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One-dimensional carbon structures formed on transition metal oxides
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We consider epitaxial cumulene as a carbon chain formed in a groove on a transition metal oxide (TMO) face.

A simple model of the density of states of TMO is proposed. A model of a one-dimensional analogue of graphene

oxide (1DGO) has been constructed, which is a decorated cumulene, every second atom of which is bonded

to an oxygen atom (C2O). It has been shown that decoration leads to the opening of a gap in the electronic

spectrum. Estimates of the influence of the TMO substrate (TiO2) on the spectral characteristics, effective masses,

and densities of states of cumulene and 1DGO are presented.
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1. Introduction

The advent of graphene materials triggered the search

for new two-dimensional (2D) compounds [1–5]. Interest

in one-dimensional (1D) structures has also increased: see

references in Refs. [6–8], where analytical expressions for

dispersion, effective carrier masses, and densities of free

carbines were obtained in the strong coupling approx-

imation [6,7], and also discussed the experimental and

theoretical prerequisites for the creation of long carbon

chains on grooved faces of d-metals [8]. Here, a similar

problem is considered for substrates representing transi-

tion metal oxides (TMO) [9–17], the grooved faces of

which [9,10], as in the case of d-metals [8], presumably

should contribute to the formation of one- and quasi-one-

dimensional epitaxial structures. It should be emphasized

that TMO were chosen as a substrate not only because of

the crystallographic specificity of the faces, but also because

of the peculiarities of their electronic structure: the energy

differences between dn- and dn±1-electron configurations are

small in TMO [9,10]. As a result, many transition metals

form a whole set of oxides: for example, for vanadium

we have VO, V2O3, VO2, V2O5, where the charge of

vanadium atoms is formally equal to +2, +3, +4 and

+5. Intermediate valence states are also possible, since the

TMO series has mixed states and nonstoichiometric phases

of variable composition [9,10].

The band structure of semiconductor TMO is a valence

band formed predominantly by 2p-states of oxygen, sepa-

rated by a band gap from the conduction band formed by

TM (d- and valence s-states) [9,10], which can be quite

narrow (especially for 3d-oxides), so ignoring the electron-

electron and electron-phonon interactions are not always

acceptable. Accounting for the first of these interactions

requires the introduction of Hubbard electron repulsion,

which, for example, leads to a magnetic insulator state

for NiO, accounting for the second makes it necessary to

introduce the concept of a polaron. High-temperature super-

conductors La1.85Sr0.15CuO4 and YBa2Cu3O7−x should also

be mentioned. Thus, TMO substrates represent a promising

platform for the formation of epitaxial 1D structures, the

properties of which, due to the proximity effect, may

significantly differ from their properties in the free state.

The standard cumulene as a seed structure and decorated

cumulene where every second atom of the carbon chain

is connected to an oxygen atom considered as a one-

dimensional analog of graphene oxide are considered as

epitaxial layers.

2. Electronic spectrum of epitaxial
carbon chains

2.1. General ratios

Let us use the adsorption approach to describe the

effect of the substrate on the electronic spectrum of the

epitaxial structure [8,18]: if the Green’s function of the free

structure is G(ω, k) = (ω − ε(k) + i0+)−1, where ε(k) is

the dispersion law, k is the wave vector, then the Green’s

function of the epistructure G̃(ω, k) is determined by the

Dyson equation G̃−1(ω, k) = G−1(ω, k) − 6(ω). The self-

energy in this equation is 6(ω) = 3(ω) − iŴ(ω), where the

functions of broadening and shifting the energy levels of the

free structure are equal, respectively

Ŵ(ω) = πV 2ρsub(ω), 3(ω) = π−1P

∞
∫

−∞

Ŵ(ω′)dω′

ω − ω′
, (1)

V is the matrix element of interaction of free structure states

with substrate states, ρsub(ω) is the density of substrate

states, P is the symbol of the principal integral value. Thus,
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for further analysis, it is necessary to define an expression

for the density of states of the TMO substrate ρTMO(ω),
where ω is the energy. Based on the results of numerical

calculations [9–17], performed using various variants of the

density functional theory (DFT), we represent ρTMO(ω) as

the sum of the densities of states of the valence band ρV(ω)
and the conduction band ρC(ω):

ρTMO(ω) = ρV(ω) + ρC(ω). (2)

Since, according to [9–17], the band is formed by oxygen

p-states, and the conduction band is formed by TM d-states,
let’s assume that

ρV,C(�V,C) =

{

ρ̄V,C, |�V,C| ≤ WV,C/2,

0, |�V,C| > WV,C/2.
(3)

Here ρ̄V,C is the constant, �V,C = ω − ω̄V,C, ω̄V,C is the

energy of the center of the valence band / conduction band,

WV,C is the width of the valence band / conduction bands.

Then ω̄C − ω̄V = Eg + (WV + WC)/2, where Eg is the width

of the TMO band gap. Expressions (2) and (3) are a

combination of Haldane-Anderson models for semiconduc-

tors [19,20] and Friedel models for TM [8,21]. Since

Ŵ̄V,C = πρ̄V,CV 2
V,C, where VV,C is the matrix element of the

interaction of the electronic states of the 1D structure and

the states of the valence band / conduction band of TMO,

we obtain from (1) and (2)

3TMO(ω) = 3V(ω) + 3C(ω), (4)

3V,C(�V,C) =
Ŵ̄V,C

π
ln

∣

∣

∣

∣

�V,C + WV,C/2

�V,C −WV,C/2

∣

∣

∣

∣

. (5)

A nonmagnetic TM was considered in expres-

sions (2)−(5), a generalization of the Friedel model for

the presence of TM magnetization is given in Ref. [21].
In this case, we need to represent the density of

states of the conduction band formed by TM d-states

as ρC(ω) = 6σ ρ
σ
C(ω), where σ = (↑, ↓) is the spin in-

dex, ρσ
C(ω) = ρ̄C/2 for |�σ

C| ≤ WC/2 and ρσ
C(ω) = 0 at

|�σ
C| > WC/2, �

σ
C = ω − ω̄σ

C , ω̄
σ
C is the energy of the center

of σ -subband of the conduction band. Then we obtain

Ŵ̄σ
C = Ŵ̄C/2 and 3C(ω) = 6σ3

σ
C(ω). Thus, the initially non-

magnetic structure acquires magnetization in the epitaxial

state (proximity effect).

2.2. Estimates of model parameters

Let’s assume that ρ̄V = 6/WV and ρ̄C = 10/WC, where 6

and 10 are the numbers of p- and d-states, WV,C is the width

of the valence band / conduction band. According to exper-

imental and numerical calculations for 3d monoxides, we

have Eg ≈ 2−4 eV, WV ≈ 8 eV and WC ≈ 2−3 eV [11–13].
Then ρ̄V ≈ 0.75 eV−1, ρ̄C ≈ 4 eV−1. Let us now estimate

the values of the matrix elements VV,C using the Harrison

formulas [22–24]. Understanding VV as the matrix element

of σ -bonds of the p-states of carbon and oxygen atoms,

let us assume VV = Vppσ = 2.22 · ~2/(m0 · l2CO), where ~ is

the reduced Planck constant, m0 is the mass of the free

electron, lCO is the length of bond C−O [23]. The

matrix element linking the p-state of carbon with the d-

state of TM, VC = Vpdσ = 2.95 · ~2r3/2d /(m0 · l7/2CTM), where

rd is the radius of the d-shell (∼ 1 Å [22]), lCTM is the

length of the bond C−TM (we use here the formula

given in Chapter 19 of Ref. [22] for ordinal estimates

of the matrix element, rather than the more complex

expression from Ref. [24]). As in Ref. [22], we assume that

lCO = ra (C) + ra (O) and lCTM = ra(C) + ra(TM), where

ra is the atomic radius. We obtain Ŵ̄C/Ŵ̄V ≈ 2 using the

values ra from Ref/ [25] and assuming lCO ≈ lCTM ≈ 2 Å
for a rough estimate. The dependences 3V(ω), 3C(ω), and
3TMO(ω) for the nonmagnetic case are shown in Figure 1. It

should be noted that the shift and broadening of the states of

1D structures in the case of a TM substrate are determined

by the functions 3C(ω) and ŴC(ω), which describe the

effect of the d-band of the transition metal conductivity.

3. Cumulene decorated with oxygen
atoms as a 1D analog
of graphene oxide

A number of free one-dimensional structures were con-

sidered in Ref. [8]: monatomic and diatomic chains and

the quasi-one-dimensional structure ABC . We consider in

this paper the 1D analog of the two-dimensional graphene

oxide 2DGO [26–29], or 1DGO. We would like to remind

that 2DGO has the graphene structure, but contains oxygen

(C−O−C, C=O) and/or functional groups of the type

(−OH, −COOH). As a basis for simulation, let’s take the

Hoffmann structural model of two-dimensional graphene

oxide (GO) (corresponding to the chemical formula C2O),
for which the structure ABC is suitable (see Figure 1

in [8]), where the atoms A and B denote carbon, and the

atoms C denote oxygen. 1DGO can be considered as a

decorated cumulene, where every second carbon atom is

bound to an oxygen atom.

Using the formula (5) from [8] and introducing the nota-

tion εA = εB = ε(C) = ε, εC = ε(O) = ε − δ, � = ω − ε,

we obtain the equation

(� + δ)
[

�2 − 4t2 cos2(ka)
]

−�t2⊥ = 0, (6)

the roots of which determine the dispersion of electrons in

1DGO. It is useful to further consider three special cases:

1) if t⊥ = 0 we have ω0 = −δ

and ω± = ±2t cos(ka) (cumulene);

2) if t = 0 we have ω0 = 0

and ω± = −δ ±
√

δ2 + 4t2
⊥
/2 (CO dimer);

3) if δ = 0 we have ω0 = 0

and ω± = ±2t
√

cos2(ka) + t2
⊥
/t2.
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Proceeding to the solution of equation (6), we would like

to note, first, that the atomic radii of carbon and oxygen are

almost the same [25] (as well as the lengths of bonds C−C

and C−O), so that t ≈ t⊥ and t ≈ 2.8−3 eV [6,7,30,31].
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Figure 1. Functions of the shift caused by the valence band

3V(ω) (curve 1) and conduction band 3C(ω) (2) and their sum

3TMO(ω) (3); Ebot
V and E top

C are the energies of the bottom and

ceiling of the valence band and the conduction band. The zone

of valence s-states lying above E top

C is not shown in the figure.

The value of Eg/2 = 1.5 eV is taken as a unit of energy: WV = 5,

WC = 2, Ŵ̄V = 3.0, ω̄V = −3.5, Ŵ̄C = 3.5, ω̄C = 2.
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Figure 2. Zones of decorated cumulene C2O ωi(k), where

i = 1, 2, 3 (shown by red color), and CO dimer levels (shown
by blue color): ε = 0, t = t⊥ = 1 and δ = 2.

According to the tables of Mann atomic terms [23], we

obtain δ = 5.7 eV, which allows us to assume δ = 2t . The

dependencies ωi (k) obtained from solving the equation (6)
are shown in Figure 2. The widths of the bands are equal:

W1 ≈ 1.71t, W2 ≈ 1.41t, W3 ≈ 0.37t; the width of the gap

at the border of the Brillouin band is 1 = 0.41t . We obtain

the following in the limit qa ≪ 1 by introducing the wave

vector q = π/(2a) − k and assuming ε = 0

ε1,3(q) = ε̄1,3 + ν1,3(q), ε2(q) = −(4t2δ/t2⊥)(qa)2, (8)

ε̄1,3 = δ
[

−1±
√

1 + 4t2
⊥
/δ2

]

/2,

ν1,3(q) =
4t2(ε̄1,3 − δ)

3ε̄21,3 − 2ε̄1,3δ − t2
⊥

, (9)

where ε̄1 =
(

−δ +
√

δ2 + 4t2
⊥

)

/2, ε̄2 = 0, ε̄1 =

=
(

−δ +
√

δ2 + 4t2
⊥

)

/2. The effective masses are

m1,3 = ~
2(3ε̄21,3 − 2ε̄1,3 − t2

⊥
)/[8t2a2ε̄1,3 − δ)] and

m2 = ~
2t2
⊥
/(8t2a2δ); we obtain m∗

1,2 = m∗ ≈ 0.1 and

m∗
3 ≈ 1.2 for dimensionless effective masses m∗ = m/me,

where me is the mass of a free electron, where we

assume a = 1.28 Å, which corresponds to the interatomic

distance in cumulene [6,7]. Then, in the two-band

approximation, the 1DGO spectrum can be represented

as EV,C(q) = Eg/2∓ ~
2q2/(2m∗me), where Eg = 0.41t . It

is easy to show that for ω → ε̄i , the densities of states

corresponding to the branches of the spectrum εi(q) have

the form

ρi(ω) =
a
√

|mi |2

~
√

|ε̄i − ω|
(10)

for ω > ε̄1, ω < ε̄2,3 and ρi(ω) = 0 in the opposite cases.

We would like to underline that the root features of the

density of states are characteristic of all one-dimensional

structures considered in Ref. [8].
It should be noted that the decoration of carbon 1D

chains with oxygen atoms of the TMO substrate seems quite

likely and natural, since all oxides exhibit nonstoichiometry

associated with oxygen deficiency (i. e., with the loss of

some oxygen atoms). Therefore, here we can consider

1DGO both as a free and as a kind of epitaxial structure.

4. Cumulene and1DGO on the surface
of TiO2 (simple estimates)

It follows from the comparison of the Green’s functions

G(ω, k) and G̃(ω, k) that the energy ω should be replaced

by ω̃ = ω − 3(ω) [6–8]. Then, instead of the effective

masses of the free chains m, we obtain the masses m̃,

determined by the ratio

m̃/m = F(ωext), F(ω) = (1− d3(ω)/dω)−1
ωext

, (11)

where ωext is the energy of the extremum of the band. We

obtain from (5)

d3V,C(ω)/dω =
V 2
V,C

�2
V,C − (WV,C/2)2

. (12)
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Thus, if the energy ωext is in the band gap of the TMO

substrate, then d3(ω)/dω < 0 and m̃/m < 1.

The values of the work function for titanium dioxide ϕTiO2

are 4.2−4.3 eV [32], 4.6 eV [33]; the values 5.2−5.8 eV are

provided in Ref. [34] for (110)TiO2 . The variation of values

is explained, in most cases, by the nonstoichiometry of TiO2.

We have Eg = 3.2 eV for (110)TiO2 [35,36]. Graphene and

graphite have the same work functions ϕGr = 4.5 eV [37];
the work functions of monolayer and bilayer graphene

also slightly differ (4.6 eV [38]). Therefore, we assume

ϕcum = 4.6 eV for ordinal estimates. Assuming the work of

ϕTiO2
= ϕcum = 4.6 eV, and assuming that the Dirac point

of cumulene ε lies at 4.6 eV below the vacuum level, we

conclude that the band gap of titanium dioxide is located

in the energy range (−0.57t, 0.57t), where ε is still the

beginning of the energy reference. Now it is obvious

that the 1DGO gap (0, 0.41t) is inside the band gap of

graphene dioxide (i. e., the 1DGO|TiO interface2 is a type I

heterojunction [39,40]), so we have F = m̃/m < 1. The

estimates show that for the considered case F ≈ 0.1.

Since the gap in the 1DGO spectrum overlaps

with the band gap of TiO2, the self-energy transfer

6(ω) = 3(ω) − iŴ(ω) in the expression for the Green’s

function G̃−1(ω, k) = G−1(ω, k) − 6(ω) is reduced to

3(ω), since Ŵ(ω) = 0. Hence, the density of states ρ̃i(ω)
of 1DGO epitaxial structure is determined by a modified

formula (10) of the form

ρ̃i(ω) =
a
√

|m̃i |/2

~
√

|ε̄i − ω̃|
, (13)

where ω̃ = ω − 3(ω) and 3(ω) are given by (4) and (5).
We would like to underline that the expression (13) is

valid only in the energy range (0, 0.41t). The same

transformation should be applied to the density of states

of free cumulene ρ̃±
cum(ω) to obtain the density of states of

epitaxial cumulene ρ̃±
cum(ω) (see formula (11) in [8]).

It should be noted also that under the condition

ϕsub = ϕepi, there is no charge transfer between the sub-

strate (with work function ϕsub) and the epitaxial structure

(with work function ϕepi). According to our estimates, this

is the case for epitaxial cumulene and 1DGO.

5. Concluding remarks

Another feature of TMO that was not noted in the

paper is the high values of static permittivity εst, equal,

for example, to 25 for ZrO2 and HfO2 and equal to 80 for

TiO2 [41,42]. For comparison: we have εst ≈ 3.9 [41] and
εst ≈ 10 [43] for SiO2 and SiC, respectively, εst ≈ 2−15 for

graphene [31,44]. There is an unprecedented spread of data

on static permittivity for GO: the values of εst from units

to 105 are provided for room temperature and a frequency

of 100Hz [44–46]. Despite the noted uncertainty of the

data, the 1DGO|TiO2 system can be considered as a system

with high dielectric susceptibility (high-κ system [47]). We

would also like to note the recent increased interest in small-

radius polarons in TMO [48–50].
Summing up the results of this work, we would like to

note that we proposed (the first, as far as the author knows)
a model of one-dimensional cumulene oxide (1DGO) and

showed that the addition of oxygen atoms to every second

carbon atom leads to the opening of a gap in the electronic

spectrum. It is known [26] that the gap width in the

2DGO spectrum depends on the degree of its oxidation and

decreases to zero when the last bond C−O is removed. The

same effect is observed in our proposed 1DGO model. We

propose to further introduce Coulomb and electron-phonon

interactions into the 1DGO model according to the diagrams

developed in Ref. [6,51,52].
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