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The Holtsmark model for a spin glass
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Impurity atoms with a magnetic moment are distributed rarely and randomly among the non-magnetic material

in a spin glass. We suggest the Holtsmark model for description of spatial distribution of these atoms. Within the

framework of the mean self-consistent field, the dependence of the spontaneous magnetic field on the temperature,

as well as the critical temperature where this magnetic field disappears, have been found analytically.
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1. Introduction

Spin glasses are distinguished by the possibility of a phase

transition associated with the occurrence of a static spon-

taneous magnetic field below a certain critical temperature

Tc [1]. This randomly directed field is created by chaotically

directed magnetic moments of impurities in a non-magnetic

material. The interaction between impurity centers can be

neglected in case of their low concentration and the analysis

is simplified. The system becomes uniformly ordered at

temperature T < Tc . An accurate consideration of the

problem is possible only in the (unrealistic) case of magnetic

moments parallel to each other [2].
Let us use Hi to denote the magnetic field strength at the

point where the ith impurity atom with spin 1/2 is located.

Let us use µ to denote the magnetic moment of this atom.

The energy of an atom in a magnetic field is split into two

values: ±µH . The statistical sum associated with the mag-

netic field has the form: Zi = exp(−µHi/T ) + exp(µHi/T ).
Let us find the corresponding free energy:

Fi = −T ln

{

2 cosh

(

µHi

T

)}

, (1)

Let us determine the average magnetic moment of a given

ith impurity atom:

M i = − ∂Fi

∂Hi
= µ tanh

(

µHi

T

)

. (2)

This magnetic moment creates a magnetic field at the

point j where some other impurity atom is located:

H j =
3n(µn) − µ

R3
tanh

(

µHi

T

)

. (3)

Here R is the distance between the atoms, n is the unit

vector along the direction connecting the atoms. The

magnetic field H j decreases very rapidly as this distance

increases. Therefore, it is possible to assume that R — this

is actually the distance to the nearest neighbors.

The magnetic field (3) becomes zero in case of averaging

over the corners of the vector µ. But it turns out that a large

number of such magnetic moments, randomly located in

space and having a random direction, create a well-defined

magnetic field other than zero, although also randomly

directed (nonergodic system).
Let’s turn to the nonzero square of the magnetic field

strength:

H2
j =

µ2 + 3(µn)2

R6
tanh2

(

µHi

T

)

. (4)

We obtain the following from (4) averaging it over the

chaotically directed angles of the vector µ:

H2
j =

2µ2

R6
tanh2

(

µHi

T

)

. (5)

2. Nearest neighbor approximation

The magnetic field H j is actually created not by a single

atom i , but by a large number of such atoms in its vicinity.

Let us determine the probability normalized by one w(R)dR
that the impurity atom closest to the ith atom is located at a

distance of [R, R + dR] from it. This probability is equal to

the product of the probability that there are no atoms inside

R and the probability of detecting one atom inside a thin

spherical layer [R, R + dR]. So, we get the equation:

w(R)dR =

{

1−
R

∫

0

w(R′)dR′

}

4πR2ndR. (6)

Here n is the number of impurity atoms per unit volume.

The differential equation follows from (6) in case of

differentiation

d
dR

(

w(R)

R2

)

= −4πnw(R). (7)
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The boundary condition to equation (7) follows from (6):

w(R → 0) → 4πR2n. (8)

The solution of the equation (7) with the boundary

condition (8) has the simple form:

w(R) = 4πR2n exp

(

−4πR3n
3

)

. (9)

Determining the average value of the distanceR:

R̄ =

∞
∫

0

4πR2n exp

(

−4πR3n
3

)

dR

=
1

(4πn)1/3

∞
∫

0

x3 exp

(

−x3

3

)

dx =
1.288

(4πn)1/3
; n=

0.17

R̄3
.

(10)
Substituting (10) into (5), we replace R → R̄ and obtain an

implicit equation for determining a randomly directed static

spontaneous magnetic field.:

H = 8.3µn tanh

(

µH
T

)

. (11)

Let us reduce it to a dimensionless form by substitutions:

j = H/8.3µn; t = T/8.3µ2n. We obtain the implicit

equation:

h = tanh

(

h
t

)

. (12)

Figure 1 shows the dependence of the magnetic field on

temperature according to (12). The spontaneous mag-

netic field disappears at temperatures t > 1, T > 8.3µ2n

= µ2
√
2/R̄3. We have h = 1, H = H0 = 8.3µn = µ

√
2/R̄3

at temperature T = 0.

The nearest neighbor approximation is close to, but not

reducible to, the Holtsmark model. Both approximations

coincide in the limit of small distances R, when the

exponent in (9) can be replaced by one.

3. Gaussian approximation

Next, let us will consider another model: a Gaussian

distribution for the random arrangement of rare impurities

in space. It is usually used when describing spin glass [3–5].
Due to the random location of the impurity atoms, its pre-

set value is determined by a normal (Gaussian) distribution.
More precisely, according to the central limit theorem, the

sum of identically distributed independent random variables

has a normal distribution. A magnetic field, as the sum of

magnetic fields from randomly located magnetic moments,

can be described by a normal distribution or not, depending,

for example, on the average distance between them. The

correspondence of the distribution to the normal is simply

postulated in the theory of spin glasses. This is done below.
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Figure 1. Spontaneous magnetic field as a function of tempera-

ture in the nearest neighbor model.

So, it is possible to write the following using (5):

〈H2〉 = H2
0

∞
∫

−∞

dH
√

2π〈H2〉
exp

(

− H2

2〈H2〉

)

tanh2
(

µH
T

)

;

H0 =
µ
√
2

R̄3
. (13)

Next, let us introduce dimensionless quantities: the mean-

square dimensionless magnetic field h =
√

〈H2〉/h2
0, the

dimensionless temperature t = T
µH0

, and the dimensionless

integration variable x = H√
〈H2〉

. Let us obtain an integral

equation for dimensionless quantities from (13):

h2 =

∞
∫

−∞

dx√
2π

exp

(

−x2

2

)

tanh2
(

hx
t

)

. (14)

This equation defines the implicit mean-square spontaneous

magnetic field as a function of temperature. Both zero and

non-zero solutions occur at t < 1 (Figure 2). A nonzero

solution is implemented experimentally, since it corresponds

to a lower energy of the spin system. We obtain h = 1,
√

〈H2〉 = µ
√
2/R̄3 for t = 0. There is only a zero solution

to equation (14) for t > 1. This can be seen from

Figure 2. This can also be seen analytically if, for

small h and t = 1 + δ, 0 < δ ≪ 1, the hyperbolic tangent is

decomposed into a Taylor’s series. We obtain the equation

h2 = h2/t2 from (14), which has only a zero solution. If

δ < 0, then a small nonzero solution appears due to the next

term of the decomposition of the hyperbolic tangent into a
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Figure 2. Spontaneous magnetic field as a function of tempera-

ture in the Gauss model.
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Figure 3. Spontaneous magnetic field as a function of tempera-

ture in the Holtsmark model.

Taylor’s series. The magnetic field disappears at temperature

T = µH0 = µ2
√
2/R̄3.

We see that both the critical temperature of the disap-

pearance of the magnetic field and the value of the field at

zero temperature in both models coincide. Figure 2 shows

the numerical solution of the implicit equation (14). It can
be seen that the curves in Figure 1 and Figure 2 are very

different from each other, although they coincide at both

endpoints.

4. Holtsmark distribution

The Holtsmark distribution determines, in particular, the

stationary distribution for the force acting on the Sun due

to gravity from surrounding randomly distributed stars [6]
The Holtsmark distribution is used when considering the

broadening of lines of hydrogen ideal plasma [7]. Protons

randomly distributed in space create a static electric field.

This field produces a linear Stark splitting of the levels

of hydrogen atoms. The Holtsmark distribution is used

to calculate the electric field distribution in compensated

semiconductors in the paper in Ref. [8].
Let us insert the Holtsmark distribution, normalized by

one in equation (14), instead of the Gaussian distribution:

H(x) =
2

πx

∞
∫

0

exp
{

−(z/x)3/2
}

sin(z )z dz . (15)

We obtain a universal implicit equation for determining the

spontaneous magnetic field:

h2 =

∞
∫

0

H(x) tanh2
(

hx
t

)

dx . (16)

Its numerical solution is shown in Figure 3. The critical

temperature T = 2.7µ2
√
2/R̄3 turns out to be almost three

times higher than in the case of the Gaussian distribution

(Figure 2). And the spontaneous magnetic field at zero

temperature coincides with the field for the Gaussian

distribution.

5. Conclusion

The dipole interaction of magnetic moments in a spin

glass is directly taken into account in this study, whereas

the majority of papers usually use some abstract random

exchange field with a given distribution function to describe

the interaction. If the self-consistent field approximation is

not used, then the spontaneous magnetic field should, of

course, be calculated differently. It is necessary to calculate

the average square of the magnetic field when using the

Gaussian distribution. To do this, it is necessary to multiply

the square of the magnetic field defined by equation (5)
by the probability of finding the magnetic moment at a

distance of R (it is equal to 4πnR2dR) and integrate the

resulting expression from zero to infinity. It is easy to

see that this integral diverges. The same problem arises

for the Holtsmark distribution. It is well known (see, for
example, [6]) that the second moment of the Holtsmark

distribution is equal to infinity. A way to circumvent these

divergences has been found in this paper.

A fairly complete review of the experimental data on spin

glasses is contained in a recent publication [9]. Typical tem-

peratures for the occurrence of a spontaneous magnetic field

in various spin glasses are 15−30K. It can be concluded

from the above dependences of the spontaneous magnetic
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field on temperature, as well as from the dependences given

in Ref. [3] that the Holtsmark distribution should be given

greater preference than the usually considered Gaussian

distribution for describing the random distribution of rare

magnetic impurity centers in a non-magnetic material.
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