06

Влияние механоактивации на внутреннюю структуру и макроотклики композиционных материалов на основе ниобатов щелочных металлов

© Е.В. Глазунова, ¹ Д.И. Зорин, ¹ И.Н. Андрюшина, ¹ Л.А. Шилкина, ¹ А.В. Нагаенко, ² Д.И. Макарьев, ¹ И.А. Вербенко, ¹ Л.А. Резниченко ¹

¹Научно-исследовательский институт физики, "Южный федеральный университет", 344090 Ростов-на-Дону, Россия

 2 Институт высоких технологий и пьезотехники, "Южный федеральный университет",

344090 Ростов-на-Дону, Россия

e-mail: glazunova@sfedu.ru

Поступило в Редакцию 8 октября 2024 г. В окончательной редакции 9 января 2025 г. Принято к публикации 11 марта 2025 г.

Сообщено о закономерностях влияния механоактивирующих процедур на внутреннюю структуру (кристаллическую, зеренную) и электрофизические свойства композиций на основе ниобатов щелочных металлов вида $(Na_aK_bLi_c)(Nb_dTa_mSb_n)O_3$ с участием комбинированного модификатора $(Bi_2O_3+Fe_2O_3)$ и неизоструктурного соединения $CuNb_2O_6$. На основе полученных результатов определено, что оптимальными условиями для приготовления высокоплотных, практически беспримесных керамик является механоактивация в течение (10-15) min. Эти технологические условия позволяют снизить диэлектрические потери и увеличить значения макрооткликов исследуемой керамики.

Ключевые слова: ниобаты щелочных металлов, технология, механоактивация, внутренняя структура, микроструктура, макроотклики.

DOI: 10.61011/JTF.2025.07.60659.318-24

Введение

Экологизация промышленного производства как один из основных технико-технологических трендов современности диктует необходимость реализации экологической безопасности создаваемым новым функциональным материалам электроники. Особенно это актуально для композиций, используемых в пьезотехнике, поскольку их основой в подавляющем большинстве применений являются сложнооксидные твердые растворы (ТР), содержащие в своем составе в немалых количествах чрезвычайно токсичный свинец [1].

Развитие направления бессвинцового материаловедения можно охарактеризовать несколькими последовательными этапами.

I — с 1980 г. по 2002 г. — формирование физикотехнологических основ поиска и разработки не содержащих токсичных элементов (прежде всего, свинца) композиций.

II — с 2002 г. по 2007 г. — изготовление бинарных систем с участием ниобатов щелочных/щелочноземельных металлов, в том числе, с различного рода допантами. В большинстве случаев основной изучаемой системой являлась $(Na,K)NbO_3$, обладающая близкими к TP ЦТС $(Pb(Ti,Zr)O_3)$ электрофизическими параметрами.

 ${
m III}$ — с $2007\,{
m r.}$ по $2018\,{
m r.}$ — переход к многокомпонентным системам (MC), чистым и модифицированным с улучшенными характеристиками. Попытки достижения

целевых свойств, оптимальных для каждого конкретного применения ТР, улучшения их технологичности и расширения "ассортимента" функциональных возможностей за счет построения МС описаны в [2-6]. Отмечается, что наиболее перспективной в плане реализации высокой пьезоактивности, сравнимой с ЦТС композициями, является MC вида $(Na_aK_bLi_c)(Nb_dTa_mSb_n)O_3$ [7–9] без добавок и с вводимыми допантами как простыми, так и комбинированными [10,11]. В последнем случае в [12] показано, что наиболее эффективны ТР названной системы, модифицированные одновременно оксидами висмута и железа $(Bi_2O_3+Fe_2O_3)$. Но тем не менее, несмотря на предпринятые действия технологов, указанная МС оставалась чрезвычайно зависимой от условий приготовления. Избежать этого удалось в [13-16] путем введения в TP Си-содержащих добавок, позволивших резко снизить температуру спекания объектов, сохранить стехиометрию их заданного состава и повысить плотность образцов. В связи с этим было предположено, что одновременное введение в систему (Na,K,Li)(Nb,Ta,Sb)O₃ оксидов висмута и железа, а также прекурсора (предварительно синтезированного) CuNb₂O₆ обеспечит получение не загрязненными балластными фазами керамик с плотностью, близкой к теоретической [14].

IV — с 2018 г. — по настоящее время — еще большее усложнение МС, получаемых либо с использованием новых технологических приемов, либо усовершенствованных известных методов. Это объясняется критической

зависимостью свойств бессвинцовых керамик (БК) от их термодинамической предыстории (условий приготовления), подтверждаемой рядом работ [17–20], в которых отмечается, что ряд технологических трудностей, связанных со спецификой БК, ограничивает их широкое применение на практике [21–23].

В связи с вышесказанным многими исследовательскими группами публикуются работы [24–27], в которых описываются пути решения этой задачи, в том числе путем введения в технологический процесс создания БК на основе МС операции механической обработки композиций на выбранных стадиях их получения. При этом заявляется о преимуществах использования механоактивации (МА), особенно при промышленном производстве материалов электронной техники [26]. Нами также в [28] показано, что активация перед спеканием синтезированных порошков материалов на основе ниобатов щелочных/щелочноземельных металлов механической обработкой в шаровой планетарной мельнице позволяет существенно интенсифицировать гетерогенные процессы и, как следствие, резко снизить температуру спекания, $T_{sint.}$, объектов, а также улучшить их электрофизические характеристики за счет уменьшения диэлектрических потерь.

Целью настоящей работы явилось установление физических механизмов влияния MA на внутреннюю структуру (кристаллическую зеренную) и макроотклики (диэлектрические, пьезоэлектрические, сегнетоэластические, механические) TP многокомпонентной системы на основе $NaNbO_3$, $KNbO_3$, $LiSbO_3$ с участием комбинированного модификатора ($Bi_2O_3+Fe_2O_3$) и неизоструктурного, колумбитового типа, соединения $CuNb_2O_6$.

1. Объекты, методы их получения и исследования

В качестве объекта исследования выступил ТР вида $K_{0.432}Na_{0.508}Li_{0.06}Nb_{0.846}Ta_{0.094}Sb_{0.06}O_3$, модифицированный 1.5 mass% ($Bi_2O_3+Fe_2O_3$) и $CuNb_2O_6$, качественноколичественный состав которого выбран как оптимальный из серии проб с вариациями количеств базовых компонентов и модификаторов [29]. ТР получен двукратным твердофазным синтезом ($T_1=1000\,^{\circ}C$, $T_2=1100\,^{\circ}C$, $T_1=T_2=6\,\mathrm{h}$) с последующим спеканием по обычной керамической технологии ($T_{sint.}=1200\,^{\circ}C$, $T_{sint.}=2\,\mathrm{h}$) с использованием в качестве сырьевых компонентов оксидов ниобия, тантала, железа, висмута, меди квалификации "химически чистые" (х. ч.) и гидрокарбонатов щелочных металлов квалификации "чистые для анализа" (ч. д. а).

МА синтезированных (после синтеза при температуре T_2) порошков проводили в шаровой планетарной мельнице высокоэнергетического помола АГО-2 производства компании Новиц (г. Новосибирск) [30,31]. Подготовленный порошок загружался в барабаны с внутренним диаметром 63 mm вместе с шарами из ZrO_2 диаметром

8 mm общей массой 200 g. Барабан со смесью помещался в планетарную мельницу АГО-2. Помол производился в спиртовой среде в течение 15 min, частота вращения барабана — 1800 грт.

Керамические образцы для последующей диагностики кристаллической и зеренной структур, экспериментальной плотности, $\rho_{\rm exp}$, изготавливали в виде дисков $\varnothing 10~{\rm mm} \times (0.5-1.0)~{\rm mm}$. Для исследования пьезоэлектрических свойств образцы с нанесенными серебряными электродами поляризовали в поле напряженностью $50-60~{\rm kV/cm}$ в течение $15-20~{\rm min}$ при температуре $150~{\rm cc}$.

Характеризация параметров исследованного ТР осуществлялась методами рентгенографии [32], микроструктурного анализа [33,34], аттестации электрофизических свойств [35]. При этом использовалось следующее оборудование: дифрактометр ДРОН-3 (CoK_{α} излучение, фокусировка по Бреггу-Брентано). Содержание примесных фаз оценивалось по относительной интенсивности их сильной линии: $I/I_1 \cdot 100 \,\%$, где I интенсивность сильной линии примесной фазы, I_1 интенсивность сильной линии основной фазы (перовскита). Микроструктуру спеченных керамик оценивали на сколе образца с помощью сканирующего электронного микроскопа JSM-6390L (Япония) с использованием энергодисперсионного микроанализатора фирмы Oxford Instruments (Великобритания). Изображения получены во вторичных электронах, пределы ускоряющего напряжения — от 0.5 kV до 30 kV; измеритель импеданса Agilent E 4980A и терморегулятор Варта ТП 703.

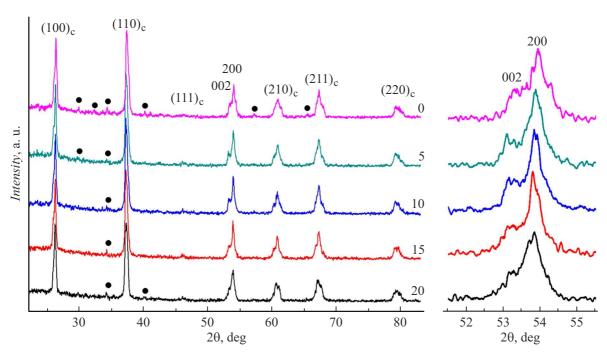
В качестве диэлектрических, пьезоэлектрических и сегнетоэластических параметров выбраны относительные диэлектрические проницаемости поляризованных, $\varepsilon_{33}^T/\varepsilon_0$, и неполяризованных, $\varepsilon/\varepsilon_0$, образцов; диэлектрические потери в слабом поле (тангенс угла диэлектрических потерь), tg δ , пьезомодули, $|d_{31}|$, d_{33} ; коэффициент электромеханической связи планарной моды колебаний, K_p ; механическая добротность, Q_M ; скорость звука, V_1^E .

Относительные погрешности определения параметров составили $\Delta a = \Delta b = \Delta c = \pm 0.05\,\mathrm{\AA};$

COCTABLEM
$$\Delta a = \Delta b = \Delta c = \pm 0.05 \text{ Å},$$

$$\Delta a = \Delta \beta = \pm 0.05 \text{ deg}; \ \Delta V = \pm 0.05 \text{ Å}^3;$$

$$\Delta \varepsilon_{33}^T / \varepsilon_0 \le \pm 1.5 \%; \ \Delta \text{ tg } \delta \le \pm 5 \%, \ \Delta K_p \le \pm 2.0 \%;$$


$$\Delta |d_{31}| = \Delta d_{33} \le \pm 4.0 \%; \ \Delta Q_M \le \pm 12.0 \%;$$

$$\Delta V_L^T \le \pm 0.3 \%.$$

Глубину частотной дисперсии диэлектрической проницаемости оценивали по формуле

$$\Delta arepsilon_m' = \left(rac{arepsilon_{mf1}' - arepsilon_{mf2}'}{arepsilon_{mf1}'}
ight) imes 100 \,\%,$$

где ε'_{mf1} — максимальное значение $\varepsilon'/\varepsilon_0$ на самой низкой частоте, ε'_{mf2} — максимальное значение $\varepsilon'/\varepsilon_0$ на самой высокой частоте.

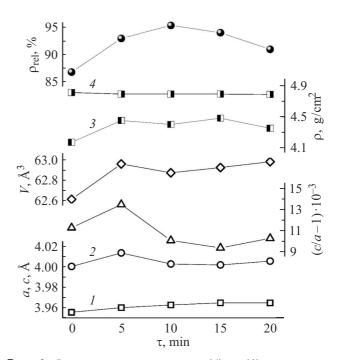
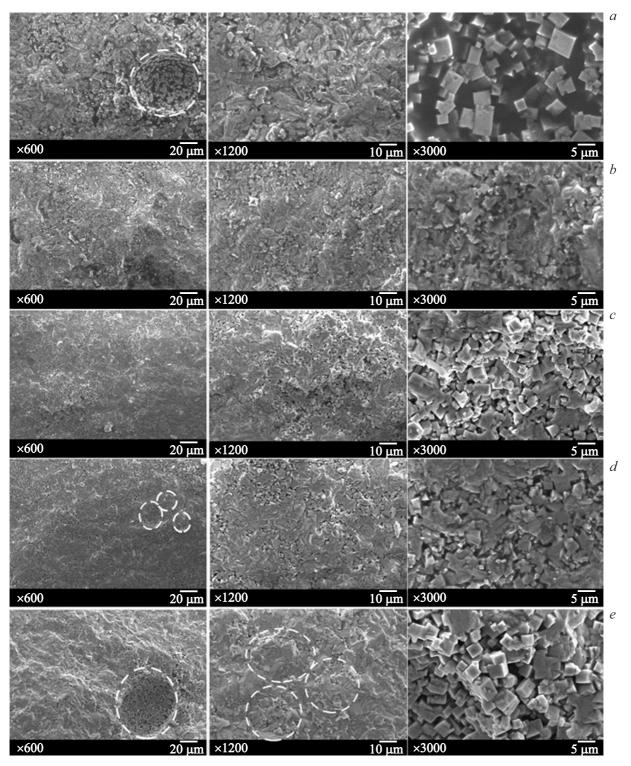


Рис. 1. Рентгенограммы твердого раствора $K_{0.4324}$ Na_{0.5076}Li_{0.06}Nb_{0.846}Ta_{0.094}Sb_{0.06}O₃, механоактивированного в течение 0, 5, 10, 15 и 20 min, и дифракционные пики (002) и (200) в увеличенном масштабе.

2. Экспериментальные результаты, обсуждение


Рентгенофазовый анализ и прецизионное рентгеноструктурное исследование процессов фазообразования изучаемого ТР, полученного как с использованием механоактивирующих процедур в течение $5-20 \, \mathrm{min}$, так и без них, показали присутствие во всех образцах примесной балластной фазы состава Li₂K₃Ta₅O₁₅ (рентгеновские пики на рис. 1 отмечены точками) в количестве менее 8% от основной фазы. Наибольшее ее количество содержится в немеханоактивированном TP (8%), наименьшее — в TP с временем активации 10 min (3%). При этом все образцы имеют тетрагонально искаженную структуру типа перовскита, весьма неоднородную, о чем свидетельствуют дифракционные пики 002 и 200, приведенные на рис. 1 в увеличенном масштабе. Как видно на рис. 2, по мере возрастания длительности МА степень искажения элементарной ячейки (c/a) уменьшается на фоне увеличивающейся плотности керамики ТР. Наиболее высокая $\rho_{\rm exp}$ свойственна ТР, прошедшему МА в течение 15 min, что коррелирует с характером зеренного ландшафта таких образцов с многочисленными ансамблями плотноупакованных кристаллитов (выделены пунктиром на рис. 3).

Обращает на себя внимание факт кристаллизации зерен в виде геометрических фигур правильной формы — параллелепипедов. Это, как мы отмечали в наших работах [36,37], наблюдается в тех случаях, когда рекристаллизационное спекание осуществляется с участием жидкой фазы (ЖФ). В нашем эксперименте ее источни-

Рис. 2. Зависимости параметров a (1), c (2) степени тетрагональности $(c/a-1)\cdot 10^{-3}$, объема, V, тетрагональной ячейки, плотности керамики: экспериментальной, $\rho_{\rm exp.}$, (3), рентгеновской, $\rho_{\rm XR}$, (4) и относительной, $\rho_{\rm rel.}$, от времени механоактивации исследуемого TP.

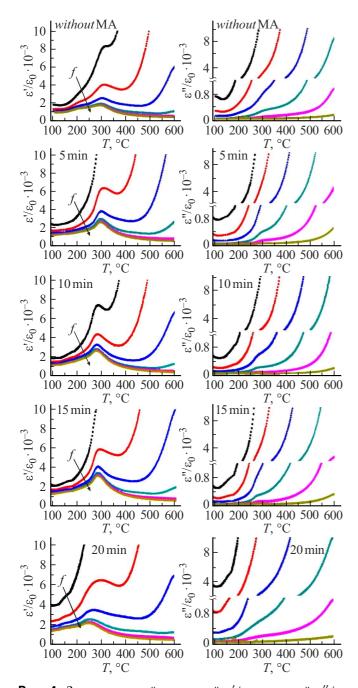
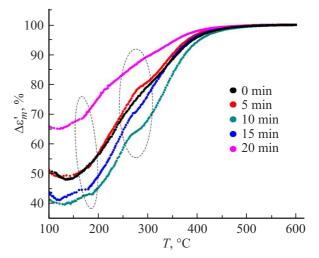

ком могут быть непрореагировавшие исходные реагенты или же низкоплавкие эвтектики в шихтах ниобатов и танталатов натрия, калия, лития с температурами

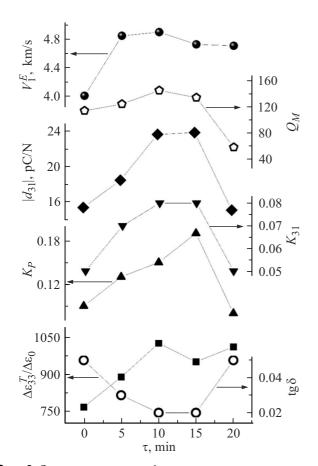
Рис. 3. Фрагменты микроструктур керамик исследуемого TP, полученного с применением механоактивации в течение 0 (a), 5 (b), 10 (c), 15 (d), 20 min (e).

плавления, $T_{\rm melt}$, менее $1000\,^{\circ}{\rm C}$: $K_2{\rm O}$ с $T_{\rm melt}=740\,^{\circ}{\rm C}$; ${\rm Sb_2O_5}$ с $T_{\rm melt}=350\,^{\circ}{\rm C}$; ${\rm Bi_2O_3}$ с $T_{\rm melt}=817\,^{\circ}{\rm C}$; ${\rm Na_2CO_3}$ с $T_{\rm melt}=854\,^{\circ}{\rm C}$; ${\rm K_2CO_3}$ с $T_{\rm melt}=891\,^{\circ}{\rm C}$; ${\rm Li_2CO_3}$ с $T_{\rm melt}=732\,^{\circ}{\rm C}$; NaOH с $T_{\rm melt}=323\,^{\circ}{\rm C}$; KOH с $T_{\rm melt}=405\,^{\circ}{\rm C}$; LiOH с $T_{\rm melt}=462\,^{\circ}{\rm C}$ [38].

Спектроскопические исследования диэлектрических свойств анализируемого ТР показали, что зависимости $\varepsilon/\varepsilon_0(T)$ в широком диапазоне частот переменного электрического поля (рис. 4) имеют вид, характерный для сегнетоэлектриков с размытым фазовым перехо-


Рис. 4. Зависимости действительной $\varepsilon'/\varepsilon_0$ и мнимой $\varepsilon''/\varepsilon_0$ частей относительной комплексной диэлектрической проницаемости от температуры в TP, полученных с применением механоактивации в течение $0-20\,\mathrm{min}$ (f — частота электрического поля, стрелка указывает направление увеличения частоты от $1\,\mathrm{Hz}$ до $100\,\mathrm{kHz}$).

дом: частотно-независимый пик $\varepsilon/\varepsilon_0$, увеличение его размытия и снижение значения максимума $\varepsilon/\varepsilon_0$ при увеличении частоты. Заметна сильная дисперсия $\varepsilon/\varepsilon_0$ в окрестности сегнето-параэлектрического перехода и ее нарастание выше температуры Кюри. Это, скорее всего, обусловлено окислительно-восстановительными процессами, протекающими в TP при высоких темпе-


ратурах, когда изменяется степень окисления ионов с переменной валентностью $(Nb^{5+} \leftrightarrow Nb^{4+})$ [39] и образуются кислородные вакансии [40], движение которых под действием приложенного электрического поля становится причиной возрастания электропроводности ТР. С возрастанием длительности МА температура начала этого процесса снижается.

На рис. 5 показана зависимость глубины частотной дисперсии диэлектрической проницаемости в окрестности температуры Кюри, $\Delta \varepsilon_m$, от длительности воздействия МА. Видно, что на начальном этапе (до 5 min) $\Delta \varepsilon_m$ практически не меняется по сравнению с немеханоактивированным образцом. При увеличении времени MA (до 10 min.) $\Delta \varepsilon_m$ уменьшается по мере удлинения режима механообработки композиции, затем (до 15 min) $\Delta \varepsilon_m$ незначительно возрастает, а при длительной MA (20 min и выше) — возрастает резко. Таким образом, наиболее устойчива структура ТР после его МА в течение 10-15 min, что мы видим и на рис. 6, где показаны зависимости от длительности МА электрофизических характеристик ТР с экстремумами величин при таких режимах МА. Возвращаясь к рис. 5, отметим, что на зависимостях $\Delta \varepsilon_{\it m} = f(\tau)$ заметны две аномалии при $T = 170\,^{\circ}\text{C} - 190\,^{\circ}\text{C}$ и $250\,^{\circ}\text{C} - 300\,^{\circ}\text{C}$, которые вероятно связаны, с переходами из одной сегнетоэлектрической фазы в другую, а также с переходом кубическая фазатетрагональная [1,41].

Все вышесказанное подтверждает известную корреляционную связь состав-структура-свойства в подобных ТР. Вышеописанное состояние внутренней структуры ТР (кристаллической, зеренной), а также их высокая плотность и практическая беспористость, реализуемые при определенных технологических условиях, обеспечивают двукратное снижение диэлектрических потерь и, как следствие, высокий уровень макрооткликов, Но стоит отметить еще один фактор. Особенностью синтеза

Рис. 5. Зависимости глубины частотной дисперсии, $\Delta \varepsilon_m'$, от температуры в исследуемом TP, механоактивированном в течение $0{-}20$ min.

Рис. 6. Зависимости электрофизических параметров исследованного TP от времени механоактивации.

и спекания нашего объекта, как мы говорили выше, является присутствие в процессе этих технологических операций ЖФ, которые могут способствовать образованию межкристаллитного промежуточного слоя (рис. 2), благоприятствующего снижению внутреннего трения и, в итоге, улучшению передачи электромеханического сигнала. При переходе к длительным режимам МА (20 min и более) велика вероятность конгломерации мельчайших частиц, образования их ансамблей и, как результат, снижения межчастичной удельной поверхности. Это значительно затрудняет процессы фазообразования и приводит к ослаблению макрооткликов, что мы и видим на практике (рис. 6).

Заключение

Таким образом, работе установлены оптимальные условия приготовления высокоплотного, практически беспримесного $K_{0.432}Na_{0.508}Li_{0.06}Nb_{0.846}Ta_{0.094}Sb_{0.06}O_3$, модифицированного 1.5 mass% ($Bi_2O_3+Fe_2O_3$) и $CuNb_2O_6$. Показано, что наиболее устойчивая структура ТР с наименьшим количеством примесной фазы и имеющая наибольшую плотность образуется после MA в течение 10-15 min.

Указанные технологические условия обеспечивают двукратное снижение диэлектрических потерь в материале, а также улучшение электромеханических свойств за счет участия в спекании ЖФ, которая способствует образованию межкристаллитного промежуточного слоя, благоприятствующего снижению внутреннего трения.

Полученные результаты целесообразно принимать во внимание при разработке подобных материалов и устройств на их основе.

Финансирование работы

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Государственное задание в сфере научной деятельности). Проект № FENW-2023-0010/(Г30110/23-11-ИФ), тема "Мультикомпонентные интеллектуальные структуры: фазопереходные кроссинг-эффекты и стратегии ускоренного дизайна эко-систем для технологий цифрового проектирования устройств контроля параметров физических сред". Использовано оборудование Центра коллективного пользования Научноисследовательского института физики Южного федерального университета "Электромагнитные, электромеханические и тепловые свойства твердых тел" и Центра коллективного пользования Института высоких технологий и пьезотехники Южного федерального университета "Высокие технологии".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] B. Jaffe, W.R. Cook, H. Jaffe. *Piezoelectric ceramics* (Academic Press, London and NY, 1971)
- [2] J.J. Zhou, J.F. Li, X.W. Zhang. J. Eur. Ceram. Soc., 32, (2012). DOI: 10.1016/j.jeurceramsoc.2011.09.001
- [3] D. Bochenek, P. Niemiec, R. Skulski, M. Adamczyk-Habrajska. J. Phys. Chem. Solids, 133, (2019). DOI: 10.1016/JJPCS.2019.05.015
- [4] P. Niemiec, D. Bochenek, D. Brzezińska. Ceram. Int., 49, 22 (2023). DOI: 10.1016/j.ceramint.2023.08.249
- [5] X. Qi, P. Ren, X. Tong, X. Wang, F. Zhuo. J. Euro. Ceram. Soc., 45 (1), 116874 (2025). https://doi.org/10.1016/j.jeurceramsoc.2024.116874
- [6] D. Hou, H. Fan, A. Zhang, Y. Chen, F. Yang, Y. Jia, H. Wang,
 Q. Quan, W. Wang. Ceram. Int., 47 (24), 34059 (2021).
 DOI: 10.1016/j.ceramint.2021.08.315
- [7] I.A. Verbenko, O.N. Razumovskaya, L.A. Shilkina,
 L.A. Reznichenko, K.P. Andryushin. Inorgan. Mater.,
 45 (6), 702 (2009). DOI: 10.1134/S0020168509060211
- [8] J. Zhang, Y. Qin, Y. Gao, W. Yao, M. Zhao. J. Am. Ceram. Soc., 97, 3 (2014).
- [9] W. Yao, J. Zhang, X. Wang, C. Zhou, X. Sun, J. Zhan. J. Eur. Ceram. Soc., 39 (2-3), 287 (2019). doi.org/10.1016/j.jeurceramsoc.2018.09.017

- [10] X.A. Вербенко, Салыков. И.А. Л.А. Швецова, A.B. Павленко, Л.А. Шилкина. Конструкции ИЗ композиционных материалов, (2013). [H.A. Sadykov, I.A. Verbenko, L.A. Reznichenko, S.I. Shevtsova, A.V. Pavlenko, L.A. Shilkina. Konstrukcii iz Kompozicionnykh Materialov, 3, (2013).]
- [11] Y. Song, T. Liu, H. Feng, Y. Li, X. Zhang, L. Wang, B. Liu, J. Zhang, Li. Adv. Funct. Mater., 32 (2022). https://doi.org/10.1002/adfm.202204385
- [12] А.Г. Абубакаров, И.А. Вербенко, Х.А. Садыков, Л.А. Резниченко, К.П. Андрюшин. В сб.: Фундаментальные проблемы радиоэлектронного приборостроения. (Россия, М., 2013), т. 13, № 2. с. 91.
- [13] F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D.A. Hall.
 J. Europ. Ceram. Soc., 31 (4), 569 (2011).
 DOI: 10.1016/j.jeurceramsoc.2010.10.033
- [14] M.-R. Yang, S.-Y. Chu, C. Kung, I.-Hao Chan, S.-L. Yang. J. Alloys. Compd., **522**, 3 (2012). DOI: 10.1016/j.jallcom.2011.10.062
- [15] X. Tan, H. Fan, S. Ke, L. Zhou, Y.-W. Mai, H. Huang. Mater.
 Res. Bull., 47 (12), 4472 (2012).
 DOI: 10.1016/j.materresbull.2012.09.049
- [16] Х.А. Садыков, И.А. Вербенко, Л.А. Резниченко, А.Г. Абубакаров, Л.А. Шилкина. Экология промышленного производства, 2, (2013). [H.A. Sadykov, I.A. Verbenko, L.A. Reznichenko, A.G. Abubakarov, L.A. Shilkina. Ehkologiya Promyshlennogo Proizvodstva, 2, (2013).]
- [17] Y. Zhen, J.F. Li. J. Am. Ceram. Soc., 89, 12 (2006). https://doi.org/10.1111/j.1551-2916.2006.01313.x
- [18] Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, N. Setter. Ceramics, J. Am. Ceram. Soc., 90, 11 (2007). DOI: 10.1111/j.1551-2916.2007.01962.x
- [19] A. Popovic, L. Bencze, J. Karuzo, B. Malik. RSC Adv., 5, 93 (2015). DOI: 10.1039/C5RA11874C
- [20] H.-C. Thong, A. Payne, J.-W. Li, Y.-Y.-S. Cheng, J.L. Jones,
 K. Wang. Acta Mater., 211, 116833 (2021).
 DOI: 10.1016/j.actamat.2021.116833
- [21] В.П. Сахненко, Н.В. Дергунова, Л.А Резниченко. Энергетическая кристаллохимия твердых растворов соединений кислородно-октаэдрического типа и моделирование пьезокерамических материалов (РГПУ, Ростовна-Дону, 1999)
- [22] J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura,
 D. Damjanovic. J. Eur. Ceram. Soc., 35, 6 (2015).
 DOI: 10.1016/J.JEURCERAMSOC.2014.12.013
- [23] J. Karuzo, A.J. Bell, T. Frömling, K.G. Weber, K. Wang, J. Rödel. J. Materiomics, 4 (1), 13 (2018). DOI: 10.1016/J.JMAT.2018.02.001
- [24] A.I. Miller, I.A. Verbenko, L.A. Shilkina, L.A. Reznichenko, A.A. Gusev. Bull. Russ. Academy Sci.: Phys., 76 (7), 798 (2012). https://doi.org/10.3103/S1062873812070258
- [25] Е.В. Глазунова, Л.А. Шилкина, К.П. Андрюшин, И.Н. Андрюшина, И.А. Вербенко, Л.А. Резниченко, А.В. Нагаенко. Конструкции из композиционных материалов, 3, 155 (2019). [E.V. Glazunova, L.A. Shilkina, K.P. Andryushin, I.N. Andryushina, I.A. Verbenko, L.A. Reznichenko, A.V. Nagaenko. Konstrukcii iz Kompozicionnykh Materialov, 3, 155 (2019).]

- [26] А.И. Миллер. Технологии получения функциональных материалов с участием сегнетоэлектриков, релаксоров, мультиферроиков, электрофизические свойства и механоактивационные явления в них (Канд. дисс., 2015), 168 с.
- [27] В.А. Полубояров, О.В. Андрюшкова, И.А. Паули, З.А. Коротаева. Влияние механических воздействий на физико-химические процессы в твердых телах: моногр. (НГУ, Новосибирск, 2011)
- [28] Я.Ю. Зубарев, А. В. Нагаенко, Л.А. Шилкина, Е.В. Глазунова, И.Н. Андрюшина, Л.А. Резниченко. Тр. Кольского НЦ РАН, 9 (2—2), (2018). DOI: 10.25702/KSC.2307-5252.2018.9.1.625-631
- [29] E.V. Glazunova, I.A. Verbenko, L.A. Shilkina, K.P. Andryushin, A.V. Nagaenko, L.A. Reznichenko. SPM, 10 (2021). DOI: 10.1007/978-3-030-76481-4_8
- [30] E.G. Avvakumov, A.M. Potkin, V. Bertznyak. (Patent RF. No.1584203A1, B O2 C17/08. Planetary mill. M. Publ. 18.06.87)
- [31] И.В. Милюкова, С.В. Собянин. Вестник Югорского гос. ун-та, **4**, 51 (2018).
- [32] Е.Г. Фесенко. Семейство перовскита и сегнетоэлектричество. (Атомиздат., М., 1972)
- [33] Ю.В. Быков, С.В. Егоров, А.Г. Еремеев, И.В. Плотников, К.И. Рыбаков, А.А. Сорокин, В.В. Холопцев. ЖТФ, **88** (3), 402 (2018). DOI: 10.21883/JTF.2018.03.45598.2398 [Y.V. Bykov, S.V. Egorov, A.G. Eremeev, I.V. Plotnikov, K.I. Rybakov, AA. Sorokin, V.V. Kholoptsev. Tech. Phys., **63**, 391 (2018). https://doi.org/10.1134/S106378421803005]
- [34] K. Andryushin, I. Andryushina, H. Sadykov, A. Nagaenko, L. Reznichenko. J. Advanced Dielectrics, 10, 2060012 (2020). DOI: 10.1142/s2010135x20600127
- [35] IEEE Standard on Piezoelectricity (ANSI/IEEE Std 176-1987, N.Y., 1988), DOI: 10.1109/IEEESTD.1988.79638
- [36] L.A. Reznichenko, L.A. Shilkina, O.N. Razumovskaya, S.I. Dudkina, E.S. Gagarina, A.V. Borodin. Inorganic Mater., 39, 139 (2003). https://doi.org/10.1023/A:1022194512814
- [37] E.V. Glazunova, L.A. Shilkina, K.P. Andryushin, A.V. Nagaenko, I.A. Verbenko, L.A. Reznichenko. Ferroelectrics, 591, 1 (2022). https://doi.org/10.1023/A:1022194512814
- [38] Электронный ресурс. *Справочник химика 21. Химия и химическая технология*. Режим доступа: chem21.info>index/
- [39] G.G. Vezzoli. Phys. Rev. B, 26, 3954 (1982). https://doi.org/10.1103/PhysRevB.26.3954
- [40] C.N.R. Rao, J. Gopalakrishnan. New Directions in Solid State Chemistry. Structure, synthesis, properties, reactivity and materials design (Cambridge university Press., N.Y., 1990)
- [41] J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao. J. Am. Ceram. Soc., **96** (2013). DOI: 10.1111/jace.12715