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1. Introduction

Superconducting structures hold great promises for appli-

cation in electronics, therefore today they have become the

object of many theoretical and experimental papers [1–20].
Their properties are determined by the material that they are

made of, dimensions, shape etc. Critical current — is one of

the key parameters of superconducting structures. For large-

size structures, if there is sufficient strong magnetic field,

critical current is determined by movement of Abrikosov

vortices. In rather thin and narrow bridges (bridge thickness

does not exceed 1.81ξ , where ξ — coherence length of

superconductor that the bridge is made of [21]) critical

current is related to depairing of Copper pairs, in other

words, it is Ginzburg-Landau (GL) depairing current.

For the first time the equation for thin superconducting

film depairing current density was obtained in paper [22].
The results of the paper and more recent analytical calcula-

tions for depairing current are used to estimate the critical

current of superconducting structures with the correspond-

ing sizes. For example, in paper [10] the authors showed

that for thin (with thickness of D ≈ ξ(0), ξ(0) — coherence

length at zero temperature) and narrow superconducting

bridges from Nb and NbN the analytical estimates of critical

current exceed experimental values by 30−50%. Such

differences was related by the authors to formation of a thin

non-superconducting metal layer on the surface of bridges

in process of manufacture. In paper [13] the decrease

of experimentally determined critical parameters of thin

niobium bridges compared to the theoretical estimates was

related to disordering of metal layers in the interface of

superconductor/substrate.

The accuracy of critical current density estimates is

important for correct description of diode effect (DE). The
essence of this effect consists in changing the critical current

value with the change of its flow direction [15,23,24]. DE

is observed both in parallel and perpendicular orientation of

external magnetic field relative to the surface of bridges.

Several DE mechanisms are assumed in such structures.

Some of them are related to electron spins [10,15,16,25].
In most cases the main role is played by spin-orbit coupling

of electrons. Nevertheless, in paper [25] they described a

situation, when the presence of finite moments in electrons

was not due to spin-orbit coupling, but change of density of

Cooper pairs by thickness of S-N (superconductor−normal

metal) structure. Other mechanisms explain DE by

asymmetry of superconducting structures [7,19], related,

for example, to change of the surface layers relative to

the volume ones. It should be noted that asymmetrical

structures demonstrate higher diode efficiency (up to 65%),
compared to those where spin mechanism prevails [19].
It should be noted separately that paper [26] presents a

structure based on graphene, which demonstrates DE in

absence of the magnetic field.

Disordering of layers on the surface of superconducting

structures may play an important role in determination

of their critical current and explanation of DE [10,13,19].
This paper presents a model making it possible within

the GL theory to estimate the depairing current for thin

and narrow superconducting bridges, and transport current

flow in adjacent non-superconducting strongly disordered

layers is taken into account, too. The proposed model

makes it possible to establish interrelation between the

thickness of bordering non-superconducting layers and value

of critical parameters. The critical state of thin and

narrow superconducting bridge being a layered N-S-N

(normal metal−superconductor−normal metal) structure,

was analyzed. The characteristics of this structure were

described in the context of its use as a superconducting

diode.
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2. Model description

A narrow and thin bridge is considered with thickness

of D. The geometry of the problem, as well as the directions

of the transport current I t flowing through the structure and

the external magnetic field H are shown in the insert in

Figure 1. A temperature range is considered, where the

following conditions are met: bridge thickness D < 1.81ξ ,

and width does not exceed the magnetic field penetration

depth λ. In this case the superconducting bridge is in

vortex-free state, and superconducting current is distributed

homogeneously along its width. In this problem the vector

potential is A = ey A(x).
The superconducting bridge is assumed to be inhomoge-

neous in thickness (along axis x), which complies with real

superconducting structures [27]. Due to the difference from

the bulk conditions, layers with multiple defects are formed

at the boundaries substrate/superconducting material and

material/environment [28,29]. This, in its turn, decreases the

mean free path (l) when approaching the boundaries (see
dependence l(x) in Figure 1). For the purposes of this paper
an assumption is made that if the mean free path is less than

a certain threshold value lnorm, the area, where this condition

is met, is in the normal state (grey areas in Figure 1).
Thicknesses of disordered non-superconducting layers at

the interface of substrate/bridge and bridge/environment are

indicated as δs and δe accordingly.

Change of the boundary layers condition is taken into

account via a model distribution of mean free path along

the thickness of superconducting layer [30]:

l(x) = lCn

(

1− 2n−2η
( x

D
− D + δe − δs

2D

)n
)

, (1)

where lCn is mean free path in the center of superconducting

layer, and η is parameter showing the difference between

values l in the center of the layer and at the boundaries

of the bridge. The homogeneous superconducting bridge is

compliant with η = 0 (in this case l(x) = lCn). In other

words, η specifies the degree of inhomogeneity of the

superconducting structure. The parameter of degree n sets

the sharpness of change l(x) near the structure boundaries.

The calculations will use values of parameters η = 3.9 and

n = 8, and the mean free path will change slightly in the

center of the bridge and decrease sharply when approaching

the boundaries (Figure 1).

In case of strong disordering of the layers at the

bridge boundaries their critical temperature may decrease.

It should be noted here that Anderson theorem states

the absence of impact at critical temperature from non-

magnetic scattering in superconductor with s -type of

pairing. At the same time, this statement has certain

additional restrictions [31–34]. The critical temperature

of the superconductor may vary if there are impurities

present in case of very strong disordering [31,32] and in

thin superconducting films and bridges [31]. In the last

case several mechanisms of impurities impact at the critical

0 δe D –δsx

l(
x)

lCn

lnorm

Su
bs
tra
te

H

It

x

y

z

Figure 1. Distribution of mean free path l(x) along bridge

thickness. Insert — problem geometry.

temperature of the structures depending on their thickness

are considered. The described factors are directly related

to the problem considered in this paper. A situation is

considered, when surface layers will be in the normal state

(due to lower critical temperature), and the central layer

will be superconducting.

The free energy functional for the studied structure is:

F ∝
D

∫

0

[

−a1(T )|9(x)|2 +
a2

2
|9(x)|4

+ b(x)

(∣

∣

∣

∣

∂9

∂x

∣

∣

∣

∣

2

+
4e2

c2
A(x)2|9(x)|2

)

+
(∂A/∂x−H)2

8π

]

dx ,

(2)
where 9 is order parameter, e is electron charge, c is speed

of light, T is temperature of superconducting bridge, a1−2

and b are coefficients in the expansion of the free energy

functional. Temperature dependence a1(T ) is as follows:

a1 = α1

(

1− T
TCM

)

, (3)

where TCM is critical temperature of massive superconduc-

tor, from which the corresponding layer is made. In turn, the

expansion coefficient b(x) in the
”
dirty limit“ l ≪ ξ0, where

ξ0 is the coherence length in a pure superconductor in the

BCS theory is proportional to the mean free path (l) [35].
Taking into account (1), dependence b(x) will be as follows:

b(x) = bCn

(

1− 64 · η
( x

D
− D + δe − δs

2D

)8
)

, (4)

where bCn is coefficient not depending on x .
It should be noted that since the critical temperature of

superconducting central layer (TCMs) and surface disordered

layers (TCMn) differs, the values of coefficient a1(T ) in these

areas will differ due to different TCM .

Variation of free energy functional (2) by order parameter

and vector potential makes it possible to obtain the following
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GL equations:

ψ − p(T/TCMs)

p(T/TCMs ,n)

[

ψ3 − g(x ξ )
∂2ψ

∂x2
ξ

− ∂g(x ξ )
∂x ξ

∂ψ

∂x ξ
+

U2

κ2Cn

g(x ξ)ψ

]

= 0,

(5)
∂2U

∂x2
ξ

− ψ2

κ2Cn

g(x ξ)U = 0, (6)

where p(T/TCMs) = (1− T/TCMs), p(T/TCMs ,n) =
= (1− T/TCMs ,n) (TCMs ,n = TCMs in the superconducting

layer and TCMs ,n = TCMn in the surface layers),

g(x ξ ) =

(

1− 64 · η
(x ξ

d
− d + δeξ − δsξ

2d

)8
)

,

ψ is normalized order parameter: ψ=9/90, 90=
√

a1/a2 —
order parameter in massive superconductor in absence

of external magnetic field (90 complies with the central

superconducting layer), κCn — GL parameter in the center

of the superconducting layer. Besides, the dimensionless

values are introduced:

x ξ =
x
ξCn

, d =
D
ξCn

, δsξ =
δs

ξCn
, δeξ = δe/ξCn,

U =
2πκCnξCn

φ0

A,

where φ0 is magnetic flux quantum, ξCn is GL coherence

length in the center of the superconducting layer, and

ξCn =
√

bCn/a1(T/TCMs). All further values of length and

thickness are presented as units of coherence length in the

center of the superconducting layer ξCn. When deriving the

equations, the calibration of the vector potential divA = 0

was used.

In this paper the calculations are made for temperature

T = 0.95TCMs . In turn, the average over the thickness criti-

cal temperature of the disordered layers is TCMn = 0.9TCMs .

Since the critical temperature of disordered layers is less

than the bridge temperature (T > TCMn), they are in normal

state.

Additionally a case is considered, when the disordered

surface layers are in superconducting state (TCMn = TCMs).
This makes it possible to separately analyze the effect

of inhomogeneity of superconducting layers and proximity

effect occurring when the layers are in normal state.

Let us discuss the boundary conditions to equations (5)
and (6). Since the transport current I t in the bridge creates

a magnetic field:

HI =
2π

c
I t, (7)

then the full field near the surfaces of the bridge (at the
interface with the substrate and the environment) is equal

to H ± HI , and boundary conditions for equation (6) are as

follows:

∂U
∂x

∣

∣

∣

sub
= h + hI,

∂U
∂x

∣

∣

∣

env
= h − hI, (8)

where

h =
H
Hξ

, hI =
HI

Hξ

, Hξ =
φ0

2πκ2Cnξ
2
Cn

.

At the interface of superconducting layer/disordered

layers the boundary conditions to equation (6) will meet

the condition of continuity of the magnetic field and vector

potential. In its turn the order parameter and its derivative

will also be continuous at the boundary between the

superconducting and non-superconducting layers [36]. This
determines the boundary conditions to equation (5).
All the below values of magnetic field are given in units

Hξ (see (8)). The current values within the model are

represented in terms of HI (7) and therefore, like the

magnetic field, are expressed in units of Hξ . The iterative

procedure for solving the system of equations (5), (6) with

boundary conditions is similar to that given in paper [37].

3. Results of numerical calculations

Let us consider the dependences of critical current

(Ic) on external magnetic field (h) for a superconducting

bridge with thickness of d = 1.5 (Figure 2, a). Note

that solid lines comply with the structure with disordered

layers on the surface, and a blue line (indicated as

INL+inh) corresponds to the non-superconducting disordered

layers, and the orange one — to the superconducting

ones (indicated as I inh). Thicknesses of inhomogeneous

surface layers for boundaries of bridge/environment and

bridge/substrate are equal to 0.13ξ(0)/0.029ξ(0.95TCMs )
and 0.03ξ(0)/0.007ξ(0.95TCMs ) accordingly, which corre-

sponds to the experimentally derived values for niobium

films [10,13]. A black dashed line (indicated as Idep) shows

the estimate of the depairing current for the structure of

homogeneous thickness (in this case η = 0, and surface

non-superconducting layers are not available). The analysis

shows that accounting for only inhomogeneity of surface

layers (orange curve in Figure 2, a) results in the decrease

of the critical current value, and the value of the critical

magnetic field will increase at the same time (hc , point of

curves crossing Ic(h) with axis h). If you additionally take

into account the fact that the disordered surface layers are

in normal state (blue line in Figure 2, a), this will result to

considerable decrease of the critical current. In its turn hc

will become a bit smaller than in the case of disordered

superconducting surface layers.

To clarify the described phenomena, let us consider

the change of the order parameter ψ(x ξ ) under action of

transport current I t and external magnetic field h. In the

absence of the external magnetic field, when the transport

current flows (Figure 2, b), the order parameter of the

structure with disordered superconducting surface layers

(curve indicated as I inh) will be lower than in the bridge

of homogeneous thickness (curve indicated as Idep). If the
surface layers are in normal state, this will result in decrease

of the order parameter (see curve INL+inh). Therefore, the
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Figure 2. a — dependences of critical current IC on external

magnetic field h for bridge with thickness of d = 1.5. Solid lines

comply with the structure with the disordered layers on its surface.

The blue line corresponds to the non-superconducting disordered

layers, and the orange one — to the superconducting ones. The

black dashed line shows the estimates of the depairing current for

the structure of homogeneous thickness. b−c — distribution of

order parameter ψ along the bridge thickness (d = 1.5), obtained
for various values of transport current It and external magnetic

field h. For all figures the GL parameter in the center of the

superconducting layer is κCn = 2. Other parameters of calculations

are shown in the figures. The grey area corresponds to disordered

layers.

order parameter in the structure with the surface disordered

layers is suppressed stronger by the transport current than

in the homogeneous structure. Besides, if the surface layers

are in normal state, then ψ is suppressed stronger. As a

result the critical current in the bridge with disordered layers

is lower than the depairing current (Idep) and reaches the

least value, if the disordered surface layers are in non-

superconducting state.

In the area of a thicker surface layer (at the boundary

with the environment, at x ξ close to 0, see Figure 1) there

is a fracture of the order parameter (blue line INL+inh in

Figure 2, b). It is caused by the fact that the surface layer is

in the normal state. In the area of a thinner surface layer (at
the boundary with the substrate, at x ξ near 1.5, Figure 1)
no such fracture is observed, which is related to a very small

thickness of the layer.

Under the action of the external magnetic field in absence

of the transport current the situation will be the opposite: at

the same values h the order parameter ψ(x ξ ) of the bridge

with the surface inhomogeneous layers will be higher than

in the homogeneous structure (Figure 2, c). Therefore, the

superconducting state of the bridge with the disordered

surface layers is more resistant to suppression with the

external magnetic field. In other words, for the inhomo-

geneous bridge the value of the critical magnetic field will

be higher than for the homogeneous one. This statement

is true both for superconducting and non-superconducting

disordered layers. At the same time in the case of non-

superconducting layers hc will be slightly lower than in the

case of superconducting ones.

Let us analyze the dependences of the critical current on

the external magnetic field for the superconducting bridges

of various thickness (d = 0.25, 0.5 and 1). Figure 3 presents

the comparison of the calculation results Ic for the bridges

with the disordered non-superconducting surface layers with

the estimates of the depairing current for the homogeneous

bridges. The calculations have shown that the accounting

of the surface layers results in reduction of the critical

current relative to the depairing current values by 12−44%

(Figures 2, a and 3). Besides, the thinner the bridge,

the higher is that reduction. This measurement coincides

with the one determined experimentally for the bridges

from niobium and niobium-based materials [10]. Therefore,
despite the small thickness of disordered surface layers in

respect to the bridge, they impact substantially the critical

current of the structure.

With the growth of the magnetic field, the difference

between Ic of the bridges with surface disordered layers

and the depairing current for the homogeneous structures

becomes less and less, and at certain value of h they may

even become equal (Figure 3, b). Critical magnetic field hc

near the bridges with the non-superconducting surface lay-

ers may be higher (case d = 1.5 and d = 1), may coincide

(d = 0.5) or be lower (d = 0.25) than in the homogeneous

bridges. Previously papers [38,39] studied the impact of the

proximity effect (for the case of normal layers with thickness

of at least the coherence length ξ) and inhomogeneity at

the critical parameters of the superconducting bridges. It

turned out that both factors suppress the critical current

of the bridge substantially, and affect the critical magnetic

field in a different manner: inhomogeneity increases it,

4∗ Physics of the Solid State, 2025, Vol. 67, No. 3
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Figure 3. Dependences of critical current IC on external magnetic

field h for bridges with disordered non-superconducting layers

on their surface (solid blue lines). The black dashed lines

show the estimates of the depairing current for the structures of

homogeneous thickness. Thicknesses of bridges are indicated in

the figures (d = 1 (a), d = 0.5 (b) and d = 0.25 (c)). The GL

parameter in the center of the superconducting layer is κCn = 2.

and the proximity effect reduces it. Boundary disordered

layers impact the critical parameters of bridges both due to

proximity effect and the structure inhomogeneity it creates.

The changes of the critical magnetic field described in this

paper show that both factors must be taken into account

in the case above. At the same time, the thicker bridges

demonstrate prevalence of structure inhomogeneity and in

the thinner ones — the proximity effect.

The structure with disordered boundary layers is not

symmetrical. Besides, the magnetic field developed by

the transport current on one of the surfaces matches the

direction of the external magnetic field and is directed

oppositely on the other one (8). In this case one should

expect that the change in the direction of the transport

current may cause the change of the critical current value.

Therefore, a diode effect should be observed for the consid-

ered structure. Figure 4 shows the dependence Ic(h) for a

bridge with disordered surface layers at different directions

of the transport current. Current I+ flows along the positive

direction of axis y , I− — to the opposite side. The structure

is considered with both superconducting (orange and red

lines I inh in Figure 4) and non-superconducting (blue and

pink lines INL+inh in Figure 4) disordered layers. As the

direction of the current changes in the magnetic field h, the
critical current value changes. Let us introduce the diode

efficiency ε = (I− − I+)/I+, characterizing the change of

the critical current upon the direction change. The average

diode efficiency for the considered structure with thickness

of d = 0.25 is 18%. At the same time, the average

diode efficiency practically does not differ from the surface

superconducting and non-superconducting layers. For the

bridges of larger thickness the diode effect is also observed,

but the value ε will be smaller.

The reason for change in the critical current value is

asymmetry of the bridge and the difference of boundary

conditions to the magnetic field (8) at its boundaries. In one

of the boundaries the magnetic field created by the transport

current increases the external magnetic field h, and in the

other one — decreases it. In a special case of the external

magnetic field absence the boundary conditions (8) in the

boundaries of the bridge are same. Therefore, I+ and I−
are not different at h = 0.

Figure 5, a−c shows distributions of the order parameter

by thickness of bridge ψ(x ξ ) at various values of the

h

0 10 20 30 5040
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0.02

0.03

0.04

0

I c

I+NL + inh

I–NL + inh

I+inh

I– inh

60

Figure 4. Dependences of critical current IC on external magnetic

field h for bridge with disordered superconducting (orange and red

lines I inh) and non-superconducting (blue and pink lines INL+inh)
layers on its surface. Blue and orange lines correspond to the

current flowing in the positive direction of axis y (I+), pink and

red ones correspond to the current in the opposite direction (I−).
Calculations were made for the bridge with thickness d = 0.25.

The GL parameter in the center of the superconducting layer is

κCn = 2.
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Figure 5. a−c — distributions of order parameter ψ along bridge thickness (d = 1.5), produced for different values of transport current

It and external magnetic field h. d−e — distributions of magnetic field b along bridge thickness (d = 1.5) for different values It and h.
Figure (e) for n = 2, T = 0.99TCMs and TCMn = 0.9TCMs . The GL parameter in the center of the superconducting layer is κCn = 2. Other

parameters of calculations are shown in the figures.

transport current I t and external magnetic field h for a

bridge with thickness of d = 1.5. In the absence of

the external magnetic field at the same values of I t the

order parameter will be practically same for I+ and I−
(Figure 5, a). This is true both for superconducting and non-

superconducting disordered surface layers. Therefore, upon

current reversal, the critical current value in the absence of

the magnetic field will not change.

Let us consider the suppression of the superconducting

state with transport current and external magnetic field

in a bridge with inhomogeneous surface layers. The

corresponding distributions ψ(x ξ ) for the cases I+ and I−
are presented in Figure 5, b (non-superconducting surface

layers) and Figure 5, c (superconducting surface layers).
The difference between the superconducting and non-

superconducting layers is only observed at the interface with

the environment and is a fracture of the order parameter.

In both cases ψ(x ξ) for I− is asymmetric to distributions

I+, which is expressed in the location of the maximum near

the other boundary of the bridge. Quantitatively the order

parameter differs for I+ and I−. This, in turn, is the reason

for the difference of critical currents I+ and I−.

Physics of the Solid State, 2025, Vol. 67, No. 3
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In the absence of the transport current and at values h,
close to the critical field, let us consider the distribution

of the magnetic field b(x ξ ) along the structure thickness

(Figure 5, d). In vortex-free case, when the field penetrates

the homogeneous bridge, it starts decreasing and reaches

its minimum value in its center. However, in contrast to

the ordinary Meissner effect, the field will not disappear

completely, which is due to the relatively small thickness of

the structure. If there are boundary non-superconducting

disordered layers, the magnetic field will hardly vary

therein, as a result of which the distribution b(x ξ ) becomes

asymmetric.

According to the numerical calculations, at low val-

ues of the magnetic field (let us consider h = 0.1) and

very thin surface disordered layers (δe = 0.02ξ(0) and

δs = 0.01ξ(0)) the order parameter ψ hardly varies along

the structure thickness. In this case the distribution of the

field b(x ξ ) may be obtained using analytical estimates. Let

us additionally consider the distribution of mean free path

l(x)(1) with n = 2. From the qualitative point of view, the

dependences l(x) are similar for n = 2 and n = 8, but in the

latter case the mean free path changes more drastically near

the boundaries of the structure [30]. Let us also assume that

T = 0.99TCMs , and TCMn = 0.9TCMs . For a homogeneous

bridge b(x ξ ) will be determined by the known ratio for a

thin plate [40]:

b(x ξ ) =

h
(

sh(ψd/κCn) ch(ψx ξ/κCn) +

+ (1− ch(ψd/κCn)) sh(ψx ξ/κCn)
)

sh(ψd/κCn)

≈ 0.121608
(

0.822317 ch(0.5x ξ ) − 0.294683 sh(0.5x ξ )
)

.

For a inhomogeneous bridge, equation (6) will look like

a parabolic cylinder equation. Distribution b(x ξ ) will be

determined by
”
odd“ solution for U(x ξ ):

b(x ξ ) =
∂U(x ξ )

∂x ξ

≈ 0.096501

∞
∑

n=0

αn
(1.142816x ξ − 0.857679)2n

(2n)!
,

where coefficients α0 = 1, α1 = 0.188369, the other αn are

related by recurrent relations [41]. The produced analytical

estimates for the field distribution b(x ξ ) are illustrated in

Figure 4, e. The presented results match the obtained

numerical calculations.

The results of this paper may be also applied to the

structures in the magnetic field perpendicular to the surface.

And their dimensions must meet the condition of no vortices

in these structures. Additionally the paper considers the

disordered surface layers, which are in the normal state,

but are superconductors at the same time. A situation is

considered, when the bridges are found at temperatures that

are higher than the critical temperatures of these layers. GL

theory is not applicable for the normal layers that are not

superconductors. This is due to the fact that GL theory

may only be used in a certain proximity of the critical

temperature. Nevertheless, qualitatively the results of this

paper may be spread on the normal surface layers that are

not superconducting.

To conclude the section, we would like to note that the

experimental proof of DE mechanisms caused by electron

spins [10,15,16,25] requires development of the structures,

where the depairing current will be achievable [42]. In turn,

as it is discussed in this paper and in [10], the de-

pairing current as such is sensitive to the structure of

superconducting bridges, especially taking into account the

fact that the depairing current is achievable in rather thin

and narrow bridges. On the other hand, the structural

inhomogeneities may themselves contribute to DE. The

accounting of such contribution is important in the study

of other DE mechanisms, including those related to the

electron spins.

4. Conclusion

The paper considers the critical state of the thin and

narrow superconducting bridge with the metal layers dis-

ordered on the surface. Relying on the experimental

research of the structures from niobium and niobium-based

materials, a case was considered, when the disordered

layers at the interface of substrate/superconductor and

superconductor/environment (vacuum, cooling agent) differ

by thickness. With the help of the numerical calculations

within the GL theory it is shown that the accounting in

the model of disordered metal layers makes it possible to

produce estimates of the critical current being in quantitative

agreement with the experimental data for structures from

Nb and NbN. Such bridges demonstrate DE. And the

change of the critical current upon reversal is substantial,

while the average diode efficiency may reach 18%.
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