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Coulomb interaction effect on the shock wave process in ionic crystals

at nanosecond impact pulse
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Acoustic vibrations of ionic crystal exposed to a short impact pulse are addressed. The study evaluates the

contribution of the Coulomb bond energy of ionic crystals to the dependence of moduli of elasticity on stress

field induced by RMS electromagnetic field in the absence of the field at the initial time point. Dynamic vibration

equations are written using the Maxwell stress tensor defined by the second electromagnetic stress field moment.

It is shown that non-equilibrium Poison’s ratio in ionic crystals describes qualitatively the experimental results.
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1. Introduction

The great majority of the existing models of impact

disturbance propagation in solid bodies are currently based

on the analysis of the steady-state shock wave process [1,2].
At the same time the most interesting and informative field

of impact studies includes a non-steady shock wave process

near the loading surface. However, there is extremely

small body of information about strongly non-equilibrium

and non-steady processes near the impact loading surface

that define the evolution of initial disturbance profiles

to those typical of the steady-state process. This is

due to a number of restrictions inherent in traditional

experimental methods of investigating the shock wave

process and to a limited nature of existing theoretical ca-

pabilities of describing non-steady strongly non-equilibrium

processes [3–5].
Therefore, it is important to develop picosecond and

nanosecond impact loading techniques and to study the evo-

lution of shock wave process variables in materials exposed

to such short impact disturbances. The features of evolution

of impact disturbance conditions during steady-state wave

propagation and formation were noted in theoretical and

experimental studies [6–9].
Findings of the experimental study of solid body response

to nanosecond pressure pulses are discussed in [8,9]. Focus
was made on the stress relaxation processes near the impact

surface. In particular, a liquid-like immediate response of

alkali-halide crystal to short impact pulses was noted.

Impact loads were excited by a laser pulse through

an optical glass to a thin (3−5µm) layer of a radiation-

absorbing material being in acoustic contact with the test

samples.

Impact load variables were controlled in a series of

longitudinal stress measurements by a piezoceramic trans-

ducer placed on the rear side of samples with different

thicknesses. For a series of lateral stress measurements, a

polyvinylidenfluoride film (25µm) piezoelectric transducer

was placed in the center of impact disturbance area at

different distances from the loading plane of a sample

consisting of two bonded together parallelepipeds of the

test material.

Experimentally obtained normalized dependences of lon-

gitudinal and lateral stress pulse component amplitude

variations on the sample thicknesses σl(h), σt(h) in ionic

NaCl crystals are shown in Figure 1 [8].
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Figure 1. Normalized dependence of the amplitude of longi-

tudinal stresses σl(h) and lateral stresses σt(h) on the sample

thickness h.
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2. Theoretical analysis of the findings
of experimental study of ionic crystal
response to nanosecond
pressure pulses

The Coulomb energy plays the key role in the ion

interaction in ionic crystals The total electric charge of each

lattice cell is equal to zero. During long-wavelength acoustic

vibrations, ions contained in the lattice cell are displaced uni-

formly and the electrical neutrality of the lattice cell is not

disturbed, only elastic forces are involved in the vibrations.

Acoustic vibrations in ionic crystals are virtually identical

to those in conventional dielectric materials. However,

optical modes related to the relative motion of electrically

charged ions differ from each other due a peculiar nature of

interatomic forces in ionic crystals. It is generally assumed

that these crystals consist of slightly distorted localized ions

interacting through the electrostatic field.

Let’s consider the acoustic vibrations in ionic crystals

assuming that such system is homogeneous, isotropic and

is described by density, pressure P and particle mass

velocity V̄ . In deriving the equations of ionic crystal motion,

electric field components will be treated as independent

dynamic variables. The Maxwell stress tensor is added to

the equations of state of such materials.

As a result of ionic displacement from an equilibrium

position, a dipole moment is generated in the crystal. The

dipole moment induces a Coulomb field consisting of a

macroscopic field and Lorenz field [10]. Variation of the

thermodynamic properties of dielectric materials is defined

by an electric field that penetrates a body and, unlike metals,

affects considerably the thermodynamic potentials [10].
Since the deformability and polarizability of ions are defined

by the electronic subsystem and cannot be included into

the lattice vibration theory based on the expansion of

the lattice potential in ionic displacements, then additional

analysis of vibrational processes is implied to consider the

electromagnetic field effect in such materials during rapid

dynamic disturbances.

The Euler equations are the initial system of equations

for investigating continuum motion [11]:

∂ρ

∂t
+ div(ρV̄ ) = 0, (1)

∂(ρVi)

∂t
+ ∂kσik = 0, (2)

where

∂k =
∂

∂Xk
.

Dielectric properties of a body vary not only with density

variation, but also in strain, because strain disturbs the

body isotropy and dielectric anisotropy appears. Analysis

of such situation is simplified, if only the change of volume

is considered [10].
Continuum electrodynamics generally considers macro-

scopic variables by averaging the corresponding microscopic

variables. Field Ei is a random variable, whose average

is equal to zero 〈Ei〉 = 0, therefore the Euler equations

of motion shall include the Maxwell stress tensor that is

quadratic with respect to Ei and is defined by the tensor

〈Ei Ek〉 [10].

Then the analysis of dielectrics in an electric field allows

us to write an equation for the stress tensor as [10]:

σik = Pδik −
(

〈Ei Ek〉 − 〈E2
0 〉 δik/2

) ε

4π
. (3)

where P is the pressure, 〈EiEk〉 − 〈E2
0 〉 δik/2 is the Maxwell

stress tensor, ε is the permittivity, E2
0 = E2

1 + E2
2 + E2

3 .

We write the Maxwell equation for Ei [10]:

∂Ei

∂t
= croti B̄

′ − 4πσVi , (4)

where σ is the density of electric charges, c is the speed

of light, B̄ ′ is the magnetic field induction vector, µ is

the permeability. Taking into account that ε = 1/(µc2), we

obtain for (1− µε)/c ≈ 1/c .

Relation of the inductionB and magnetic field strength H ,

B = µH is valid in fixed bodies. For a moving medium at

low velocities V ≪ cB̄ ′, it is written as [10]

B̄ ′ = B̄ + [V̄ , Ē]
1− µε

c
. (5)

To find Ei Ek , we multiply (4) by Ek and symmetrize the

product by indices i, k (1, 2, 3):

∂

∂t
(EiEk) = c roti

(

B̄ + [V̄ , Ē]
1

c

)

Ek

+ c rotk

(

B̄ + [V̄ , Ē]
1

c

)

Ei − 4πσ (Vi Ek + VkEi). (6)

The ionic crystals, in which a magnetic field is al-

most non-existent — B̄ ≪ [V̄ , Ē](1)/c . Nonlinear terms

(ViEk + VkEi) in (6) may be neglected because the velocity

gradients ∇× [V̄ , Ē] in sort impact are much higher than

(V̄ , Ē) ∼ E2 ≈ 0.

For an isotropic medium, the rms value of 〈Ei Ek〉 is equal

to [12]

〈Ei Ek〉 = 〈E2
0 〉

δik

3
. (7)

Considering all assumptions and expression (7), we

obtain a system of differential equations for linearized
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equations (6):
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∂

∂t
(E2

1 ) = −2(∂2V2 + ∂3V3)
〈E2

0 〉

3
,

∂

∂t
(E2

2 ) = −2(∂1V1 + ∂3V3)
〈E2

0 〉

3
,

∂

∂t
(E2

3 ) = −2(∂1V1 + ∂2V2)
〈E2

3 〉

3
,

∂

∂t
(E1E2) = −2(∂1V2 + ∂2V1)

〈E2
0 〉

3
,

∂

∂t
(E1E3) = −2(∂1V3 + ∂3V1)

〈E2
0 〉

3
,

∂

∂t
(E2E3) = −2(∂2V3 + ∂3V2)

〈E2
0 〉

3
,

∂

∂t
(Ei Ek) =

∂

∂t
(EkEi).

(8)

Equation (2) taking into account (3) is written as

∂tVi + ∂k

[

δikρC2 −
(

〈Ei Ek〉 − 〈E2
0 〉 δik/2

) ε

4π

]

1

ρ0
= 0,

(9)
where

C2 =
∂P
∂ρ

∣

∣

∣

∣

ρ0

,

C is the speed of sound, ρ0 is the equilibrium density.

After time differentiation of equation (9) taking into account

equation (8), we obtain the system of equations
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
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
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














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∂2t V1 −C2∂1(∂1V1 + ∂2V2 + ∂3V3)

− [12V1 + ∂1(∂1V1 + ∂2V2 + ∂3V3)]
〈E2

0 〉

2πρ0
= 0,

∂2t V2 −C2∂2(∂1V1 + ∂2V2 + ∂3V3)

− [12V2 + ∂2(∂1V1 + ∂2V2 + ∂3V3)]
〈E2

0 〉

2πρ0
= 0,

∂2t V3 −C2∂3(∂1V1 + ∂2V2 + ∂3V3)

− [12V3 + ∂3(∂1V1 + ∂2V2 + ∂3V3)]
〈E2

0 〉

2πρ0
= 0.

(10)

We seek a solution to (10) as

V̄ (x̄ , t) = Ṽ (k, ω)ei k̄ x̄−iωt , (11)

Substituting (11) in (10), we derive dispersion relations

ω2 =
〈E2

0 〉ε

12πρ0
k2, (12)

ω2 =

(

C2 +
〈E2

0 〉ε

6πρ0

)

k2. (13)

Relations (12) and (13) are dispersion relations for

transverse and longitudinal modes demonstrating substantial

difference in frequencies and corresponding propagation

velocities. Velocities of transverse Ct and longitudinal C l

waves are equal.

Ct =

√

〈E2
0 〉ε

12πρ
, C l =

√

C +
〈E2

0 〉ε

6πρ
. (14)

These differences probably define the behavior of lon-

gitudinal and transverse stress components (Figure 1)
demonstrating the relaxation response of NaCl crys-

tals to a short impact disturbance with duration in

the order of τ ≈ 10−9−10−8 s and loading rates of

∂σ/∂t ≈ 1011−1010 MPa/s. Wave process relaxation behav-

ior in various materials and ionic crystals exposed to short

impact pulses was studied in [8,9].

3. Relaxation behavior of Poisson’s
modulus in ionic crystals in
nanosecond pulse loading

In deriving the equations of ionic crystal motion, the

electric field components were assumed as independent

dynamic variables, and the Maxwell stress tensor is added

to the equation of state of such materials. As a result of

ionic displacement from an equilibrium position, a dipole

moment is generated in the crystal. The dipole moment

induces a Coulomb field consisting of a macroscopic field

and Lorenz field [10].
During long-wavelength acoustic vibrations, ions con-

tained in the lattice cell are displaced uniformly and the

electrical neutrality of the lattice cell is not disturbed.

But the optical modes related to the relative motion of

electrically charged ions might introduce differences in the

electrical neutrality of the lattice cell. Delayed relative

motion of positive and negative ion sublattices with much

different sizes and molecular weights of ions may cause

considerable failure of electrical neutrality of the cells.

Energy of ionic crystals in this case may be written

as [10]:

G = Gel + 〈E2〉
ε

4π
, (15)

where Gel is the elastic component of energy, 〈E2〉 ε
4π

is the

electric field energy.

The equation of energy balance will be written as

∂

∂t

(

Gel + 〈E2〉
ε

4π

)

+
∂

∂x

(

Gel + 〈E2〉
ε

4π
,Vgr

)

= 0,

(16)
where Vgr is the group velocity.

Non-equilibrium response behavior of ionic dielectrics

will be analyzed using the simplest kinetic equation with

a relaxation term [13], relaxation time τ and variable ξ

defining the degree of relaxation process development [3]:

dξ
dt

= −
ξ − ξ0

τ
, (17)

where ξ0 corresponds to the equilibrium state of medium.
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Figure 2. Dependence of Poison’s ratio of NaCl on time in impact

loading with 10−9
−10−8 s pulses (dashed line) and calculation

according to (22) (solid line).

A variable describing the weak interaction of elastic and

electric fields is chosen [11]:

ξ = 〈E2〉
ε

4π
− Gel. (18)

Here, Gel, 〈E2〉 ε
4π

are the elastic and Coulomb interaction

energies induced by impact loading, ξ0 = 〈E2
0 〉

ε
4π

is the

Coulomb interaction in the equilibrium state of medium.

Taking into account equation of balance (16) and small-

ness of τ (∂x ∼= τVgr), kinetic equation (17) is written as

∂

∂t

(

〈E2〉
ε

4π

)

+
〈E2〉 ε

4π

τ
=

1

2

〈E2
0 〉

ε
4π

τ
. (19)

Then a solution to equation (19), taking into account that

at the initial time 〈E2〉 ε
4π

= 0, is given by

〈E2〉
ε

4π
=

[

1

2
〈E2

0 〉
ε

4π
−

1

2
〈E2

0 〉
ε

4π
exp

(

−
t
τ

)]

. (20)

Using the known relation for Poison’s ratio [14]

ν =
1

2

C2
l − 2C2

t

C2
l −C2

t
(21)

and substituting the current value of 〈E2〉 from (20) to (14),
we obtain for Poison’s ratio

ν =
1

2

12πρC2

12πρC2 + 1
2
〈E2

0 〉
ε
4π

[

1− exp
(

− t
τ

)] . (22)

Analyzing the relation for Poison’s ratio (22), it turns

out that the Coulomb interaction energy variation at the

initial time (t = 0) 〈E2〉 ε
4π

= 0 and Poison’s ratio is equal

to ν = 0.5.

At the equilibrium process stage at t ≫ τ , the Coulomb

interaction energy is equal to the equilibrium energy

〈E2〉
ε

4π
=

1

2
〈E2

0 〉
ε

4π
,

and therefore ν < 0.5. When the Coulomb and elastic

energies in the equilibrium state are equal, Poison’s ratio

will correspond to the tabulated value ν ≈ 0.25.

Figure 2 shows the dependences of Poison’s ratio plotted

according to the data of [8] and calculated using rela-

tion (22).

Note that for the rigorous substantiation of the non-

equilibrium behavior of Poison’s ratio, the full theory of

kinetic equations for interacting systems shall be used [11].
Nevertheless, the assumptions made in our model allow us

to derive a time dependence of Poison’s ratio that correlates

quantitatively with the time dependence of Poison’s ratio

plotted using the experimental data of [8] in impact loading

of NaCl samples with 10−9−10−8 s pulse (see Figure 2).

4. Conclusion

Non-equilibrium moduli, variation of which is caused by

the electromagnetic field effect on vibrational processes in

rapid mechanical disturbances, shall be used for correct

description of mechanical phenomena in ionic crystals.

In case of quite weak interaction between these fields,

energy exchange between them is hampered, therefore a

tendency to the equilibrium state takes place step-by-step.

Equilibrium within each of the subsystems is set initially

and only then the whole system tends to the equilibrium

state. I.e. ionic crystals might be treated as a medium

where wave propagation disturbs the equilibrium between

the internal thermodynamic system variables.

Thus, expression of Poison’s ratio ν through the longi-

tudinal and transverse speeds of sound makes it possible

to describe the relaxation behavior at short impact loading

times τ ≈ 10−9−10−8 s.
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