06

© В.О. Гридчин¹⁻³, А.М. Даутов^{1,2}, Т. Шугабаев^{1,2}, В.В. Лендяшова^{1,2}, К.П. Котляр¹⁻³, Г.П. Сотник⁴, Д.А. Козодаев⁴, Е.В. Пирогов², Р.Р. Резник¹, Д.Н. Лобанов⁵, А. Кузнецов^{2,6}, А.Д. Большаков^{2,6}, Г.Э. Цырлин¹⁻³

¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

² Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алфёрова РАН, Санкт-Петербург, Россия

³ Институт аналитического приборостроения РАН, Санкт-Петербург, Россия

⁴ ООО "НОВА СПБ", Санкт-Петербург, Россия

⁵ Институт физики микроструктур РАН, Нижний Новгород, Россия

⁶ Центр фотоники и двумерных материалов, Московский физико-технический институт

(Национальный исследовательский университет), Долгопрудный, Московская обл., Россия E-mail: gridchin@spbau.ru

Поступило в Редакцию 17 марта 2025 г. В окончательной редакции 22 апреля 2025 г. Принято к публикации 22 апреля 2025 г.

Сформированы слои AlN на подложках Si(111) методом молекулярно-пучковой эпитаксии с плазменной активацией азота. Приведены результаты исследования влияния температуры подложки на кристаллические свойства формируемых слоев AlN. Установлено, что предварительное формирование аморфного слоя Si_xN_y на поверхности Si(111) с последующим нанесением ~ 2 монослоев Al позволяет получать гладкие слои AlN с шероховатостью поверхности 0.43 nm при толщине слоя 170 nm. Полученные результаты представляют интерес для монолитной интеграции III-N оптоэлектронных и радиоэлектронных устройств с кремниевой платформой.

Ключевые слова: нитрид алюминия, молекулярно-пучковая эпитаксия, полупроводники, кремний, рентгенодифрактометрия, рамановская спектроскопия, атомно-силовая спектроскопия.

DOI: 10.61011/PJTF.2025.14.60769.20316

Группа полупроводниковых соединений III-V играет ключевую роль в формировании оптоэлектронной компонентной базы [1], и в последнее время все больший интерес вызывают III-N полупроводниковые соединения [2]. Возможность управления шириной запрещенной зоны в диапазоне от ~ 5.9 до $\sim 0.7 \, {\rm eV}$ и прямозонная электронная структура (In, Ga)N и (Al, Ga)N материалов позволяют создавать оптоэлектронные устройства, работающие в различных спектральных диапазонах, включая ультрафиолетовый (обеззараживающий), видимый и телекоммуникационный [3]. Более того, устройства на основе III-N материалов сохраняют стабильную работу в экстремальных условиях даже при наличии значительного количества структурных дефектов по сравнению с классическими III-V полупроводниковыми материалами.

Одной из ключевых и актуальных задач в области III-N полупроводниковых материалов является разработка технологий формирования таких материалов на кремниевых подложках. Сложность заключается в компенсации рассогласования параметров решеток и коэффициентов теплового расширения между Si и III-N материалами. Одним из возможных решений данной проблемы является предварительное формирование буферных слоев AlN на Si-подложках. Однако существует ряд трудностей в процессе роста слоев AlN на кремнии. В частности, прямой рост монокристаллических слоев AlN на кремнии (111) невозможен по причине взаимодиффузии Al-Si [4]. Для подавления этого процесса поверхность Si(111) предварительно обрабатывается под потоком плазмы азота, образуя тонкий "барьерный" слой Si_xN_v на поверхности кремния, позволяющий в значительной степени подавить подобную интердиффузию. Важным является вопрос, заключающийся в преимуществах формирования кристаллического Si₃N₄ или аморфного Si_xN_v перед ростом AlN. Стратегия некоторых групп заключается в намеренном выращивании слоя Si_3N_4 (1.5–2 nm [5]) и последующим формировании смачивающего слоя Al толщиной $\sim 1.5\,ML$ на поверхности Si₃N₄. Ряд групп старается избегать азотирования поверхности Si главным образом потому, что это может вызвать образование аморфного Si_xN_v, эпитаксия на котором может приводить к высокой дефектности AlN и срыву эпитаксиального роста. В одной из последних работ, посвященных исследованию влияния обработки

Рис. 1. Схематическое изображение этапов формирования слоя AIN на подложке Si(111) и соответствующие каждому этапу картины ДБЭО.

поверхности Si(111) на свойства формируемых слоев AlN, данный вопрос исследовался в ходе роста методом аммиачной молекулярно-пучковой эпитаксии [6].

40

В настоящей работе исследуется подход к формированию слоев AlN на поверхности аморфного $Si_x N_y$ методом молекулярно-пучковой эпитаксии с плазменной активацией азота. Преимуществом данного метода являются более низкие по сравнению с газофазными температуры роста, позволяющие избежать части проблем, вызванных рассогласованием параметров решетки и коэффициентов термического расширения кремниевой подложки и слоев нитридов на ней. В частности, тонкие (до 1 µm) слои можно формировать без предварительного роста сложного и толстого термокомпенсационного буферного слоя и при этом избежать растрескивания эпитаксиального слоя при охлаждении, даже деликатного, после роста. Исследуется влияние ростовой температуры подложки (T_s) на структурные свойства формируемых слоев AIN. Приводится анализ статистики образования дефектов на поверхности выращенных слоев AlN в зависимости от температуры подложки. Установлено, что рост гладких слоев AlN с шероховатостью вплоть до 0.43 nm возможен на тонком, предварительно сформированном аморфном слое $Si_x N_y$ с напыленным Al толщиной $\sim 2\,\text{ML}.$

Ростовые эксперименты проводились на установке молекулярно-пучковой эпитаксии Riber Compact 12, оснащенной плазменным источником азота Addon RF600 и эффузионными источниками Ga, In, Al. Для контроля состояния и температуры поверхности подложки во время роста использовались система дифракции быстрых электронов на отражение (ДБЭО) и предварительно откалиброванный по реконструкции Si(111) 7 × 7 на 1 × 1 инфракрасный пирометр. В качестве исходной подложки были использованы пластины Si КЭФ 0.002-0.004 электронной проводимости. Кристаллическая ориентация поверхности подложки соответствовала (111) с разориентацией на 4° по направлению [110]. Перед загрузкой в ростовую камеру подложку обрабатывали в растворе плавиковой кислоты с концентрацией 47.5 % (осч) ("НеваРеактив") в течение 40 s, после чего промывали в деионизованной воде в течение 60 s. Затем подложка загружалась в ростовую камеру и отжигалась в камере роста при температуре 920°С в течение 20 min. После отжига температуру подложки понижали до 620 °C согласно данным пирометрических измерений. Как видно из картин ДБЭО (рис. 1), поверхность кремния после отжига соответствовала реконструкции 7 × 7. На этом же рисунке представлены этапы роста AlN и соответствующие каждому этапу картины ДБЭО. После стабилизации температуры на 620 °C инициировался источник плазмы азота при мощности 350 W и потоке азота 0.2 sccm, и подложка обрабатывалась в плазме азота в течение 20 min. В результате был сформирован аморфный тонкий слой Si_xN_v, о чем свидетельствует отсутствие каких-либо рефлексов на изображении ДБЭО. На следующем этапе (в отсутствие плазмы азота) на сформированный слой Si_xN_v осаждали A1 в течение 6 s, что номинально соответствовало ~ 2 ML. При этом картина ДБЭО соответствовала наблюдаемой на предыдущем этапе роста. После этого температура подложки повышалась до ростовых значений. В ряде работ утверждается (см. [7] и соответствующие ссылки), что нагрев до высоких температур (характерных для эпитаксии AlN) приводит к формированию тонкого барьерного и одновременно зародышевого слоя AlN за счет разрыва связей Si-N и образования связей Al-N. Включение плазменного источника азота перед высокотемпературным ростом окончательно связывает адатомы Al с N. В связи с этим плазму вновь инициировали на ростовой температуре аналогично предыдущему этапу, и проводился рост AlN при соотношении потоков III/V ~ 0.7 в течение 10 min. Трехмерная точечная картина ДБЭО подтверждает формирование AlN в азотобогащенных ростовых условиях (рис. 1). Здесь и далее соотношение потоков указано без учета десорбции адатомов с поверхности. Азотобогащенные условия поддерживались во избежание накопления избыточного A1 на поверхности роста. Однако азотобогащенный рост приводит к высокой шероховатости поверхности, поэтому после формирования сплошного барьерного слоя AIN толщиной ~ 10 nm рост прерывался, повышалась температура

Рис. 2. *а* — РЭМ-изображения поверхности образцов, демонстрирующие типичные дефекты, возникающие при низкой, оптимальной и высокой ростовой температуре подложки; *b* — распределения количества поверхностных дефектов в зависимости от занимаемой площади для каждого из выращенных образцов; *c* — зависимость всей площади, занимаемой поверхностными дефектами, от ростовой температуры подложки. Цветной вариант рисунка представлен в электронной версии статьи.

источника Al, и после стабилизации температуры проводился рост слоя AlN в металлобогащенных условиях с соотношением потоков III/V ~ 1.1. Линейчатая картина ДБЭО свидетельствует о формировании сплошного слоя AlN (рис. 1). Время роста образца на данном этапе составляло 2.5 h. После окончания роста поверхность AlN нитридизировалась в течение 10 min. Была проведена серия экспериментов с ростовой температурой AlN (T_s) в диапазоне от 805 до 845 °C. Толщина выращенных слоев AlN составляла ~ 170 nm.

Структурные свойства образцов исследовались с помощью растрового электронного микроскопа (РЭМ) Zeiss SUPRA 25 (Германия) и метода ДБЭО. Спектры комбинационного рассеяния света измерялись на спектрометре Horiba Jobin-Yvon LabRAM HR800, оснащенном лазерным источником накачки с длиной волны 532 nm. Оптическая система позволяла сфокусировать лазерный луч в пятно диаметром около 1 μ m с оптической мощностью ~ 6 mW. Для статистического анализа сформированных поверхностных дефектов (капель, кристаллитов (Al,Si)N и другого вида неоднородностей) поверхность образцов исследовалась с помощью полуавтоматического оптического микроскопа высокого разрешения Leica INM 100. Шероховатость поверхности образцов была исследована методом атомно-силовой

Письма в ЖТФ, 2025, том 51, вып. 14

микроскопии (ACM) на станции NT-MDT NTEGRA ТНЕRMA (Зеленоград, Россия).

На рис. 2, а представлены РЭМ-изображения поверхности слоев, выращенных при температуре 805, 815 и 845°С. При 805°С формируется неоднородный слой AlN, наибольшая часть которого состоит из капель Аl и кристаллитов (Al, Si)N. Формирование (Al, Si)N объясняется тем, что температура эвтектики системы Al-Si составляет 577 °C [8], что значительно ниже температуры роста (805 °C), в результате чего избыточный алюминий на поверхности подложки взаимодействует с атомами кремния, что приводит к образованию данной фазы. Избыточный Al даже при соотношении III/V ~ 0.7 на начальных этапах роста появляется вследствие значительных упругих напряжений из-за рассогласования параметров решеток AlN и Si, что приводит к разрыву связей Al-N. При повышении температуры подложки избыточный алюминий десорбируется с поверхности, что способствует подавлению образования такого типа неоднородностей. Увеличение испарения A1 с ростом температуры приводит к подавлению формирования капель Al в процессе металлобогащенного роста III/V ~ 1.1. Количество поверхностных дефектов в слое AlN в данных условиях роста является минимальным, и они представляют собой только мезопоры. При повышении температуры до 845 °C количество мезопор суще-

Рис. 3. *а* — спектр комбинационного рассеяния света от образца, выращенного при 815 °С. Штриховые линии соответствуют AlN, пунктирные линии — подложке Si. *b* — типичная карта поверхности образца, полученная с помощью ACM.

ственно возрастает по причине повышения десорбции Al с поверхности и тем самым усиления азотобогащенных условий роста (рис. 2, *b*, *c*). Структуры (Al, Si)N при температурах 830 °C и выше не формируются.

42

На рис. 3 представлены результаты измерений структурных свойств и шероховатости поверхности образца, выращенного при оптимальной температуре подложки (815 °C). Кристаллическое качество и внутренние напряжения выращенного слоя анализировались по спектру комбинационного рассеяния света. На рис. 3, а представлен измеренный спектр. Штриховые линии соответствуют модам AlN, пунктирные линии — двухфононному рассеянию от подложки Si (см. работу [9] и ссылки в ней). Основной пик, $E_2(high)$, соответствует рамановскому сдвигу $653 \,\mathrm{cm}^{-1}$ [8,9], а его полуширина составляет 7.5 cm⁻¹, что сравнимо с опубликованными ранее результатами по росту AlN на Si [6,9]. Мода $E_2(high)$ сдвинута в красную сторону на $\sim 3.76 \,\mathrm{cm}^{-1}$ относительно ее положения в случае ненапряженных слоев AlN ($\sim 657.4\,{
m cm^{-1}}$) [10], что свидетельствует о наличии растягивающих напряжений в слое, вызванных, по-видимому, рассогласованием параметров решеток между AlN и подложкой Si. В линейном приближении величину растягивающих напряжений можно оценить исходя из сдвига рамановской моды $E_2(high)$ в виде $\Delta \omega = K\sigma$, где K — постоянная, равная $3.39 \,\mathrm{cm}^{-1}/\mathrm{GPa}$ для слоев AlN на Si [6,11,12]. Согласно оценке, величина внутренних растягивающих напряжений σ составляет 1.1 GPa, что типично для слоев A1N на Si [6,9]. При этом шероховатость поверхности образца, измеренная по пяти картам размером $2 \times 2 \mu m$, составила 0.43 nm (рис. 3, b). Столь низкая шероховатость поверхности может представлять интерес для дальнейшего создания гетероструктур с резкой границей раздела на основе слоев бинарных и тройных соединений (Al, Ga, In)N и использования их в качестве эффективных опто- и радиоэлектронных устройств.

Результаты исследования демонстрируют эффективность использования предварительного аморфного слоя $Si_x N_y$ с напыленным Al для формирования эпитаксиальных слоев AlN на подложках Si(111) методом молекулярно-пучковой эпитаксии с плазменной активацией азота. Оптимизация температуры подложки позволила получить тонкие (170 nm) монокристаллические слои AlN с низкой шероховатостью поверхности (0.43 nm). Однако такие слои подвержены внутренним растягивающим напряжениям, величина которых достигает 1.1 GPa. Полученные результаты могут представлять интерес для дальнейшего развития методов монолитной интеграции оптоэлектронных и радиоэлектронных устройств на основе III-N полупроводниковых материалов с кремнием.

Финансирование работы

Ростовые эксперименты выполнены при поддержке гранта Российского научного фонда № 24-79-00104 (https://rscf.ru/project/24-79-00104/). Исследования поверхности образцов с помощью атомно-силовой микроскопии осуществлены в рамках госзадания ИФМ РАН № FFUF-2024-0019. Исследования методом растровой электронной микроскопии выполнены при поддержке СПбГУ (шифр проекта 122040800254-4). А.Д. Большаков выражает благодарность Министерству науки и высшего образования РФ (проект FSMG-2025-0005) за финансовую поддержку измерений образцов методом рамановской спектроскопии.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Vyas, D.H.G. Espinosa, D. Hutama, S.K. Jain, R. Mahjoub, E. Mobini, K.M. Awan, J. Lundeen, K. Dolgaleva, Adv. Phys. X, 9 (1), 2097020 (2022). DOI: 10.1080/23746149.2022.2097020
- [2] M. Feng, J. Liu, Q. Sun, H. Yang, Prog. Quantum Electron., 77, 100323 (2021). DOI: 10.1016/j.pquantelec.2021.100323
- [3] V.G. Dubrovskii, G.E. Cirlin, D.A. Kirilenko, K.P. Kotlyar, I.S. Makhov, R.R. Reznik, V.O. Gridchin, Nanoscale Horiz., 9, 2360 (2024). DOI: 10.1039/D4NH00412D
- [4] U. Kaiser, I.I. Khodos, J. Jinschek, W. Rechter, Microscopy, 48 (5), 545 (1999).

DOI: 10.1093/oxfordjournals.jmicro.a023714

- [5] J. Yang, J. Xiao, M. Tao, K. Tang, B. Zhang, H. Wang, M. He, J. Liu, J. Wang, M. Wang, IEEE Electron. Dev. Lett., 46 (2), 270 (2024). DOI: 10.1109/LED.2024.3516043
- [6] D. Milakhin, T. Malin, V. Mansurov, Y. Maidebura,
 D. Bashkatov, I. Milekhin, S. Goryainov, V. Volodin,
 I. Loshkarev, V. Vdovin, A. Gutakovskii, S. Ponomarev,
 K. Zhuravlev, Surf. Interfaces, 51, 104817 (2024).
 DOI: 10.1016/j.surfin.2024.104817
- [7] A. Le Louarn, S. Vezian, F. Semond, J. Massies, J. Cryst. Growth, **311** (12), 3278 (2009).
 DOI: 10.1016/j.jcrysgro.2009.04.001
- [8] M. Warmuzek, Aluminum-silicon casting alloys: atlas of
- *microstructures* (ASM International, Detroit, 2016).
 [9] S. Fan, Yu. Yin, R. Liu, H. Zhao, Z. Liu, Q. Sun, H. Yang, J. Appl. Phys., **136** (14), 145301 (2024). DOI: 10.1063/5.0219167
- [10] W.H. Chen, Z.Y. Qin, X.Y. Tian, X.H. Zhong, Z.H. Sun, B.K. Li, R.S. Zheng, Y. Guo, H.L. Wu, Molecules, 24 (8), 1562 (2019). DOI: 10.3390/molecules24081562
- [11] J. Gleize, M.A. Renucci, J. Frandon, E. Bellet-Amalric, B. Daudin, J. Appl. Phys., 93 (4), 2065 (2003).
 DOI: 10.1063/1.1539531
- X. Pan, M. Wei, C. Yang, H. Xiao, C. Wang, X. Wang, J. Cryst. Growth, **318** (1), 464 (2011).
 DOI: 10.1016/j.jcrysgro.2010.10.173