20

Структурные изменения кожи и мышечной ткани крыс при модельном сахарном диабете

© Е.Н. Лазарева^{1,2}, А.Б. Бучарская^{1,3}, А.М. Захаревич¹, Н.А. Наволокин^{1,3}, Н.А. Шушунова^{1,3}, В.В. Тучин^{1,2,4}

¹ Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, Саратов, Россия

² Национальный исследовательский Томский государственный университет,

Томск, Россия

³ Саратовский государственный медицинский университет им. В.И. Разумовского,

Саратов, Россия

⁴ Институт проблем точной механики и управления, ФИЦ "Саратовский научный центр РАН", Саратов, Россия

e-mail: lazarevaen@list.ru

Поступила в редакцию 28.01.2024 г. В окончательной редакции 04.02.2024 г. Принята к публикации 07.04.2024 г.

> Методом сканирующей электронной микроскопии (СЭМ) изучены структурные изменения в коже и скелетных мышцах крыс при аллоксан-индуцированном сахарном диабете. Подготовка образцов тканей к СЭМ проводилась стандартными гистологическими методами. Результаты исследования показали, что сахарный диабет вызывает ряд изменений в структуре кожи и мышц бедра, что было подтверждено гистологическим исследованием. В том числе было выявлено снижение целостности коллагеновых волокнистых структур. Выраженность структурных изменений в кожной и мышечной тканях зависела от уровня свободной глюкозы в крови и типа моделированного сахарного диабета.

Ключевые слова: сахарный диабет, изменения в коже и мышцах крысы.

DOI: 10.61011/OS.2025.05.60790.27-25

Введение

По данным Международной диабетической федерации число пациентов с сахарным диабетом (СД) ежегодно увеличивается и по прогнозам к 2030 г. достигнет 643 миллионов, а к 2045 г. — 783 миллионов, смертность от СД составляет более 1 миллиона человек в год [1]. Несмотря на значительный прогресс в развитии методов диагностики СД, актуальной проблемой остается раннее выявление осложнений, вызываемых СД в различных тканях и органах.

Работы ряда авторов показали, что в коже и мышцах происходят значительные изменения при развитии СД [2,3]. Было установлено, что происходит снижение содержания липидов и ферментов в роговом слое, а также влаги в эпидермисе, а в дерме происходит изменение экспрессии металлопротеина, подавление экспрессии коллагена и деградация фибриллярных белков коллагена, кроме того, нарушается баланс протеолитической активности во внеклеточном матриксе [4,5].

Известно, что коллагеновые структуры определяют оптическое рассеяние и двулучепреломление кожи [6,7]. В организме коллаген, другие белки и липиды постоянно подвергаются воздействию глюкозы в сосудистых и внесосудистых жидкостях. В результате образуются новые потенциально токсичные молекулы белков и липидов в виде так называемых конечных продуктов гликирования (Advanced glycation end-products, AGEs) [8]. В ряде исследований было установлено, что СД вызывает изменения в составе и структуре коллагена кожи, что тесно связано с изменениями ее оптических и диффузионных характеристик [9,10].

Целью настоящего исследования было изучение структурных изменений в коже и скелетных мышцах у крыс с различными экспериментальными моделями аллоксанового диабета.

Материалы и методы

Экспериментальный сахарный диабет был смоделирован на аутбредных белых крысах-самцах путем внутримышечного введения аллоксана в соответствии с [11]. Модель сахарного диабета 2-го типа воспроизводили с помощью внутримышечного введения аллоксана тетрагидрата ("LaChema", Чехия) в дозе 65 mg/kg с предварительным внутримышечным введением никотинамида (230 mg/kg). Модель сахарного диабета 1-го типа воспроизводили путем внутримышечного введения аллоксана в дозе 90 mg/kg через 6 h после голодания.

В качестве группы сравнения использовали животных без какого-либо воздействия.

Через 2 недели после введения аллоксана измеряли уровень глюкозы у крыс в крови с помощью глюкометра (Акку-Чек Перформа Нано, Германия). Животные

Рис. 1. Микрофотографии тканей. Крыса из контрольной группы: (*a*) кожа, (*b*) мышца. Крыса с диабетом 2-го типа: (*c*) кожа, (*d*) мышца. Крыса с диабетом 1-го типа: (*e*) кожа, (*f*) мышца. Гематоксилин-эозин. Увеличение 246.4.

содержались в стандартных условиях вивария, пищевой режим стандартный с использованием комбикорма для грызунов.

Фиксация образцов тканей проводилась в 10% нейтральном забуференном растворе формалина в течение 24 h. Гистологическую проводку проводили в серии растворов 95–96% этилового спирта — 4 смены спирта. После этого образцы тканей замачивали по 1 h в 4 сменах парафина, а затем биоптаты заливали в блоки с помощью парафина, нагретого до 56–58°. После застывания парафина с помощью ротационного микротома вырезали срезы тканей толщиной около $4-5\,\mu$ m. Затем срезы тканей помещали на предметные стекла и высушивали в термостате в течение 12 h при 37°C. Для морфо-

Рис. 2. Сканирующая электронная микроскопия. Крыса из контрольной группы: (*a*) кожа, коллагеновые волокна; (*b*) мышца, видна поперечная исчерченность мышечных волокон. Крыса с диабетом 2-го типа: (*c*) кожа, отмечается уплотнение коллагеновых волокон; (*d*) мышца, сохраняется поперечная исчерченность мышечных волокон. Крыса с диабетом 1-го типа: (*e*) кожа, отмечается уменьшение диаметра и значительное уплотнение коллагеновых волокон (волокна плотно прилегают друг к другу); (*f*) мышца, нарушается поперечная исчерченность мышечных волокон, появляются разрывы, разрыхление мышечной ткани. D1, D2, D3, D4, D5 — размеры волокон в тканях.

логического исследования срезы окрашивали стандартными гистологическими методами, морфометрические исследования проводили с использованием микровизора медицинского проходящего света mVizo-103.

С помощью микроскопа Mira II LMU (TESCAN, Чехия) проводили сканирующую электронную микроскопию (СЭМ) для определения структурных изменений в коже и скелетных мышцах крыс. Перед СЭМ срезы предварительно депарафинизировали в 3 сменах ксилола по 10-15 min и обезвоживали в 3 сменах 95-96 % раствора этилового спирта по 10-15 min, затем сушили на воздухе в течение 1 h. После сушки срезы были закреплены на столе для образцов с помощью вакуумной двусторонней углеродной проводящей клейкой ленты. Тонкий проводящий слой металла наносился на них методом напыления в вакуумной камере. Для этого камеру откачивали до давления, немного меньшего 10^{-2} Pa, и заполняли камеру аргоном до установления равновесного состояния внутри камеры. Затем в камере создавали плазму, в результате действия которой вылетевшие из металлической мишени атомы осаждались на поверхности образца. Толщина металлического покрытия контролировалась током плазмы и временем распыления и обычно составляла 5-10 nm. Это позволяло получать электронные микрофотографии с высоким увеличением без визуализации напыленного вещества.

Результаты

При гистологическом исследовании тканей у животных контрольной группы наблюдали нормальное строение эпидермиса и дермы (рис. 1, a). В мышце — фрагменты мышечной ткани с поперечно-полосатой исчерченностью (рис. 1, b).

В группе с моделированным диабетом 2-го типа уровень глюкозы в крови не превышал 10 mmol/l, при гистологическом исследовании в коже отмечали отек дермы (рис. 1, c), в мышце наблюдали дистрофические изменения миоцитов, отмечали набухание мышечных волокон (рис. 1, d).

В группе животных с моделированным диабетом 1-го типа наблюдали в коже истончение эпидермиса, выраженный отек дермы (рис. 1, e), в мышце — участки дистрофически измененных мышц с набуханием волокон (рис. 1, f).

В результате исследований с использованием сканирующей микроскопии (рис. 2, a-f) было установлено, что в обеих опытных группах при развитии экспериментального диабета в коже и в мышцах происходит уменьшение диаметра и уплотнение коллагеновых волокон, вероятно, за счет возникновения поперечных сшивок. Выраженность данных изменений зависит от уровня свободной глюкозы и модели экспериментального диабета. В большей степени эти изменения проявлялись у крыс с моделированным диабетом 1-го типа.

Наши результаты согласуются с данными исследований других авторов. Так, в исследовании [12] было

установлено, что изменения биомеханических свойств кожи у здоровых людей при *ex vivo* гликировании были сходными с изменениями кожи у пациентов с диабетом. Вероятно, это было связано с увеличением количества поперечных сшивок молекул коллагена при гликировании [13,14]. В работе [15] авторы использовали поляризационную оптическую когерентную томографию (PS-OCT) и СЭМ для мониторинга и оценки изменений в коже у мышей на разных стадиях диабета. При развитии экспериментального диабета наблюдалось заметное изменение структуры кожи, в том числе нарушалась организация коллагеновых волокон.

Заключение

Таким образом, при развитии экспериментального аллоксанового диабета было выявлено изменение структурных свойств кожи, мышц, вероятно, за счет снижения целостности молекул коллагена. Выраженность структурных изменений в коже и мышцах зависела от уровня свободной глюкозы и типа экспериментального диабета.

Соблюдение этических стандартов

Экспериментальные исследования проводили в соответствии с Рекомендациями № 33 от 14.11.23 ЕЭК о руководстве по работе с лабораторными (экспериментальными) животными при проведении доклинических (неклинических) исследований, а также в соответствии с рекомендациями комитета по этике Саратовского государственного медицинского университета им. В.И. Разумовского. Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Финансирование работы

Работа выполнена при частичной поддержке гранта Российского научного фонда № 24-44-00082.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] D.J. Magliano, E.J. Boyko. I.D.F.D.A.T.E.S. Committee, Idf Diabetes Atlas, International Diabetes Federation, Brussels, 2021.
- [2] E.W. Gregg, N. Sattar, M.K. Ali. Lancet Diabetes Endocrinol., 4, 537–547 (2016). DOI: 10.1016/S2213-8587(16)30010-9
- M. Chen, Y. Shen, J. Zhu, T. Su, Y. Zhang, W. Wang, C. Chen, L. Zhou. J. Biophotonics, 22, e202400267 (2024).
 DOI: 10.1002/jbio.202400267
- [4] F. Quondamatteo. Cell Tissue Res., 355, 1–21 (2014).
 DOI: 10.1007/s00441-013-1751-2 (2014).

- [5] W. Feng, R. Shi, C. Zhang, S. Liu, T. Yu, D. Zhu. J. Biomed. Opt., 24, 031003 (2018). DOI: 0.1117/1.JBO.24.3.031003
- [6] S.J. Matcher. J. Appl. Phys., 105, 102041 (2009).
 DOI: 10.1063/1.3116620
- [7] V.V. Tuchin. J. Biomed. Opt., 21, 071114 (2016).
 DOI: 10.1117/1.JBO.21.7.071114
- [8] M.M. Asmamaw, C.A. Endeshaw, B.T. Awgichew, T.M. Anemut, A.M. Mekonnen, T.A. Muluken, Z.E. Abebe, A.T. Assefa. Frontiers in Molecular Biosciences, 9 (2022). DOI: 10.3389/fmolb.2022.1002710
- [9] V.P. Singh, A. Bali, N. Singh, A.S. Jaggi. Korean J. Physiol. Pharmacol., 18 (1), 1–14 (2014).
 DOI: 10.4196/kjpp.2014.18.1.1
- [10] A.A. Tahrani, W. Zeng, J. Shakher, M.K. Piya, S. Hughes, K. Dubb, M.J. Stevens. Diabetes Care, 35, 1913–1918 (2012). DOI: 10.2337/dc11-2076
- [11] M.S. Islam, du T. Loots. Methods Find Exp Clin Pharmacol., 31 (4), 249–261 (2009). DOI: 10.1358/mf.2009.31.4.1362513
- [12] R. Reihsner, M. Melling, W. Pfeiler, E.J. Menzel. Clin. Biomech. (Bristol, Avon), 15, 379–386 (2000).
 DOI: 10.1016/s0268-0033(99)00085-6
- [13] J. Gaar, R. Naffac, M. Brimble. Org. Chem. Front., 7, 2789–2814 (2020). DOI: 10.1039/D0Q000624F
- [14] S. Bansode, U. Bashtanova, R. Li et al. Sci. Rep., 10, 3397 (2020). DOI: 10.1038/s41598-020-60250-9
- [15] W. Feng, L. Wang, C.J. Liu, C. Zhang, J. Biomed. Opt., 29 (3), 036003 (2024). DOI: 10.1117/1.JBO.29.3.036003?