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Influence of phonon focusing effect on the diamond thermal conductivity
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The thermal conductivity of diamond samples at low temperatures is calculated taking into account the phonon

focusing effect based on the McCurdy, Maris and Elbaum theory in the frame of purely diffuse boundary

scattering of phonons. Data on the focusing effect for transverse and longitudinal phonon modes are obtained.

The calculated values of thermal conductivity are compared with experimental data for diamond samples in the

form of square plates with different axes along [100] and [110]. At low temperatures near 5K, experiment and

theory showed satisfactory agreement, but above 10K, anisotropy is not observed experimentally. Possible causes

of this discrepancy are discussed.
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Introduction

Bulk diamond single crystals have the highest thermal

conductivity — about 24W/(cm·K) [1], — and therefore

may be considered for a wide range of applications in

modern electronics. One of them is the use of diamond

in dark matter sensors where interaction between a particle

and crystal lattice gives rise to transfer of a part of

energy and, thus, to appearance of acoustic phonons

subject to recording [2]. To ensure maximum efficiency

of such detection, probability of scattering of the emerging

phonons on lattice defects and detector boundaries must

be minimized, which implies thorough selection of crystal

parameters such as crystal sizes, crystal-lattice orientation

and surface treatment quality. Moreover, phonon behavior

shall be accurately simulated and calculated, including, in

particular, the phonon focusing effect.

Cubic symmetry of the diamond crystal causes the equal-

ity of three components of crystal’s thermal conductivity

tensor. But at low temperatures or in case of small crystal

sizes where the free path of thermal phonons becomes

comparable with the sample sizes, thermal conductivity

of even a cubic crystal depends on the sample geometry

and orientation due to the phonon focusing effect [3].
This effect is defined as nonuniform distribution of group

phonon velocities even with isotropic phase vectors, which

causes distribution anisotropy of various phonon modes

and, thus, to thermal conductivity anisotropy. In the low

temperature region where phonon scattering occurs almost

exclusively on the sample surface, it can be detected

experimentally using the thermal pulse procedure [4]. It was
first demonstrated for LiF and KCl crystals, for which it was

found that phonons with longitudinal polarization prevailed

in the temperature ranges of 2−3.6K in the [100] direction
for LiF, and phonons with transverse polarization prevailed

for KCl [5].

Thermal conductivity theory that takes into account the

phonon focusing effect was proposed by McCurdy, Maris

and Elbaum [3]. This theory is the generalization of classical

Carimir heat transfer theory where the sample boundaries

are treated as an absolute black body (i.e. phonon scattering

on boundaries is of diffuse type) and the phonon mode

velocity is isotropic [6], for the case of anisotropy of

the phase and group phonon mode velocities. It may

be used to explain the existing experimental findings for

various crystals at low temperatures, including cubic Si,

CaF2, GaN single crystals [3,7–9] and low-dimensional SiGe

structures [10].

The experiment [9] has shown that in case of, for

example, Si, thermal conductivity of samples in the form

of parallelepipeds with a length of 40mm and cross-section

of 4× 4mm is 38% as high for orientation along the [100]
direction as along [110] in the diffuse boundary scattering

mode at low temperatures. For diamond, experimental

data [11] agree only qualitatively with the theory, which

requires additional study of the phonon focusing effect

on the magnitude and anisotropy of diamond’s thermal

conductivity at low temperatures.

This work calculates the thermal conductivity of diamond

samples taking into account the phonon focusing effect

on the basis of McCurdy, Maris and Elbaum theory.

Theoretical data was obtained for focusing of transverse and

longitudinal phonon modes. Calculated thermal conductivity

data is compared with the experimental data for diamond

samples in the form of plates with the (100) and (110)
orientations. Quantitative agreement was achieved between

286



”
Nanocarbon and Diamond“ International Conference (N&D’2024) 287

the experiment and calculation in the very low temperature

region. It was analyzed why the phonon focusing effect in

diamond appears in the experiment only below 10K and is

almost not observed at higher temperatures.

1. Samples and methods

Two diamond plate samples were cut from a diamond

single crystal grown using the HPHT technique with the

(100) orientation of the largest facet. Samples D100

and D110 had a form of 0.54× 4.03× 4.03mm and

0.52 × 4.03× 4.03mm parallelepipeds with the long facet

oriented along [100] and [110], respectively. According to

the scanning force microscopy data, surface roughness of

polished samples was lower than 5 nm.

To measure thermal conductivity of diamond samples

in the temperature range of 5−410K, a longitudinal heat

flux method was used. For measurements, heat flux was

oriented along the largest facet in the [100] and [110]
directions for samples D100 and D110, respectively. Thus,

thermal conductivity along the [100] and [110] directions

was measured. The experimental procedure is described

in detail in [1,12]. The experimental measurement error

does not exceed 3% in the main measurement range, but

increases by several times at helium temperatures.

Thermal conductivity of samples was calculated using the

McCurdy, Maris and Elbaum model [3]. Phase velocities s

of elastic plane phonon modes in a crystal are determined

from its elastic constants using the Christoffel equation

6i j [M i j − s2δi j ]s j = 0, where M i j are the Christoffel

matrix elements related to the elastic crystal constants C
as M i j = 6nmknC inm j km, where vector k is the wave

vector, δi j is the delta function, sP j is the phonon mode

polarization (index j equal to 0 corresponds to the quasi

longitudinal mode L, 1 and 2 correspond to transverse

modes T1 and T2).
The Christoffel equation for cubic lattice was solved

using Christoffel software package [13]. The calculation

was performed using the 720 × 2880 grid for the polar

angle θ and azimuthal angle ρ , respectively. The calculation

used the density of 3515 kg/m3 and elastic constants of

c11 = 1079GPa, c12 = 124GPa and c44 = 578GPa.

Knowing the phase velocity distribution of phonon

modes, the Casimir velocity vC , Debye velocity vD may

be calculated by averaging over the full solid angle, and,

moreover, the specific heat capacity of the crystal Cv and

the Debye temperature T el
D may be calculated in terms of

the Debye model as [14]:

vC =
〈s−2〉

〈s−3〉
,

vD = (〈s−3〉)−1/3,

Cv = kB
2π2

5

(kBT
~

)3

v−3
D ,

T el
D = vD

(6π2

V0

)1/3 ~

kB
,

where T is the temperature, V0 is the atomic volume, and

〈s−2〉 and 〈s−3〉 are the mean inverse squares and inverse

cubes of phase velocities of all phonon modes over the full

solid angle (d� = sin θdθdϕ, 0 < θ < π, 0 < ϕ < 2π):

〈s−n〉 =
1

3

1

4π

∑

j

�
∫

�

d�
sn(k j)

.

The calculation provided the following values

that corresponded to the experimental data:

vC = 13.103 · 105 cm/s, vD = 13.443 · 105 cm/s, Cv/T 3 =
= 0.503 erg/(K4·cm3) and T el

D = 2244K.

Knowing the phase velocities of phonon modes, group

velocities vg = ∇s may be calculated [15]. The calculated

group velocity surfaces are shown in Figure 1.

Thermal conductivity in the diffuse boundary scattering

mode in terms of the McCurdy model is determined as [16]:

κ =
Cvv

3
D

24πA

∑

j

�
∫

�

I(k j)
s3(k j)

d�,

where A is the sample cross section and I is the integral

depending on the sample geometry, for example, for a

sample with round cross section, it is equal to

Io(k j) =
16R3

3

v2
3(k j)

v1(k j)
,

where R is the round sample radius, v3(k j) is the group

velocity component along the sample axis, v1(k j) is the

group velocity component in the sample cross section

plane. For a rectangular cross-section sample, this integral

is calculated as

I�(k j) =







D3

3

v
2
3(k j)

v1(k j)
3n sin φ−cos φ

sin2 φ
, if tanφ > 1

n ,

D3

3

v23(k j)
v1(k j)

3n2 cos φ−n3 sin φ
cos2 φ

, if tanφ < 1
n ,

where D and nD are the cross section side dimensions, and

φ is the angle between v1(k j)and nD side.

To calculate thermal conductivity for a finite bar, it is

also important to introduce a length correction. The same

correction as in [16] was used. To determine the phonon

focusing effect on the thermal conductivity magnitude,

thermal conductivity was calculated in all sample axis

orientations at 1◦ intervals over polar and azimuthal angles

for a cylindrical sample with a length of 30mm and

diameter of 3mm.

2. Findings and discussion

Figure 2 shows the calculated thermal conductivity in

the cylindrical diamond sample in the ab plane taking into

account the phonon focusing effect. The calculated values
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Figure 1. Group velocity surfaces of phonon modes in the diamond (left to right — T1, T2, L).
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Figure 2. Thermal conductivity of the cylindrical diamond sample

with a length of 30mm and diameter of 3mm at low temperatures

taking into account phonon focusing depending on the sample

orientation in the 100 plane.

are normalized to the thermal conductivity in the [100]
direction. Due to the cubic crystal symmetry, the same

dependence of thermal conductivity is observed in the bc
and ac plane. The maximum focusing effect is observed

in the major axes — a, b, c ([100], [010], [001]). The

maximum thermal conductivity in the ab plane is observed

for and in the vicinity of the [110] direction within 25◦

where the thermal conductivity appears to be more than

26% as low as that in the major axis directions. The

main contribution to this dependence is made by the slow

transverse mode T2 that appears to be focused in the

major directions and defocused in the [110] direction. The
behavior of other modes is opposite — their group velocity

surfaces are focused in the [110] direction and defocused

in the [100] and [010] major crystallographic axes, but

due to a lower velocity, the mode T2 makes a higher

contribution to the general thermal conductivity (the mean

contribution of the longitudinal mode L in this plane is

about 13%, of transverse modes T1 and T2 is 32% and

55%, respectively). Minimum thermal conductivity in the

full solid angle is observed for the [111] direction — with

such crystal orientation, the thermal conductivity decreases

by 28% with respect to the [100] axis.
Calculation of the thermal conductivity for samples D100

and D110 taking into account the phonon focusing effect

gives 0.1795 and 0.1336W/(m·K4), i.e. the phonon focusing

effect would have caused a 1.34 times higher thermal

conductivity in the sample oriented along the [100] axis

compared with the sample oriented along the [110] axis.

Experimental and calculated data for the boundary diffuse

scattering mode, including the phonon focusing effect, is

shown in Figure 3. Experimental thermal conductivity

measurement gives a close relation at the lowest measure-

ment temperatures (5K), but starting rom 10K and higher,

measured thermal conductivities of these samples almost

coincide. However, the free path lengths determined from

the experimental data are 2.6 times as long as those for these

samples. Moreover, even at low temperatures, the measured

temperature dependence of thermal conductivity is not

cubic. These experimental results indicate an important role

of mirror-like scattering in heat transfer in the diamond

at low temperatures. Mirror-like scattering presumably

prevents the phonon focusing effect from appearing to the
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Figure 3. Dependence of thermal conductivity of the diamond

samples on temperature (dots — experimental data, lines —
calculated data in the diffuse scattering approximation).
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full extent. To make the highest contribution, this effect

requires the diffuse boundary phonon scattering mode.

Conclusion

Diamond’s thermal conductivity was calculated in the dif-

fuse boundary scattering mode taking into account phonon

focusing. It is shown that defocusing in the [110] and

[111] directions leads to a decrease in thermal conductivity

by 26% and 28%, respectively, compared with the [100]
direction, with the main contribution made by the slow quasi

transverse mode T2.
At low temperatures, the phonon focusing effect is

observed experimentally, the measured thermal conductiv-

ity anisotropy coincides with the calculated value taking

into account the sample geometry. Thermal conductivity

anisotropy isn’t observed at higher (above 10K) tempera-

tures. Such behavior is presumably caused by the deviation

from the diffuse boundary phonon scattering mode due

to mirror-like phonon scattering at the boundary, which is

confirmed by the deviation of the temperature dependence

of thermal conductivity from the cubic one and by the free

path length that is more than twice as high as the theoretical

value.
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