## 03,09

## Электрически неактивная примесь магния в кремнии

© В.Б. Шуман, А.Н. Лодыгин, А.А. Яковлева, Л.М. Порцель ¶

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия <sup>¶</sup> E-mail: leonid.portsel@mail.ioffe.ru

Поступила в Редакцию 29 апреля 2025 г. В окончательной редакции 29 апреля 2025 г. Принята к публикации 29 апреля 2025 г.

Изучена динамика образования комплекса MgO в процессе диффузии магния в кремнии, выращенном методом Чохральского (Cz-Si) с содержанием кислорода  $\sim 3 \cdot 10^{17}$  cm<sup>-3</sup>. Обнаружено, что комплексы MgO образуются только при температурах выше 1100 °C. При более низких температурах атомы магния находятся в связанном состоянии, предположительно в виде частиц, либо фазы Mg<sub>2</sub>Si. Образование комплексов происходит после диссоциации Mg<sub>2</sub>Si на Mg и Si при повышении температуры. Таким образом, экспериментальные результаты подтверждают предположение о том, что электрически неактивной компонентой примеси магния в кристалле является соединение Mg<sub>2</sub>Si.

Ключевые слова: легирование кремния, диффузия, примесные центры.

DOI: 10.61011/FTT.2025.05.60740.97-25

### 1. Введение

Поведение магния (Mg) в кремнии имеет ряд особенностей. Как элемент второй группы, Мд должен был бы занимать узельное положение в решетке кремния и быть двойным акцептором. Оказалось, что электрически активный магний занимает межузельное положение Мді и является двойным донором с энергией ионизации 107 meV для нейтрального  $Mg_i^0$  и 256 meV для однократно ионизованного состояния Mg<sub>i</sub><sup>+</sup>, соответственно [1,2]. Концентрация электрически активного магния в образцах не превышает 2 · 10<sup>15</sup> cm<sup>-3</sup>. Наряду с донорными центрами Mg<sub>i</sub> в объеме кристалла присутствует и электрически неактивная компонента примеси [3], причем полная концентрация магния N<sub>Mg</sub> значительно превосходит концентрацию Mg<sub>i</sub>. Максимальная равновесная концентрация магния, который вводился в кремний в процессе диффузии, достигала значения  $N_{\rm Mg} = 2.5 \cdot 10^{17} \, {\rm cm}^{-3}$  при температуре 1250 °С [4]. Концентрация магния в этих экспериментах определялась методом масс-спектроскопии вторичных ионов (ВИМС).

Вопросы о природе электрически неактивной компоненты примеси магния и физических процессах, которые приводят к ее формированию, обсуждались в работах [5–7]. Одним из возможных примесных образований являются пары ( $Mg_s$ - $Mg_i$ ), где  $Mg_s$  — атом магния в узле решетки [6,7]. Кроме того, высказывалось предположение о существовании в кристалле электрически нейтральных атомов магния в виде преципитатов  $Mg_2Si$  [7]. Но до сих пор нет ясного представления о том, в каком состоянии находится электрически неактивный магний. Целью настоящей работы является выяснение природы электрически неактивной компоненты примеси магния в кремнии.

Для определения полной концентрации магния  $N_{Mg}$  в кристалле используются различные методы, такие как атомно-абсорбционная спектроскопия [8] и массспектроскопия вторичных ионов (ВИМС) [4]. В работе [9] был предложен метод определения равновесной концентрации Mg, основанный на изучении образования MgO комплекса в результате взаимодействия магния с кислородом, содержащимся в Si. Этот процесс описывается реакцией

$$Mg + O = MgO.$$
(1)

Концентрация оптически активного кислорода при этом уменьшается, что приводит к изменению интенсивности соответствующей полосы поглощения света 1106 сm<sup>-1</sup>. Если для диффузии Mg использовать кремний с концентрацией кислорода бо́льшей, чем равновесная концентрация магния при заданной температуре, то разница между начальной ( $N_{\rm ini}$ ) и остаточной концентрацией кислорода ( $N_{\rm fin}$ )

$$\Delta N = N_{\rm ini} - N_{\rm fin} \tag{2}$$

соответствует концентрации прореагировавшего магния.

В настоящей работе изучена эффективность образования MgO комплекса при температурах T=1000-1250 °C в образцах, полученных диффузией Mg в кремний, выращенный методом Чохральского (Cz-Si). Показано, что при температурах ниже 1100 °C комплексы MgO не образуются. Атомы Mg при этом находятся в связанном состоянии в виде Mg<sub>2</sub>Si. Высказано предположение, что электрически неактивной компонентой примеси магния в кристалле является соединение Mg<sub>2</sub>Si.



**Рис. 1.** Изменение разностной концентрации оптически активного кислорода  $\Delta N$  в зависимости от времени диффузии при температуре T = 1250 °C. Символы соответствуют экспериментальным значениям, полученным в [9]. Сплошная линия — расчет по формуле (3). Пунктирная линия — предельное значение  $\Delta N = N_{\text{Mg.}}$ 

# 2. Методика эксперимента и результаты измерений

Легирование кремния проводилось "сэндвич"-методом диффузии [10]. В качестве исходного материала использовались пластины бездислокационного Cz-Si, с удельным сопротивлением  $\rho \approx 30 \,\Omega$  · cm. Концентрации кислорода и углерода в исходном кремнии определялись при комнатной температуре по пикам поглощения атомарного кислорода (1106 cm<sup>-1</sup>) и углерода (605 cm<sup>-1</sup>) с помощью Фурье-спектрометра FSM2201. Концентрация кислорода составляла ~  $4.0 \cdot 10^{17} \, \text{cm}^3$ , а концентрация углерода была ~  $3 \cdot 10^{17} \, \text{cm}^{-3}$ .

На обе стороны пластины исходного кремния диаметром  $\sim 30$  mm и толщиной  $\sim 2.0$  mm напылялась пленка магния чистотой  $\sim 99.995$ %. Затем плоскости образца с нанесенным магнием накрывались вспомогательными пластинками кремния толщиной  $\sim 0.4-0.5$  mm. Такой "сэндвич", установленный в кварцевой кассете, помещался в кварцевую ампулу, которая заполнялась аргоном и отпаивалась. Диффузия проводилась при T = 1000-1250 °C в течение  $\sim 40$  h. Закалка осуществлялась путем охлаждения ампулы с образцом на воздухе. Вспомогательные пластинки кремния удалялась шлифованием.

Для иллюстрации метода определения  $N_{Mg}$  на рис. 1 показана зависимость разностной концентрации оптически активного кислорода  $\Delta N$  от времени диффузии, которая была получена в работе [9] при T = 1250 °C. С увеличением времени диффузии  $\Delta N$  увеличивается. Часть кислорода принимает участие в образовании MgO и становится оптически неактивной, что приводит к

уменьшению  $N_{\rm fin}$  по сравнению с  $N_{\rm ini}$ . Значение разностной концентрации достигает своего предельного значения  $\Delta N = N_{\rm Mg}$ , когда весь магний, введенный в кристалл, прореагирует с кислородом.

Если скорость протекания реакции (1) пропорциональна концентрации Mg то изменение  $\Delta N$  со временем описывается следующим выражением:

$$\Delta N(t) = N_{\rm Mg} \left[ 1 - \exp(-t/\tau) \right],\tag{3}$$

где t — время диффузии,  $\tau$  — постоянная времени, которая определяет скорость реакции (1). На рис. 1 эта зависимость показана сплошной линией.  $N_{\rm Mg} = 2.5 \cdot 10^{17} \, {\rm cm}^{-3}, \, \tau = 12 \, {\rm h.}$  Пунктирной линией показана предельная величина  $\Delta N$ .

На рис. 2 представлены экспериментальные значения  $\Delta N$ , измеренные при разных температурах диффузии в диапазоне от 1000 до 1250 °С. Эти данные соответствуют остаточной концентрации кислорода  $N_{\rm fin}$ , которая образовалась к моменту окончания процесса. На рис. 2 также показана температурная зависимость полной концентрации магния в кристалле  $N_{\rm Mg}$ , определенная методом ВИМС [4]. Эта зависимость рассматривается как растворимость магния в кремнии — предельная равновесная концентрация при данной температуре.

При температуре 1250 °С величина  $\Delta N$  соответствует растворимости магния в Si. Длительность диффузионного процесса в этом случае оказалась достаточной для достижения предельного значения разностной концентрации. При T = 1150 °С значение  $\Delta N$  несколько меньше растворимости Mg. Понижение температуры вызывает уменьшение скорости реакции (1). Поэтому требуется больше времени для достижения предельного значения  $\Delta N$ . При температурах ~ 1000-1100 °С наблюдается аномалия в зависимости  $\Delta N(T)$ . Значения разностной концентрации кислорода при температурах меньше, чем



**Рис. 2.** Разностная концентрация оптически активного кислорода  $\Delta N$  в зависимости от температуры диффузии. Сплошной линией показана температурная зависимость растворимости магния в кремнии  $N_{\rm Mg}$  [4].

T < 1100 °C, равны нулю —  $\Delta N = 0$ . В этой области температур MgO не образуется. При T = 1100 °C происходит резкий рост  $\Delta N$ . Сильный разброс значений, по-видимому, связан с резким возрастанием скорости реакции (1), а также с погрешностью в определении температуры эксперимента. Длительность процесса при T = 1100 °C также оказалась недостаточной для достижения предельного значения  $\Delta N = N_{\rm Mg}$ .

## 3. Обсуждение

Для объяснения полученных экспериментальных результатов было высказано предположение, что магний в области температур меньше 1100 °C находится в связанном состоянии и не реагирует с кислородом. Такое положение может возникнуть при образовании силицида магния. Косвенным подтверждением существования в кремнии либо частиц, либо фазы этого вещества является значение температуры ~ 1100 °C, при которой наблюдается резкий рост  $\Delta N$ . В Si:Mg может образовываться только одно соединение — Mg<sub>2</sub>Si, ликвидус в точке плавления которого имеет плавный максимум при температуре 1102 °C [11]. При более высоких температурах Mg<sub>2</sub>Si диссоциирует на Mg и Si и возникает возможность образования комплекса MgO в результате реакции (1).

Вопрос о формирования Mg<sub>2</sub>Si в процессе диффузии, тем не менее, остается открытым. Так, растворимость магния в кремнии в интервале температур 1000-1100 °С составляет 4.0 · 10<sup>16</sup>-1.0 · 10<sup>17</sup> сm<sup>-3</sup>. Если при взаимодействии атомов магния и межузельных атомов кремния происходит образование частиц Mg<sub>2</sub>Si, то равновесная концентрация межузельных атомов кремния C<sub>I</sub><sup>eq</sup>, должна быть как минимум вдвое меньше и составлять  $(2-5) \cdot 10^{16} \text{ cm}^{-3}$ . Однако литературные данные, полученные разными методами, соответствуют значениям  $C_{\rm I}^{\rm eq} \approx 10^{12} - 10^{14} \, {\rm cm}^{-3}$  в исследуемом интервале температур [12]. Только в одной публикации [13] сообщается о значении  $C_{\rm I}^{\rm eq} \approx (1-5)\cdot 10^{16}\,{\rm cm}^{-3}$ при T = 1000 °C. Концентрация собственных дефектов в этой работе определялась путем сравнения коэффициентов линейного расширения образцов кремния, определенных как разность между линейным тепловым расширением и изменением параметров решетки кристалла (determined from the difference between the macroscopic linear thermal expansion and the lattice-parameter thermal expansion).

### 4. Заключение

В работе проведено изучение динамики образования комплекса MgO в процессе взаимодействия атомов Mg с кислородом, растворенном в Cz-Si. Обнаружено, что в температурном диапазоне T = 1000-1100 °C атомы магния находятся в связанном состоянии и не участвуют в реакции (1). Высказано предположение, что такое

состояние возникает при образовании силицида магния Mg<sub>2</sub>Si. При более высоких температурах T > 1100 °C Mg<sub>2</sub>Si диссоциирует на Mg и Si и возникает возможность протекания реакции (1).

Естественно предположить, что в бескислородном кремнии, выращенном методом зонной плавки (Cz-Si), происходят такие же процессы образования связанного состояния Mg. Это означает, что после диффузии во время охлаждения образцов Si:Mg при достижении температуры  $\sim 1100$  °C и ниже, межузельные атомы магния в кристалле могут образовать Mg<sub>2</sub>Si соединение. В зависимости от скорости охлаждения и скорости образования силицида, бо́лышая часть атомов Mg окажется в связанном состоянии. Та часть атомов, которая не успела за время охлаждения кристалла принять участие в образовании Mg<sub>2</sub>Si, останется в междоузлиях и при низких температурах будет электрически активна.

Таким образом, электрически неактивный магний в кремнии при T < 1100 °C находится в виде Mg<sub>2</sub>Si. Для образования этого соединения концентрация межузельных атомов кремния должна составлять  $(2-5) \cdot 10^{16}$  сm<sup>-3</sup>.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- [1] R.F. Franks, J.B. Robertson. Sol. St. Commun., 5, 479 (1967).
- [2] L.T. Ho, A.K. Ramdas. Phys. Rev. B 5, 462–474 (1972).
- [3] H. Sigmund. J. Electrochem. Soc., **129**, 2809 (1982).
- [4] В.Б. Шуман, А.А. Лаврентьев, А.А. Яковлева, N.V. Abrosimov, А.Н. Лодыгин, Л.М. Порцель, Ю.А. Астров, ФТП, 56, 9, 858 (2022).
- [5] H. Sigmund, D. Weiß. Proc. of the 4-th Int. Conf. Ion Implantation: Equipment and Techniques. Springer Series in Electrophysics 11, 473–480 (1983).
- [6] R.J.S. Abraham, A. DeAbreu, K.J. Morse, V.B. Shuman, L.M. Portsel, A.N. Lodygin, Yu.A. Astrov, N.V. Abrosimov, S.G. Pavlov, H.-W. Hübers, S. Simmons, M.L.W. Thewalt. Phys. Rev. B 98, 205203 (2018).
- [7] Л.М. Порцель, В.Б. Шуман, А.А. Лаврентьев, А.Н. Лодыгин, Н.В. Абросимов, Ю.А. Астров. ФТП 50, 4, 321–326 (2020).
- [8] H. Sigmund. J. Electrochem. Soc. 129, 2809 (1982).
- [9] В.Б. Шуман, Ю.А. Астров, А.Н. Лодыгин, Л.М. Порцель, ФТП **58**, *2*, 75 (2024)
- [10] Yu.A. Astrov, L.M. Portsel, V.B. Shuman, A.N. Lodygin, N.V. Abrosimov, Phys. Status Solidi A 219, 2200463 (2022).
- [11] М. Хансен, К. Андерко. Структуры двойных сплавов. Металлургиздат, М. (1962 г). (М. Hansen. Constitution of Binary Alloys. McGraw-Hill Book. Co., N.Y. (1958).)
- [12] H. Bracht, N.A. Stolwijk, H. Mehrer Phys. Rev. B 52, 23, 16542 (1995).
- [13] Y. Okada. Phys.Rev. B 41, 10741 (1990).

#### Редактор А.Н. Смирнов