наиболее широко используемых РЗЭ. Известно, что присутствие в матрице ионов Er^{3+} позволяет преобразовывать лазерное излучение с длинами волн в областях 800, 975 и 1.55 μ m в видимый диапазон [6–8]. Дополнительное легирование ионами Ho³⁺ дает возможность расширить спектральный диапазон визуализации. Материалы, легированные ионами Ho³⁺, в последнее время используются для визуализации лазерного излучения двухмикронного диапазона [9–11]. Широкая полоса поглощения ионов Ho³⁺ из основного состояния на переходе ${}^{5}I_8 \rightarrow {}^{5}I_7$ позволяет осуществить возбуждение люминесценции видимой части спектра под воздействием излучения в диапазоне 1800–2150 nm [12]. Необходимость визуализации излучения в данной области возникла в связи с приме-

нением лазеров ближнего и среднего ИК диапазонов в системах мониторинга окружающей среды, клинической медицине и других областях [13–15].

Донор-акцепторные пары ионов Yb³⁺-Er³⁺, Yb³⁺-Ho³⁺, в частности, используются в ап-конверсионных люминофорах [1,16,17]. Большая величина сечения поглощения на переходе ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ донорного иона Yb³⁺ по сравнению с акцептором и увеличение отношения вероятности суммирования энергии возбуждения к вероятности кросс-релаксации обеспечивают высокий выход ап-конверсионной люминесценции [5]. Так, пара Yb³⁺-Er³⁺ эффективно преобразует ИК излучение в области 1 μ m в видимое с длиной волны 540 nm [18–20]. Пара Yb³⁺-Ho³⁺ проявляет способность к ап-конверсионной люминесценции в видимой области с длинами волн 540 и 650 nm под воздействием двухмикронного излучения [3,21,22].

У ионов Er^{3+} имеется переход ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$, энергия которого близка к энергии перехода ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ ионов Yb³⁺, поэтому представляет интерес исследование апконверсионной люминесценции пары ионов Er^{3+} -Ho³⁺ при двухмикронном возбуждении.

Эффективность ап-конверсии в значительной степени зависит от выбора матрицы, в которую внедрен ион. Обычно используются соединения с меньшей вероятностью безызлучательной многофононной релаксации [23,24]. К таким средам относится фторидное стекло ZBLAN (ZrF₄-BaF₂-LaF₃-AlF₃-NaF) с энергией высокочастотных фононов $hv_{\rm doh} \approx 575$ cm⁻¹ [18]. Целью настоящей работы являлось теоретическое и экспериментальное исследование люминесцентных свойств фторидного стекла ZBLAN: $\mathrm{Er}^{3+}/\mathrm{Ho}^{3+}$ с применением модели Джадда-Офельта [25], а также анализ спектров ап-конверсионной люминесценции данных образцов при лазерном возбуждении на длине волны 1.94 μ m.

Теоретическая часть

Для описания электронных переходов внутри 4*f*оболочки РЗ ионов применяется теория, предложенная Джаддом и Офельтом [26,27]. Она позволяет рассчитывать вероятности спонтанного излучения, коэффициенты ветвления люминесценции и излучательные времена жизни.

Сила линии электрического дипольного перехода из начального состояния $\langle \varphi_a |$ на все штарковские компоненты конечного состояния $|\varphi_b\rangle$ (в предположении, что все штарковские компоненты начального состояния, с которых происходят переходы, заселены одинаково) имеет вид

$$S^{\text{calc}} = \sum_{i} \Omega_{i} |\langle \varphi_{a} \parallel U^{(i)} \parallel \varphi_{b} \rangle|^{2}, \qquad (1)$$

где $\langle \varphi_a \parallel U^{(i)} \parallel \varphi_b \rangle$ — приведенные матричные элементы единичных тензорных операторов $U^{(i)}$ в приближении промежуточной связи (их числовые значения можно считать независимыми от типа основы; для большинства РЗ ионов эти значения рассчитаны [28,29]), Ω_i параметры интенсивности Джадда-Офельта, в которых заключена зависимость интенсивности переходов от вида матрицы (нечетные параметры вклада не дают). При этом для электродипольного перехода изменяются правила отбора: $\Delta S = 0$, $\Delta L \leq 6$, $\Delta J \leq 6$ ($\Delta J = 2, 4, 6$, если *J* или J' = 0). Из вышесказанного следует, что вся информация об интенсивности излучения ионов РЗЭ содержится в трех параметрах Ω_2 , Ω_4 , Ω_6 .

Параметры Джадда-Офельта как набор феноменологических постоянных определяются на основе экспериментальных данных по измерению сечения поглощения $\sigma(\lambda)$ из основного состояния. Сила линии электродипольного перехода из начального состояния $\langle J |$ в состояние $|l' \rangle$ может быть выражена через интегральное сечение на этом переходе:

$$S^{\exp} = \frac{3ch(2J+1)}{8\pi^3 e^2 \bar{\lambda}} n \left(\frac{3}{n^2+2}\right)^2 \int \sigma(\lambda) d\lambda, \qquad (2)$$

где n — показатель преломления исследуемого соединения, $\bar{\lambda}$ — длина волны перехода, определяемая по формуле:

$$\bar{\lambda} = \frac{\sum \lambda \sigma(\lambda)}{\sum \sigma(\lambda)}.$$
(3)

Формула (2) справедлива только в том случае, когда для этих состояний правилами отбора запрещен магнит-

ный дипольный переход. Правила отбора для магнитодипольных переходов можно записать следующим образом: $\Delta S = 0$, $\Delta L = 0$, $\Delta J = 0$, ± 1 .

Зависимость сечения поглощения от длины волны излучения рассчитывается из спектра пропускания $T(\lambda)$. По определению коэффициент пропускания ионов РЗЭ в исследуемой матрице — это безразмерная физическая величина, равная отношению интенсивности излучения I, дошедшего до выходной поверхности образца, к интенсивности излучения I_0 , вошедшего в образец. Интенсивность излучения, дошедшего до выходной поверхности образца, по закону Бугера зависит от толщины образца l следующим образом:

$$I = I_0 e^{-\alpha l},\tag{4}$$

где α — коэффициент поглощения, который можно выразить через сечение поглощения и концентрацию ионов РЗЭ в исследуемой матрице ($\alpha = \sigma n_{REE}$). Таким образом, получаем зависимость сечения поглощения от длины волны излучения:

$$\sigma(\lambda) = -\frac{\ln T(\lambda)}{n_{REE}l}.$$
(5)

Формулы (1) и (2) позволяют определять параметры Джадда-Офельта для исследуемой матрицы из экспериментальных данных. Для этого необходимо измерить спектр пропускания ионов РЗЭ в данной матрице, определить интегральные сечения по соответствующим полосам поглощения и рассчитать по формуле (2) силы линий переходов. Затем, используя полученные значения и формулу (1), методом наименьших квадратов можно найти параметры Ω_i . Для оценки точности проведенных вычислений используют суммарную величину среднеквадратичного отклонения *RMS* для всех сил линий, которая определяется следующим образом:

$$RMS = \sqrt{\frac{\sum_{j=1}^{N} (S_{j}^{\exp} - S_{j}^{\text{calc}})^{2}}{N-3}},$$
 (6)

где N представляет собой количество переходов, наблюдаемых в спектре поглощения. Так как параметров Ω_i всего три, то N должно быть больше 3.

Параметры Джадда-Офельта позволяют находить вероятность спонтанного излучательного перехода A из начального состояния $\langle J |$ в состояние $|J' \rangle$:

$$A(J;J') = A_{ED} + A_{MD} = \frac{64\pi^4 e^2}{3h(2J+1)\bar{\lambda}^3} \times \left(n\left(\frac{n^2+2}{3}\right)^2 S_{ED} + n^3 S_M\right), \quad (7)$$

где A_{ED} и A_{MD} — вероятности спонтанного излучения электрического и магнитного дипольных переходов, E_{ED} и S_{MD} — силы линий электрического и магнитного

Рис. 1. Спектральные зависимости сечения поглощения: из основного состояния ${}^{5}I_{8}$ на возбужденные мультиплеты ионов Ho³⁺ в стекле ZBLAN (*a*), из основного состояния ${}^{4}I_{15/2}$ на возбужденные мультиплеты ионов Er³⁺ в стекле ZBLAN (*b*).

дипольных переходов. Сила линии магнито-дипольного перехода вычисляется по формуле:

$$S_{MD} = \left(\frac{h}{4\pi mc}\right)^2 \left| \langle (S,L)J \parallel L + 2S \parallel (S',L')J' \rangle \right|^2, \quad (8)$$

где L + 2S — магнито-дипольный оператор перехода $J \rightarrow J'$. Матричный элемент

$$\left| \langle (S, L)J \parallel L + 2S \parallel (S', L')J' \rangle \right|^2 \equiv M(J; J')$$

вычисляется по следующим формулам: – для J' = J - 1:

$$M(J;J') = \frac{(S+L+J+1)(S+L+1-J)(J+S-L)(J+L-S)}{4J};$$

- пля $J' = J+1$: (9)

$$M(J;J') = \frac{(S+L+J+2)(S+L-J)(J+1+S-L)(J+1+L-S)}{4(J+1)}.$$
(10)

Если с рассматриваемого уровня возможны несколько излучательных переходов, то можно определить относительную вероятность того или иного излучательного перехода из общей вероятности излучательного распада данного уровня, т.е. коэффициент ветвления люминесценции β :

$$\beta = \frac{A(J;J')}{\sum_{J'} A(J;J')}.$$
 (11)

Суммирование в формуле (11) проводится по всем излучательным переходам из начального состояния $\langle J |$. Эта сумма определяет излучательное время жизни ионов РЗЭ $\tau_{_{\rm H3Л}}$ на уровне $\langle J |$:

$$\tau_{{}_{\rm H3\Pi}} = \frac{1}{\sum_{J'} A(J;J')}.$$
 (12)

Экспериментальная часть

Стекла ZBLAN (53ZrF4-20BaF2-4LaF3-3AlF3-20NaF), легированные ионами Er^{3+} , Ho^{3+} , Er^{3+}/Ho^{3+} , синтезировались из соответствующих фторидов квалификации "ос.ч." в стеклоуглеродных тиглях с проточной инертной атмосферой азота, насыщенного парами CCl4, в муфельной печи при температуре 800°С. Образцы формовали в сухом перчаточном боксе в разъемной алюминиевой форме. В результате была приготовлена серия фторидных стекол состава ZBLAN:1% Er^{3+} , ZBLAN:1% Ho^{3+} , ZBLAN:1% Ho^{3+} , X=0.25, 0.5, 1 mol.%).

Для образцов ZBLAN:1%Ho³⁺ ($n_{\rm Ho} \approx 1.77 \cdot 10^{20} \, {\rm cm}^{-3}$, $l = 2 \, {\rm mm}$) и ZBLAN:1%Er³⁺ ($n_{\rm Er} \approx 1.77 \cdot 10^{20} \, {\rm cm}^{-3}$, $l = 10 \, {\rm mm}$) при помощи спектрофотометра СФ-56 измерялись спектры пропускания, которые затем по формуле (5) пересчитывались в зависимости сечения поглощения от длины волны излучения.

Для обнаружения ап-конверсионной люминесценции использовались образцы состава ZBLAN:1% $Er^{3+}+X$ % Ho^{3+} (X = 0.25, 0.5, 1 mol.%),которые по очереди крепились на держателе. Они представляли собой полированные пластины размером $40 \times 10 \times 3 \text{ mm}^3$. В качестве источника возбуждения использовался тулиевый лазер (кристалл Tm³⁺:YAP с непрерывной диодной накачкой), генерирующий излучение на длине волны 1.94 µm. Во время измерения спектров ап- конверсионной люминесценции Tm³⁺:YAPлазер работал в режиме свободной генерации. Средняя мощность излучения была порядка 2 W. При помощи короткофокусного объектива люминесценция собиралась на входной щели автоматизированного монохроматора Solar M833. За выходной щелью размещался кремниевый фотодиод Thorlabs DET36A (область спектральной чувствительности 350-1100 nm, время нарастания 14 ns).

Ион		Переход	$\bar{\lambda}$, nm	$S^{\rm exp}, 10^{-20} {\rm cm}^2$	$ U^{(2)} ^2$	$ U^{(4)} ^2$	$ U^{(6)} ^2$
Ho ³⁺	${}^{5}I_{8} \rightarrow$	⁵ <i>I</i> ₅	897	0.120	0	0.0102	0.0930
		$5I_{4}$	755	0.018	0	0.0000	0.0076
		${}^{5}F_{5}$	643	1.950	0	0.4201	0.5701
		${}^{5}F_{4} + {}^{5}S_{2}$	538	2.177	0	0.2385	0.9235
		${}^{3}K_{8} + {}^{5}F_{2} + {}^{5}F_{3}$	478	1.153	0.0205	0.0317	0.7040
		${}^{5}G_{6}$	449	5.522	1.4830	0.8201	0.1400
		${}^{5}G_{5}$	416	1.014	0	0.5239	0
		${}^{3}K_{7} + {}^{5}G_{4}$	385	0.200	0.0056	0.0395	0.0667
		${}^{3}H_{6} + {}^{3}H_{5}$	360	1.364	0.2540	0.2337	0.1609
		${}^{5}G_{2}$	353	0.012	0	0	0.0041
Er^{3+}	${}^{4}I_{15/2} \rightarrow$	${}^{4}I_{11/2}$	978	0.528	0.0276	0.0002	0.3942
		$^{4}I_{9/2}$	803	0.217	0	0.1587	0.0072
		${}^{4}F_{9/2}$	653	1.265	0	0.5513	0.4621
		${}^{4}S_{3/2}$	542	0.255	0	0	0.2225
		${}^{2}H_{11/2}$	520	2.648	0.7158	0.4138	0.0927
		${}^{4}F_{7/2}$	487	0.774	0	0.1465	0.6272
		${}^{4}F_{3/2} + {}^{4}F_{5/2}$	447	0.338	0	0	0.3476
		$^{2}H_{9/2}$	406	0.213	0	0.0243	0.2147
		${}^{4}G_{11/2}$	377	3.391	0.9156	0.5263	0.1167
		${}^{2}G_{7/2} + {}^{2}K_{15/2} + {}^{4}G_{9/2}$	362	0.794	0.0213	0.2576	0.3274

Таблица 1. Характеристики переходов из основного состояния в стеклах ZBLAN, легированных ионами Ho³⁺ и Er³⁺

Таблица 2. Параметры интенсивности Джадда-Офельта для ионов Ho³⁺ и Er³⁺ в стекле ZBLAN

Ион	$\Omega_2, 10^{-20} \mathrm{cm}^2$	$\Omega_4, 10^{-20} \mathrm{cm}^2$	$\Omega_6, 10^{-20} \mathrm{cm}^2$	<i>RMS</i> , 10^{-20} cm ²
Ho ³⁺	2.39	2.12	1.72	0.09
Er ³⁺	2.74	1.45	0.99	0.04

Высокое соотношение сигнал/шум обеспечивалось методом синхронного детектирования сигнала. Для этого излучение люминесценции модулировалось оптическим прерывателем Thorlabs MC1000A с частотой 220 Hz, а сигнал с фотодиода детектировался на той же частоте при помощи синхронного детектора Stanford Research Systems SR830. Далее сигнал поступал на АЦП, а затем на компьютер. Обработка результатов проводилась в программной среде LabVIEW.

Результаты и обсуждение

Для ионов Ho³⁺ и Er³⁺ во фторидном стекле ZBLAN были получены спектральные зависимости сечения поглощения из основного состояния (${}^{5}I_{8}$ у ионов Ho³⁺, ${}^{4}I_{15/2}$ у ионов Er³⁺) в диапазоне длин волн 350–1050 nm (рис. 1, *а* и *b* соответственно). На рисунках над каждым пиком указан уровень, на который происходит переход.

Для обнаруженных переходов ионов Ho^{3+} и Er^{3+} по формулам (2) и (3) были вычислены длины волн и силы линий (показатель преломления фторидного стекла ZBLAN n = 1.5). Результаты приведены в табл. 1. Также в нее внесены квадраты матричных элементов, соответствующие данным переходам [28]. Рассчитанные силы линий относились к электродипольным переходам,

так как магнито-дипольные переходы между данными уровнями запрещены.

Исходя из рассчитанных параметров переходов в соответствии с алгоритмом рассматриваемой модели методом наименьших квадратов были найдены параметры интенсивности Джадда-Офельта для ионов Ho^{3+} и Er^{3+} во фторидном стекле ZBLAN (табл. 2). Небольшая величина среднеквадратичного отклонения *RMS* относительно каждого из параметров говорила о корректности полученных оценок.

Найденные параметры интенсивности для соединений ZBLAN:Ho³⁺ и ZBLAN:Er³⁺ хорошо согласуются с результатами других авторов. Так, например, для стекла ZBLAN:Ho³⁺, исследованного в работе [30], они имели значения

 $\Omega_2 = (2.46 \pm 0.22) \cdot 10^{-20} \, \text{cm}^2,$

$$\Omega_4 = (2.02 \pm 0.39) \cdot 10^{-20} \,\mathrm{cm}^2,$$

$$\Omega_6 = (1.71 \pm 0.24) \cdot 10^{-20} \,\mathrm{cm}^2,$$

а для стекла ZBLAN:Er³⁺, исследованного в работе [31], —

$$\Omega_2 = (2.74 \pm 0.22) \cdot 10^{-20} \,\mathrm{cm}^2,$$

 $\Omega_4 = (1.47 \pm 0.40) \cdot 10^{-20} \, \text{cm}^2,$

 $\Omega_6 = (1.07 \pm 0.13) \cdot 10^{-20} \, \text{cm}^2.$

С использованием полученных параметров Джадда-Офельта и формул (1), (7)-(12) были вычислены ве-

Переход		λ , nm	A_{ED} , s ⁻¹	A_{MD} , s ⁻¹	β	$ au_{rad}, \mu s$
Начальное Конечное						
состояние состояние						
⁵ <i>I</i> ₇	⁵ <i>I</i> ₈	1946	58.24	21.00	1.000	12620
${}^{5}I_{6}$	${}^{5}I_{7}$	2809	14.72	11.91	0.158	5924
	${}^{5}I_{8}$	149	142.19		0.842	
⁵ <i>I</i> ₅	${}^{5}I_{6}$	3945	4.66	5.05	0.074	7616
	${}^{5}I_{7}$	1641	70.78		0.539	
	${}^{5}I_{8}$	890	50.80		0.387	
⁵ <i>I</i> ₄	⁵ I ₅	4762	4.25	2.36	0.083	12530
	${}^{5}I_{6}$	2157	28.98		0.363	
	${}^{5}I_{7}$	1220	36.74		0.460	
	${}^{5}I_{8}$	750	7.47		0.094	
${}^{5}F_{5}$	${}^{5}I_{4}$	4415	0.04		0.000	550
	${}^{5}I_{5}$	2291	5.86		0.003	
	${}^{5}I_{6}$	1449	74.25		0.041	
	${}^{5}I_{7}$	956	335.92		0.185	
	${}^{5}I_{8}$	641	1402.04		0.771	
${}^{5}S_{2}$	${}^{5}F_{5}$	3509	0.35		0.000	519
	${}^{5}I_{4}$	1955	32.28		0.017	
	${}^{5}I_{5}$	1386	28.94		0.015	
	${}^{5}I_{6}$	1026	121.36		0.063	
	${}^{5}I_{7}$	751	738.35		0.383	
	${}^{5}I_{8}$	542	1005.57		0.522	
${}^{5}F_{4}$	${}^{5}S_{2}$	41667	0.00		0.000	300
	${}^{5}F_{5}$	3236	4.85	3.94	0.003	
	${}^{5}I_{4}$	1867	18.32		0.005	
	${}^{5}I_{5}$	1341	108.83		0.032	
	${}^{5}I_{6}$	1001	202.40		0.061	
	${}^{5}I_{7}$	738	283.15		0.085	
	${}^{5}I_{8}$	535	2716.28		0.814	

Таблица 3. Спектроскопические характеристики ионов Ho³⁺ в стекле ZBLAN

Таблица 4. Спектроскопические характеристики ионов Er³⁺ в стекле ZBLAN

Переход		λ , nm	A_{ED} , s ⁻¹	A_{MD} , s ⁻¹	β	$ au_{rad}, \mu$ s
Начальное состояние	Конечное состояние					
${}^{4}I_{13/2}$	${}^{4}I_{15/2}$	1530	71.26	34.82	1.000	9427
${}^{4}I_{11/2}$	${}^{4}I_{13/2}$	2674	13.47	10.07	0.204	8671
,	${}^{4}I_{15/2}$	973	91.79		0.796	
$^{4}I_{9/2}$	${}^{4}I_{11/2}$	4525	0.60	1.87	0.018	7371
- 1	${}^{4}I_{13/2}$	1681	32.87		0.242	
	${}^{4}I_{15/2}$	801	100.32		0.739	
${}^{4}F_{9/2}$	$^{4}I_{9/2}$	3448	1.93		0.002	917
	${}^{4}I_{11/2}$	1957	42.58		0.039	
	${}^{4}I_{13/2}$	1130	50.36		0.046	
	${}^{4}I_{15/2}$	650	995.36		0.913	
${}^{4}S_{3/2}$	${}^{4}F_{9/2}$	3190	0.38		0.000	871
- /	$^{4}I_{9/2}$	1657	43.69		0.038	
	${}^{4}I_{11/2}$	1213	25.34		0.022	
	${}^{4}I_{13/2}$	834	317.32		0.276	
	${}^{4}I_{15/2}$	540	761.96		0.663	
${}^{2}H_{11/2}$	${}^{4}S_{3/2}$	14815	0.02		0.000	279
/-	${}^{4}F_{9/2}$	2625	10.77		0.003	
	$4I_{9/2}$	1490	49.87		0.014	
	${}^{4}I_{11/2}$	1121	42.97		0.012	
	${}^{4}I_{13/2}$	790	75.09		0.021	
	${}^{4}I_{15/2}$	521	3402.87		0.950	
${}^{4}F_{7/2}$	${}^{2}H_{11/2}$	7246	0.55		0.000	382
•7 =	${}^{4}S_{3/2}$	4866	0.02		0.000	
	${}^{4}F_{9/2}$	1927	3.70	15.90	0.007	
	$4I_{9/2}$	1236	87.51		0.033	
	${}^{4}I_{11/2}$	971	162.28		0.062	
	${}^{4}I_{13/2}$	712	369.87		0.141	
	${}^{4}I_{15/2}$	486	1975.06		0.755	

роятности спонтанного излучения, коэффициенты ветвления люминесценции и излучательные времена жизни для возбужденных состояний ионов Ho^{3+} и Er^{3+} в стекле ZBLAN. Результаты приведены в табл. 3 и 4 соответственно.

Для образца состава ZBLAN:1%Er³⁺ +1%Ho³⁺ был измерен спектр ап-конверсионной люминесценции (рис. 2). В видимой части спектра наблюдались три полосы в диапазонах длин волн 515–560, 630–680 и 745–760 nm. Наибольшую интенсивность имела красная линия на длине волны 655 nm, соответствующая переходам ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺ и ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺. Зеленая полоса состояла из двух пиков. Линия с длиной волны 520 nm относилась к переходу ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺, а линия в области 545 nm соответствовала переходам ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺ и ${}^{5}S_{2}, {}^{5}F_{4} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺. Слабая полоса на длине волны 750 nm была обусловлена люминесценцией ионов Ho³⁺ в первое возбужденное состояние на переходе ${}^{5}S_{2}, {}^{5}F_{4} \rightarrow {}^{5}I_{7}$. В пределах до 1.1 μ т также наблюдались две ИК полосы в диапазонах 880–930 и 945–1025 nm. Линия в области 900 nm относилась к переходу ${}^{5}I_{5} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺, а линия на длине волны 975 nm соответствовала переходам ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺ и ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$ ионов Ho³⁺.

Соотношения между интенсивностями переходов соответствовали коэффициентам ветвления люминесценции, рассчитанным при помощи теории Джадда-Офельта (табл. 3 и 4), что подтверждало эффективность ее использования для оценивания люминесцентных свойств материалов, легированных ионами РЗЭ.

Для фторидного стекла ZBLAN: Er^{3+}/Ho^{3+} были проведены исследования концентрационных зависимостей интенсивности ап-конверсионной люминесценции. Спектры образцов состава ZBLAN: $1\%Ho^{3+}$, ZBLAN: $1\%Er^{3+}+X\%Ho^{3+}$ (X = 0.25, 0.5, 1 mol.%) представлены на рис. 3 и 4. Результаты по сравнению интенсивностей люминесценции различных образцов являются предварительными, для корректного сравнения требуются измерения с интегрирующей сферой.

Рис. 3. Спектры ап-конверсионной люминесценции образцов ZBLAN:1% $Er^{3+}+X$ %Ho³⁺ (X = 0.25, 0.5, 1 mol.%) в диапазонах 500–600 nm (a), 600–700 nm (b) и 850–1050 nm (c).

Рис. 4. Спектры ап-конверсионной люминесценции образцов ZBLAN:1% Er^{3+} +1% Ho^{3+} и ZBLAN:1% Ho^{3+} в диапазонах 500–600 nm (*a*), 600–700 nm (*b*) и 850–1050 nm (*c*).

С увеличением концентрации ионов Ho³⁺ возрастала интенсивность люминесценции (рис. 3). При этом качественно наблюдаемая картина не изменялась — форма спектра сохранялась. Это было связано с тем, что именно ионы Ho³⁺ обеспечивали первую ступень возбуждения, так как только они имеют полосу поглощения из основного состояния в области длины волны 1.94 μ m (у ионов Er³⁺ такой полосы нет).

Добавление ионов Er^{3+} приводило к существенному изменению спектра люминесценции. Значительно возрастала интенсивность красной полосы (рис. 4, *b*). При этом ширина спектра увеличивалась за счет появления переходов ионов Er^{3+} . Аналогичная картина наблюдалась для зеленой полосы (рис. 4, *a*), а также для ИК полосы в области 975 nm (рис. 4, *c*). Спектр ИК люминесценции в области 900 nm практически не изменялся.

Для оценки эффективности преобразования стеклом ZBLAN:Er³⁺/Ho³⁺ двухмикронного излучения в видимый диапазон на рис. 5 представлен спектр ап-конверсионной люминесценции наиболее интенсивного образца данной серии ZBLAN:1%Er³⁺+1%Ho³⁺ в сравнении со спектром соединения ZBLAN:1% $Ho^{3+}+3%Yb^{3+}$, уже успело зарекомендовать себя как которое хороший визуализатор излучения В области 2µm [32]. Интенсивность красной полосы у образца ZBLAN:1%Er³⁺+1%Ho³⁺ была несколько ниже, однако сама полоса — шире. Таким образом, выход красной люминесценции у рассмотренных стекол практически не отличался. Это позволяет рекомендовать соединение

Рис. 5. Спектры ап-конверсионной люминесценции образцов ZBLAN:1%Er³⁺ + 1%Ho³⁺ и ZBLAN:1%Ho³⁺ + 3%Yb³⁺.

ZBLAN:1% Er^{3+} +1% Ho^{3+} для использования в качестве визуализатора излучения в области 2 μ m.

Величина пороговой плотности мощности визуализации излучения Tm³⁺:YAP-лазера ($\lambda = 1.94 \, \mu m$) снижалась при увеличении концентрации ионов Ho³⁺ и в стекле ZBLAN:1%Er³⁺+1%Ho³⁺ составила 30 W/cm². Данное значение можно существенно уменьшить, если из стекла путем термической обработки получить оптическую керамику. Так, например, в работе [32] было обнаружено снижение пороговой плотности мощности визуализации излучения Tm³⁺:YLFлазера ($\lambda = 1.908\,\mu m$) в керамических образцах состава ZBLAN:1%Ho³⁺+3%Yb³⁺ по сравнению с исходными образцами из стекла в 150 раз. Это связано с тем, что термический отжиг стекол часто ведет к существенному усилению люминесценции (в десятки раз) за счет выделения кристаллической фазы (см., например, [33,34]); во фторидных стеклах ZBLAN образуется кристаллическая фаза β -BaZrF₆ [35].

Заключение

Проведено исследование люминесцентных свойств фторидного стекла ZBLAN, легированного ионами Ег³⁺ и Но³⁺. Для соединений ZBLAN:1%Но³⁺ и ZBLAN:1%Er³⁺ измерены спектры пропускания, на основе которых в соответствии с алгоритмом модели Джадда-Офельта для ионов Ho³⁺ и Er³⁺ во фторидном стекле ZBLAN найдены параметры интенсивности и рассчитаны вероятности спонтанного излучения, коэффициенты ветвления люминесценции и излучательные времена жизни. Измерены спектры ап-конверсионной люминесценции образцов состава ZBLAN:1%Ho³⁺, ZBLAN:1%Er³⁺+X%Ho³⁺ (X = 0.25, 0.5, 1 mol.%) при возбуждении излучением Tm³⁺:YAP-лазера с длиной волны 1.94 µm. Добавление ионов Er³⁺ способствовало значительному увеличению эффективности апконверсии. Наибольшей интенсивностью обладала красная полоса люминесценции на длине волны 655 nm,

соответствующая переходам ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} и ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺. С увеличением концентрации ионов Ho³⁺ интенсивность люминесценции возрастала, порог визуализации красного свечения снижался и в стекле ZBLAN:1%Er³⁺+1%Ho³⁺ составил 30 W/cm².

Финансирование работы

Работа выполнена при поддержке национального проекта "Наука и университеты" (проект FSWR-2024-0004) за счет субсидии федерального бюджета на финансовое обеспечение государственного задания на выполнение научно-исследовательских работ.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F. Auzel, D. Pecile, D. Morin. J. Electrochem. Soc., **122** (1), 101 (1975). DOI: 10.1149/1.2134132
- [2] А.П. Савикин, А.В. Будруев, А.Н. Шушунов, Е.Л. Тихонова, К.В. Шастин, И.А. Гришин. Неорган. материалы, **50** (11), 1261 (2014). DOI: 10.7868/S0002337X14110153
 [A.P. Savikin, A.V. Budruev, A.N. Shushunov, E.L. Tikhonova, K.V. Shastin, I.A. Grishin. Inorg. Mater., **50** (11), 1169 (2014). DOI: 10.1134/S0020168514110156].
- [3] А.П. Савикин, А.С. Егоров, А.В. Будруев,
 И.А. Гришин. Опт. и спектр., 120 (6), 963 (2016).
 DOI: 10.7868/S0030403416060192 [A.P. Savikin,
 A.S. Egorov, A.V. Budruev, I.A. Grishin. Opt. Spectrosc.,
 120 (6), 902 (2016). DOI: 10.1134/S0030400X16060199].
- [4] F. Auzel. Proc. IEEE, 61 (6), 758 (1973).DOI: 10.1109/PROC.1973.9155
- [5] А.К. Казарян, Ю.П. Тимофеев, М.В. Фок. В сб.: Центры свечения редкоземельных ионов в кристаллофосфорах, под ред. Н.Г. Басова. Труды ФИАН (Наука, М., 1986), т. 175, с. 4.
- [6] M. Tsuda, K. Soga, H. Inoue, S. Inoue, A. Makishima. J. Appl. Phys., 85 (1), 29 (1999). DOI: 10.1063/1.369445
- [7] T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, B.H.T. Chai. J. Appl. Phys., 76 (3), 1413 (1994).
 DOI: 10.1063/1.357745
- [8] J. Zhao, L. Wu, C. Zhang, B. Zeng, Y. Lv, Z. Li, Q. Jiang,
 Z. Guo. J. Mater. Chem. C, 5 (16), 3903 (2017).
 DOI: 10.1039/C7TC00757D
- [9] А.А. Ляпин, П.А. Рябочкина, С.Н. Ушаков, П.П. Федоров. Квант. электрон., 44 (6), 602 (2014). [А.А. Lyapin, Р.А. Ryabochkina, S.N. Ushakov, Р.Р. Fedorov. Quantum Electron., 44 (6), 602 (2014).
 DOI: 10.1070/QE2014v044n06ABEH015423].
- [10] А.П. Савикин, А.С. Егоров, А.В. Будруев, И.Ю. Перунин, И.А. Гришин. Письма в ЖТФ, 42 (21), 47 (2016). DOI: 10.21883/pjtf.2016.21.43840.16262 [A.P. Savikin, A.S. Egorov, A.V. Budruev, I.Yu. Perunin, I.A. Grishin. Tech. Phys. Lett., 42 (11), 1083 (2016). DOI: 10.1134/S1063785016110079].
- [11] P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Voronov, A.A. Lyapin, A.S. Ermakov, D.V. Pominova, A.D. Yapryntsev,

V.K. Ivanov, A.A. Pynenkov, K.N. Nishchev. Cellulose, **26** (4), 2403 (2019). DOI: 10.1007/s10570-018-2194-4

- [12] А.А. Ляпин, П.А. Рябочкина, С.Н. Ушаков, В.В. Осико, П.П. Федоров, А.А. Демиденко, Е.А. Гарибин. Способ визуализации двухмикронного лазерного излучения в видимый свет. Патент RU 2549561 С1, 27.04.2015.
- I. Kaplan, D. Aravot, S. Giler, Y. Gat, D. Sagie, Y. Kagan. In: *LASER Optoelectronics in Medicine*, ed. by W. Waidelich, R. Waidelich (Springer, Heidelberg, 1988), p. 23. DOI: 10.1007/978-3-642-72870-9_6
- [14] S. Wenk, S. Fürst, V. Danicke, D.T. Kunde. In: Advances in Medical Engineering, ed. by T.M. Buzug, D. Holz, J. Bongartz, M. Kohl-Bareis, U. Hartmann, S. Weber. Springer Proceedings in Physics (Springer, Heidelberg, 2007), vol. 114, p. 447. DOI: 10.1007/978-3-540-68764-1_75
- B.M. Walsh. Laser Phys., 19 (4), 855 (2009).
 DOI: 10.1134/S1054660X09040446
- [16] K. Lemański, R. Pązik, P.J. Dereń. Opt. Mater., 34 (12), 1990 (2012). DOI: 10.1016/j.optmat.2011.12.021
- [17] W. Xu, X. Gao, L. Zheng, Z. Zhang, W. Cao. Opt. Express, 20 (16), 18127 (2012). DOI: 10.1364/OE.20.018127
- [18] I.A. Grishin, V.A. Guryev, A.P. Savikin, N.B. Zvonkov. Opt. Fiber. Tech., 1 (4), 331 (1995). DOI: 10.1006/ofte.1995.1027
- [19] K. Anders, A. Jusza, P. Komorowski, P. Andrejuk, R. Piramidowicz. J. Lumin., 201, 427 (2018).
 DOI: 10.1016/j.jlumin.2018.04.056
- [20] D.Y. Wang, P.C. Ma, J.C. Zhang, Y.H. Wang. ACS Appl. Energy Mater, 1 (2), 447 (2018).
 DOI: 10.1021/acsaem.7b00093
- [21] A.P. Savikin, K.E. Sumachev, I.A. Grishin, V.V. Sharkov. J. Non-Cryst. Solids, 572, 121087 (2021).
 DOI: 10.1016/j.jnoncrysol.2021.121087
- [22] А.П. Савикин, И.Ю. Перунин, С.В. Курашкин, А.В. Будруев, И.А. Гришин. Опт. и спектр., **124** (3), 312 (2018). DOI: 10.21883/OS.2018.03.45650.229-17
 [A.P. Savikin, I.Yu. Perunin, S.V. Kurashkin, A.V. Budruev, I.A. Grishin. Opt. Spectrosc., **124** (3), 307 (2018). DOI: 10.1134/S0030400X18030190].
- [23] T. Miyakawa, D.L. Dexter. Phys. Rev. B, 1 (7), 2961 (1970).DOI: 10.1103/PhysRevB.1.2961
- [24] F. Auzel. Phys. Rev. B, 13 (7), 2809 (1976).DOI: 10.1103/PhysRevB.13.2809
- [25] B.M. Walsh. In: Advances in Spectroscopy for Lasers and Sensing, ed. by B. Bartolo, O. Forte. NATO Science Series II: Mathematics, Physics and Chemistry (Springer, Dordrecht, 2006), vol. 231, p. 403. DOI: 10.1007/1-4020-4789-4_21
- [26] B.R. Judd. Phys. Rev., 127 (3), 750 (1962).DOI: 10.1103/PhysRev.127.750
- [27] G.S. Ofelt. J. Chem. Phys., 37 (3), 511 (1962).DOI: 10.1063/1.1701366
- [28] W.T. Carnall, H. Crosswhite, H.M. Crosswhite. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃ (Argonne National Laboratory, Lemont, 1978). DOI: 10.2172/6417825
- [29] W.T. Carnall, P.R. Fields, K. Rajnak. J. Chem. Phys., 49 (10), 4424 (1968). DOI: 10.1063/1.1669893
- [30] D. Piatkowski, K. Wisniewski, M. Rozanski, Cz. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, M. Malinowski. J. Phys.: Condens. Matter, **20** (15), 155201 (2008). DOI: 10.1088/0953-8984/20/15/155201
- [31] D. Piatkowski, K. Wisniewski, M. Rozanski, Cz. Koepke.
 Phys. Procedia, 2 (2), 365 (2009).
 DOI: 10.1016/j.phpro.2009.07.021

- [32] А.П. Савикин, А.С. Егоров, А.В. Будруев, И.Ю. Перунин, И.А. Гришин. Физика и химия стекла, 42 (5), 627 (2016).
 [А.Р. Savikin, A.S. Egorov, A.V. Budruev, I.A. Grishin. Glass Physics and Chemistry, 42 (5), 473 (2016).
 DOI: 10.1134/S108765961605014X].
- [33] R. Lisiecki, E. Czerska, M. Żelechower, R. Swadźba, W. Ryba-Romanowski. Mater. Des., **126**, 174 (2017). DOI: 10.1016/j.matdes.2017.04.046
- [34] G. Arzumanyan, V. Vartic, A. Kuklin, D. Soloviov, G. Rachkovskaya, G. Zacharevich, E. Trusova, N. Skoptsov, K. Yumashev. J. Phys. Sci. Appl., 4 (3), 150 (2014).
- [35] L. Qin, Z.X. Shen, B.L. Low, H.K. Lee, T.J. Lu, Y.S. Dai, S.H. Tang, M.H. Kuok. J. Raman Spectrosc., 28 (7), 495 (1997). DOI: 10.1002/(SICI)1097-4555(199707)28:7<495::AID-JRS116>3.0.CO;2-X