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On the power law distributions of local stresses and strains

in the fracture process of heterogeneous materials revealed

via discrete element method
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Distributions of local tensile stresses and strains in the fracture process of heterogeneous materials are studied

by means of the discrete element method. Local stresses here are stresses on bonds in the bonded particle model.

It is shown that these distributions become wider as the fracture process evolves. The approximation of long-wave

tails by exponential and power functions is carried out, and the change in time of these function parameters is

calculated.
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1. Introduction

Power series distributions of quantities in physical sys-

tems usually occur in critical situations such as phase

transitions [1], percolation threshold [2], self-organized

criticality state [3]. Such distributions are also observed

in the physics of fracture of mechanically loaded materials:

for example, a well-known Gutenberg-Richter law, acoustic

emission (AE) signal distribution over energies on approach

to material fracture [4], and size distribution of load-induced

defects [5].

This study investigates the distribution of bonds over

strains and stresses, and correlations thereof. Calculations

were conducted by the discrete element method in a bonded

particle model (BPM) proposed in [6]. The simulation ex-

periments were carried out in MUSEN freeware package [7].

2. Description of the computer
experiment

Cylindrical samples 10mm in diameter and 20mm in

height were simulated. A sample was placed into a virtual

press. The lower plate was fixed and the upper plate moved

down at a constant speed of ν = 0.02m/s. Thus, uniaxial

compression was simulated. The experiment setup is similar

to that described in [8].

Two sets of samples were studied. Samples from Set

1 contained 48,695 spherical particles with diameters and

content as specified in Table 1. Particle sizes are a set of

sizes with a mean value of 0.3mm and a standard deviation

of 0.1mm, which was obtained by a normal random number

generator.

Sample set 2 contained 33670 spherical particles with

diameters and content as specified in Table 2. These sizes

are a set of sizes with a mean value of 0.08mm and a

standard deviation of 0.025mm which was obtained by a

normal random number generator. Grain diameter 4 for

orthoclase is increased by an order of magnitude to improve

the degree of heterogeneity.

Physical properties of materials for particles and bonds

were chosen from Table 3.

A total of 9 samples with bond parameters from Table 4

were examined. Three types of bonds between particles:

type 1 corresponded to orthoclase bonds, type 2 corre-

sponded to the case when particles of one material were

Table 1. Grain diameters (mm) and percentage composition of

each of the fractions

Grain diameter of various Content of each

fractions di , mm fraction

Quartz 0.36 0.188 0.52 0.28 0.42 0.0595745

Orthoclase 0.27 0.28 0.4 0.36 0.26 0.0702128

Oligoclase 0.16 0.168 0.288 0.24 0.4 0.0702128

Table 2. Grain diameters (mm) and percentage composition of

each of the fractions

Grain diameter of various Content of each

fractions di , mm fraction

Quartz 0.09 0.047 0.132 0.079 0.106 0.0595745

Orthoclase 0.068 0.07 0.096 0.91 0.064 0.0702128

Oligoclase 0.041 0.042 0.077 0.063 0.098 0.0702128
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Table 3. Properties of materials used for simulation

� Material ρ, kg/m3 E, GPa ν σn, MPa σt , MPa η, Pa·s

1 quartz 2650 94 0.29 600 600 5E19

2 Orthoclase 2560 62 0.29 420 420 1E19

3 Oligoclase 2560 70 0.29 480 480 1E19

4 Glass 2500 50 0.22 50 50 1E40

5 Quartz-orthoclase bond 2500 5.8 0.2 200 200 5E19

6 Quartz-oligoclase bond 2500 5.8 0.2 300 300 5E19

7 Orthoclase-oligoclase bond 2500 5.8 0.2 100 100 5E19

No t e. ρ is the material density, E is Young’s modulus,ν is Poisson’s ratio, σn is the tensile strength of the material, σt is the shear strength of the material,

η is the dynamic viscosity.

Table 4. Bond parameters

Sample � 1 2 3 4 5 6 7 8 9

Number of bonds 33670 33670 48695 48695 48695 48695 48695 48695 33670

Type of bonds 1 1 1 1 2 3 3 3 3

Bond diameter (mm) d = 0.04 d ≤ 0.1 d = 0.1 d ≤ 0.6 d ≤ 0.6 d ≤ 0.2 d = 0.1 d ≤ 0.6 d ≤ 0.1

bound by the same material, and particles from different

materials were linked by low-modulus bonds 5−7 (Table 3).
Type 3 corresponded to a case when particles of the same

material were bound by the same material, while particles

of different materials were linked by brittle glass bonds

(Table 3).

During the fracture process, a large set of various physical

properties of samples was recorded in equal time intervals

(data storage interval) to be used for future analysis. As

such properties, this study used distributions of tension

strains and stressed on bonds over their magnitudes.

3. Computer simulation data and
discussion

Long-wavelength tails of stress and strain distributions

obtained by computer simulation at each time step were

approximated by exponential and power functions because

these particular functions are responsible for the Markovian

short-memory processes (exponent) and scaling (power
function) that occurs in critical states (phase transitions,

self-organized criticality, etc.). Approximation quality was

assessed by the coefficient of determination R2. As an

example, Figure 1 shows typical dependences of these

coefficients on time for sample � 5 (stress distribution).

It can be seen that the exponential function adequately

describes the distribution throughout the process. The

power function describes the process a little worse in

the beginning (but also adequately, R2
> 0.93), but is

better than the exponential approximation at the end of the

process, which is typical for the self-organized criticality

process. Time dependences R2 also have the same form for

other samples.

As scaling coefficients (power exponents) are of foremost

interest, they will be addressed hereinafter. Figure 2 shows

loading diagrams and time dependences of scaling variables

for samples 4, 5 and 8 having the same grain and bond sizes,

but different types of bonds (Table 4 and the description).

It is shown that stress and strain distributions generally

broaden as the system approaches its fracture. Some details

may be understood from the loading diagram and bond

fracture kinetics in these samples as shown in Figure 3.

Thus, saturation of the dependences in Figure 2, d−f at

t ≈ 0.088 s is associated with depletion of
”
glass“ bond

fractures and low fracture rate of other bonds. The

maximum of dependence in Figure 2, g−i for the stress

scaling coefficient at t ≈ 0.02 s may be understood, if a time

dependence of the stress scaling coefficient is built for each
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Figure 1. Coefficients of determination in the approximation of

dependence of stress distribution on time in sample �5.

Physics of the Solid State, 2025, Vol. 67, No. 2



On the power law distributions of local stresses and strains in the fracture process... 369

0 0.01 0.02 0.03

0

2

4

6

8

10

S
tr

e
ss

, 
1
0

P
a

8

Strain

t = 0.0144

t = 0.0167

0.010 0.015

–10

–5

0

b
S

tr
e
ss

Time, s

t = 0.0144

–10

–8

–6

–4

–2

0

0.010 0.015

Time, s

b
S

tr
a
in

a

0 0.01 0.02

0

1.0

1.5

2.0

2.5

3.0

S
tr

e
ss

, 
1

0
P

a
8

Strain
0.010 0.015

–4

–2

b
S

tr
e
ss

Time, s

t = 0.0088

–4

–2

0.010 0.015

Time, s

b
S

tr
a
in

0.5

0.005

t = 0.0088

0.005

0 0.01 0.02 0.03 0.04

0

1

2

3

4

6

5

7

S
tr

e
ss

, 
1

0
P

a
8

Strain
0.010 0.015

–2

b
S

tr
e
ss

Time, s

–5

–2

0.02 0.03

Time, s

b
S

tr
a
in

0.005 0.01
–1

–3

–4

–5
–4

–3

–1

0

b c

d e f

g h i

Figure 2. Loading diagram, time dependence of scaling coefficient for stresses (bstress) and strains (bstrain) for the sample with orthoclase

bonds 48695 d ≤ 0.6 (a−c), for the sample with glass bonds (d−f) and for the sample with low-modulus bonds (g−i).

type of bonds existing in this material (Figure 4). According
to these curves, distributions for individual types of bonds

also broaden on the approach to fracture for all types of

bonds, except 7 (orthoclase–oligoclase). (For bond type 7,

the power approximation appears to be inadequate in a

considerable time region). This maximum occurs because

”
intergranular bonds“ (i. e. low-modulus bonds between

particles of different materials) begin to fracture much later

than
”
intragranular“ bonds (i. e. bonds between particles of

the same material) and variation of the scaling coefficient

at t ≈ 0.02 s is irregular. Thus, it has an artifact form.

Distribution of strains for this sample keeps on broadening

because its power exponent decreases monotonously.

Correlation coefficients of strain and stress scaling coeffi-

cients for all studied samples (ρσ ε) are shown in Table 5.

As it follows from Table 5, the highest correlation

coefficients are observed for more homogeneous sam-

ples (1−4) with one type of orthoclase bonds. Such

Table 5. Correlation coefficients of strain and stress scaling

coefficients

Sample 1 2 3 4 5 6 7 8 9

ρσ ε 0.971 0.967 0.921 0.994 0.644 0.845 0.835 0.846 0.815

samples are elastically strained to fracture (brittle fracture),

therefore observance of Hooke’s law in them ensures strong

correlations between stresses and strains (Figure 2, a−c).

Less significant correlations are observed for samples with

glass bonds (7−9). In this case, increased heterogeneity is

caused by lower (by an order of magnitude) strength of glass

bonds with a slight difference in their modules from other

bonds. Hooke’s law is satisfied until start of fracture. After

fracture of almost all bonds, Hooke’s law becomes true

again because they are still able to be elastically strained
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Figure 3. Bond fracture kinetics in samples 4 (a), 8 (b) and 5 (c).

due to a higher strength of other bonds. For the sample

with low-modulus bonds (5), the correlation coefficient is

even low.

Correlation coefficients between the maximum power

exponents (critical indices [1]) were calculated before
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Figure 4. Time dependence of stress scaling coefficient for a

sample with low-modulus bonds.

fracture for all studied materials. Correlations between

strain and stress indices (−0.601) appeared to be low. Such

relations between distribution widths may be explained by

the fact that, as established in [8], structural inhomogeneity

gives rise to a higher stress homogeneity (multiplicity of

areas with higher stresses) and, conversely, fracture of more

homogeneous materials is induced by a single site (crack).
Considerable spread of critical indices don’t allow to assert

definitely that they don’t depend on the physical nature of

material.

4. Conclusion

Thus, it is shown that bond strain and stress distributions

broaden during material deformation and become power

functions. Correlation coefficients of time dependences of

strain and stress scaling coefficients are defined by corre-

spondence of σ (ε) to Hooke’s law. Correlation coefficients

of the critical indices (maximum scaling coefficients) are

associated with material heterogeneity (in terms of structure

or internal stresses). The maximum value (minimum

absolute value) is achieved before the fracture time.
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Formation of power series distributions before fracture of

a material reflects a scale invariance of physical systems in

critical state, which, in our opinion, is the implementation

of the self-organized criticality process in case of fracture.
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