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A problem of electromagnetic wave scattering on axisymmetric inhomogeneous magneto-dielectric objects is

considered. A modified algorithm based on the hybrid projection method is developed for providing an option of

taking into account not only variable profile of dielectric permittivity of the object as it took place in the previous

publications, but also variable profile of magnetic permeability. The new modification is applied for comparative

analysis of plane wave focusing by a hemispherical Maxwell lens and a cylindrical Mikaelian lens with axial

symmetry. The results obtained with use of the hybrid projection method are compared to the results obtained

by the method of surface integral equations applied to layered models of the lenses. Some results demonstrating

the influence of matching the lens surfaces to free space by means of using identical profiles of permittivity and

permeability on the quality of focusing are presented and discussed.
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Introduction

The well-known
”
fisheye“ Maxwell lens [1,2] and

Mikaelyan lens [3,4] continue to be of interest to the re-

searchers and development engineers in optics and antenna

technology up to the present day. Expression of the interest

takes place both in development of new technologies for

manufacture of these lenses on the basis of artificial dielec-

tric [5–7] with use of three-dimensional printing of the di-

electric elements [8], and in development of new numerical

methods the effective design of the Maxwell and Mikaelian

lenses and for analysis of their characteristics [9,10].

The analysis of the focusing properties of Maxwell and

Mikaelian lenses in the frame of approximations of geomet-

ric optics is described in a few books, e.g. in [11–13], and
in a number of other publications. Analysis of the dielectric

lenses under consideration in a rigorous statemen of the

problem was carried out by various numerical methods,

including methods implemented in the well-known CST

Microwave Studio Suite package, such as in jcite7, the finite

element method jcite14 and the hybrid projection method

(HPM) in [9,10], where positive features of the latter in

comparison with other methods are described.

The results obtained in [9,10] in the process of numerical

analysis of axisymmetric purely dielectric Maxwell and

Mikaelian lenses demonstrate that focusing of an incident

plane wave is accompanied with partial reflection from flat

the surfaces in both lenses and significant field oscillations

inside the Mikaelian lens. The indicated effects are caused

by the mismatch of the lens surfaces with free space, leading

to reduction in quality of focusing. One of the possible

ways to reduce reflections from the lens surface is to use

magneto-dielectric materials with a wave resistance equal to

the wave resistance of free space.

The purpose of the present study includes development of

a new HPM modification, which allows taking into account

not only the variable profile of dielectric permittivity in an

axisymmetric body in general case, but also the variable

profile of magnetic permeability, as well as application of

the indicated modification for a comparative analysis of the

focusing properties of a hemispherical Maxwell lens and

a cylindrical Mikaelian lens made of a magneto-dielectric

material.

HPM modification

Let’s consider an inhomogeneous magneto-dielectric

body of revolution located in free space in Cartesian

coordinates x , y , z and spherical coordinates r , θ, ϕ, as
shown in Fig. 1. The indicated body is characterized by

relative permittivity ε(r, θ) and relative permeability µ(r, θ),
depending on the radial coordinate r and the angular

coordinate θ. The body of revolution under consideration

is assumed to be excited by a harmonic homogeneous

plane electromagnetic wave of specified amplitude and
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polarization, and the aim of the problem consists in

determining both the electromagnetic field passed inside the

body and the field scattered into free space.

According to the approach described in jcite9, when

solving the problem of exciting a purely dielectric body of

revolution, the body in question is surrounded by a virtual

sphere of radius a with the center located at the origin, as

shown in Fig. 1. The transverse components of the electric

and magnetic field strength vectors outside the sphere in

r ≥ a region are further represented as expansions in terms

of spherical wave functions:

Eτ (r, θ, ϕ) =
1

kr

∞
∑

q=0

q
∑

m=−q

{[

Am
1qψq(kr) + Rm

1qζq(kr)
]

Ym
1q

+
[

Am
2qψ

′
q(kr) + Rm

2qζ
′

q(kr)
]

Ym
2q

}

,

(1)

Hτ (r, θ, ϕ) = −
i

η0kr

∞
∑

q=0

q
∑

m=−q
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Am
1qψ

′
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+Rm
1qζ

′
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+Rm
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Ym
1q
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,

(2)

where Am
1q and Am

2q — known amplitudes of the inci-

dent transverse-electric (TE) and transverse-magnetic (TM)
waves, respectively; Rm

1q and Rm
2q — unknown amplitudes

of TE- and TM-waves of scattered field; ψq(. . .) — Riccati-

Bessel functions of q-th order, ζq(. . .) — Riccati-Hankel

functions of the first kind of q-th order corresponding

to the dependence on time e−iωt ; the primes on these

functions denote the derivatives with respect to the entire

argument; k = 2π/λ — wave number; λ — wavelength

in free space; η0 — wave resistance of free space;

Ym
jq(θ, ϕ) — ortho-normalized transverse vector spherical

functions corresponding to TE ( j = 1)- and TM ( j = 2)-
waves defined in [9].
The transverse components of the electric and magnetic

field strength vectors inside the sphere at 0 ≤ r ≤ a are

also represented as expansions in terms of transverse wave

functions:

Eτ (r, θ, ϕ) =

∞
∑

q=0

q
∑

m=−q

[

Em
1q(r)Ym

1q + Em
2q(r)Ym

2q

]

, (3)

Hτ (r, θ, ϕ) =
1

η0

∞
∑
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q
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m=−q

[

Hm
1q(r)Ym

2q + Hm
2q(r)Ym

1q

]

(4)

with variable coefficients Em
jq(r) and Hm

jq(r), depending on

the radial coordinate r .
Substitution of the transverse components (3) and (4)

into Maxwell equations

∇×H +
ik ε̂
η0

E = 0, (5)

x

y

z

r

a

0

θ

ϕ

ε(r, θ)

µ(r, θ)

Figure 1. Geometry of the problem in general case of magneto-

dielectric body of revolution.

∇× E− ikη0µ̂H = 0, (6)

written for the fields inside the sphere, where ε̂ = ε(r, θ),
µ̂ = µ(r, θ) inside the body and ε̂ = 1, µ̂ = 1 outside

the body of revolution allows getting the representations

for longitudinal (radial) components of the electrical and

magnetic fields as

Er (r, θ, ϕ) =
1

kr ε̂

∞
∑

q=0

q
∑

m=−q

αqHm
1q(r)Y m

3q, (7)

Hr(r, θ, ϕ) = −
1

η0kr µ̂

∞
∑

q=0

q
∑

m=−q

αqEm
1q(r)Y m

3q, (8)

where αq =
√

q(q + 1) and Y m
3q(θ, ϕ) — ortho-normalized

transverse scalar spherical functions defined in [9].
Electric fields (1) and (3), as well as magnetic fields (2)

and (4) must be continuous on the sphere surface. The

indicated conditions give the following relations between

the expansion coefficients:

Am
1pψp(ka) + Rm

1pζp(ka) = kaEm
1p(a), (9)

Am
2pψ

′
p(ka) + Rm

2pζ
′
p(ka) = kaEm

2p(a), (10)

iAm
1pψ

′
p(ka) + iRm

1pζ
′
p(ka) = −kaHm

1p(a), (11)

iAm
2pψp(ka) + iRm

2pζp(ka) = −kaHm
2p(a). (12)

Projection of Maxwell’s equations (5) and (6) onto

conjugate transverse vector functions Y m∗
j p (θ, ϕ) with taking

into account the longitudinal components (7) and (8), as
described in jcite9, leads to a system of ordinary differential

equations

k
∞
∑

q=|m|

[(

Wεpq −
αpαq

kr2
Zµpq

)

U1q − XεpqU2q

]

+ i
dV1p
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(13)
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for functions U jq(r) = krEm
jq(r) and V jq(r) = krHm

jq(r)
( j = 1, 2,m — integer number), where
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π
∫
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1q sin θdθ =

π
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ξ
T m∗
3p T m
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ξ = ε̂, µ̂, and functions Tm
jq(θ) and T m

3q(θ), ortho-

normalized in 0 ≤ θ ≤ π region, are multipliers in functions

Ym
jq(θ, ϕ) and Y m

3q(θ, ϕ) , respectively [9]. It can be

noted that the system of equations (9)−(12) for four sets

of unknown coefficients differs from the similar system

obtained in [9] for three sets of unknown coefficients in

case of a purely dielectric bodies of revolution.

The differential equations (13)−(16) are solved by a 1D

finite element method. The unknown variable coefficients

from (13)−(16) are expressed as expansions

U jq(r) =

N
∑

n=1

U jnq f n(r), (20)

V jq(r) =

N
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V jnq f n(r), (21)

where U jnq and V jnq — unknown constant coefficients, N —
number of nodes with coordinates rn = n1, 1 = a/N and

f n(r) — triangular functions with vertices located in these

nodes. Projection of differential equations (13)−(16) on

triangular functions f n′(r) results in the following system

of linear algebraic equations (SLAE):
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where δn′n — Kronecker symbol,
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ξn′n = k

a
∫

0

f n′ f nWξ pqdr, (26)

X̃ pq
ξn′n = k

a
∫

0

f n′ f nXξ pqdr, (27)

Z̃pq
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matrix elements and n′ = 1, 2, . . . , N. Integration by parts

of the last term in the left part of equation (13) and the

first term in the left part of equation (16) was carried

out with taking into account the relations (11) and (10),
respectively. The relations (9) and (12) give two more

algebraic equations

U1N p − ζp(ka)Rm
1p = Am

1pψp(ka), (31)

V2N p + iζp(ka)Rm
2p = −iAm

2pψp(ka), (32)

where U1N p = kaEm
1p(a) and V1N p = kaHm

1p(a). Account for
L of the first terms by index q in expansions (1)−(4) and

two equations (31) and (32) defines the algebraic system

order equal (4N + 2)L, for each azimuthal index m. The

matrix of the system has a block tridiagonal structure, an

example of which, corresponding to N = 4, is shown in

Fig. 2, where gray squares indicate completely filled blocks;

white areas contain only zero elements, and squares with

diagonal lines contain non-zero elements only on the main

diagonal.

The expansion coefficients obtained after solving the

algebraic system are then used to calculate the field at

specific points in space both inside and outside the virtual

sphere introduced above.
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Figure 2. Structure of SLAE matrix at N = 4, where each block

consists of L × L elements.

Numerical results

The HPM modification developed above was imple-

mented in two computer programs in MatLab language

designed for comparative numerical analysis of the focusing

properties of hemispherical Maxwell
”
fisheye“ lens and

cylindrical Mikaelian lens.

Geometry in Maxwell lens problem is illustrated in Fig. 3.

The lens radius in this case coincides with the radius a
of the virtual sphere. The radial profile of the refractive

index of the lens is determined by well-known formula

n(r) = 2/[1 + (r/a)2] [11–13]. The profile of dielectric

permittivity in a purely dielectric lens, where the relative

magnetic permeability is equal to unity, i.e. µ(r) = 1, is

expressed as ε(r) = n2(r) [9,14]. The case of a magneto-

dielectric lens with ε(r) = µ(r) = n(r), considered below,

is of interest from the viewpoint of the lens matching with

free space.

The lens is supposed to be irradiated by a circularly

polarized planar wave propagating in the negative direction

of the zaxis. The electric field of the incident wave can be

represented as

Ei(r) = (ex + iey)e
−ikz , (33)

where ex and ey — unit vectors corresponding to Cartesian

coordinates. Such an excitation corresponds to only one

azimuthal harmonic with index m = 1 in the representation

of fields (1)−(4), (7) and (8). The expansion coefficients

corresponding to the incident wave in (1) and (2) are

determined by the formulae

A1
1q = 2(−i)q+1

√

(2q + 1)π, A1
2p = −A1

1q.

The basic details of computations of matrix elements

(26)−(30) are discussed in jcite9, where formulae are

also provided to calculate the field distribution along the

lens axis, which is of primary interest here for analysis of

focusing.

The program verification, as in [9], was carried out

in several ways, including checking of convergence of

the results with increase of N and L, using the optical

theorem [15] and comparing the results of the new programs

with the results obtained by other methods. Since the

new program makes it possible to calculate purely dielectric

lenses by specifying µ(r) = 1 in the input data list, it was

possible to observe coincidence of the results of operation

with the appropriate results of the previous version of the

program, developed according to the algorithm described

in [9].

The results of computation obtained with the use of

the new program to determine the field on the axis of a

dielectric and magneto-dielectric Maxwell lens of radius

a = 2.5λ, obtained at N = 125 and L = 41, are shown

in Fig. 4 by a solid line. The presented results are

compared here with the results obtained by the method

of surface integral equations (IE), implemented in the CST

Microwave Studio Suite using a layered lens model. The

latter was formed by five hemispherical layers, i.e. the

continuous refractive index profile n(r), indicated above,

was replaced by a stepped profile. The refraction index

of each layer was found from the formula ni = n(r i ), where

r i = (l − 1/2)a/5 and l = 1, 2, . . . , 5. The results shown

by the dashed line were obtained using more than 35,000

triangular cells in a grid generated on the outer surface

of the and on the inner boundaries of the layers. The

calculation time turned out to be almost 6 times longer

than the computation time with the new program. The

comparisons show that the results obtained by these two

methods match well in the focus area and outside the lens,

x

y

z

r

a
0

θ

ϕ

ε(r, θ)

µ(r, θ)

Figure 3. Geometry of the problem for hemispherical Maxwell

lens.
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Figure 4. Comparison of the results obtained by the HPM and the method of surface integral equations for dielectric (a) and magneto-

dielectric (b) Maxwell lenses with radius a = 2.5λ.
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Figure 5. Field distribution along the axis of a hemispherical Maxwell lens of various radii: solid lines — magneto-dielectric lens, dashed

lines — dielectric lens.

but have more noticeable differences at a relatively low level

inside the lens. These discrepancies can be explained by the

differences in the continuous and stepwise refractive index

profiles of the lens.

The field distributions for a Maxwell lens with radius

a = λ, 2λ and 3λ are shown in Fig. 5. The results were

obtained at N = 50, L = 25 in the first case, N = 100,

L = 35 in the second case and N = 150, L = 45 in the third

case. We see that the use of a magneto-dielectric material

makes it possible to almost completely eliminate the wave

reflection from the flat part of the lens surface, which leads

to increased field level in the focusing area compared to the

case of a purely dielectric lens. It can also be seen that this

increase rises with growing of the lens radius.

Geometry of the problem for a cylindrical Mikaelian

lens with radius rc and half height h is provided in
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Figure 6. Geometry of the problem for a cylindrical Mikaelian

lens

Fig. 6. As it is a well-known (see for example, [3,11,13]),
the lens refractive index profile is determined by formula

n(p) = n0/ cos h(πρ/2hc), where ρ = r sin θ — distance

from the axis to the observation point, n0 = n(0) —
refractive index on the axis and hc = 2h — full height

of the lens. Further, it is supposed that n(rc) = 1 and

respectively n0 = cos h(πrc/2hc). As in the previous case,

the lens is irradiated by a circularly polarized plane wave

with field (33).
The operation of the Matlab program, designed for

analysis of the lens in question, was checked in the same

way as in the case of the Maxwell lens. In particular, the

results obtained with use of the new program for µ(r) = 1

coincided with the results obtained with use of the previous

version for the case of a purely dielectric lens [10].
The field distributions along the axis of the dielectric

and magneto-dielectric Mikaelian lenses with parameters

rc = h = 2.5λ and n0 = 1.3246 are represented in Fig. 7

by solid lines. The results were obtained at N = 175

and L = 45. The dashed lines, also shown in Fig. 7,

correspond to a layered model of the Mikaelian lens of

the same dimension, formed by five layers. Refraction

index of l-th layer was determined as nl = n(pl), where

ρl = (l − 1/2)rc/5 and l = 1, 2, . . . , 5. The results were

obtained by the method of surface IE with use of 45 000

triangular cells in a grid generated on the outer surface

of the lens and on the inner cylindrical boundaries of the

layers. The computation took more than 7 times longer than

the time taken with use of the new HPM-based program.

The results show that both the original and layered lenses

are focusing, but the maximum field level in the focus area

in the case of the layered lens is lower than in the case

of the original lens. It can be expected that increase in the

number of layers, corresponding to a more accurate stepwise

approximation of the refractive index profile, will lead to

enhancement of the field level in the focus. However, this

would require higher volume of the PC memory and longer

computation time.

The results of computation with use of the new program

for the Mikaelian lens with different values of the lens

parameters rc = h are shown in Fig. 8. The computations

were performed at N = 70, L = 29 in case rc = h = λ,

N = 140, L = 39 in case rc = h = 2λ and N = 190, L = 49

in case rc = h = 3λ. The results show that, as in case of

the Maxwell lens, the use of a magneto-dielectric material in

the Mikaelian lens makes it possible to completely eliminate

reflections from the input plane (on which the wave falls)
and interference of the waves along the axis inside the lens.

However, the increase in the maximum field level in the

focus area due to the indicated improvement in matching

with free space is not so noticeable here as it takes place

in the case of the Maxwell lens. This is explained by the

fact that locally plane waves corresponding to geometric-

optical beams coming into focus of the Maxwell lens do

not have any reflections in any direction of arrival due to

unit value of the refractive index on the spherical part of

the surface. The Mikaelian lens is ideally matched only

for the axial direction, and the beams coming into focus

at a nonzero angle to the axis will experience reflections,

albeit with a lower amplitude than for a purely dielectric

lens. By comparing the focusing properties of the Maxwell

lens (Figs. 4 and 5) and Mikaelian lens (Figs. 7 and 8)
of the same transverse dimensions we also see that the

second lens provides a higher field level in the focus area

than the first one. Another difference is that the maximum

field level of the Mikaelian lens is slightly shifted from the

geometric-optical focus outward, while that of the Maxwell

lens is shifted — inward, similar to that of the Luneburg

lens [16].

Conclusion

Thus, the present paper is devoted to solving the problem

of scattering of electromagnetic waves on axisymmetric

inhomogeneous magneto-dielectric objects. The problem

was solved using the HPM modified for the purpose of

accounting for not only the variable profile of dielectric

permittivity of the object, as it was in the case of the

previous studies, but also the variable profile of the magnetic

permeability.

The new modification developed for a general case of

excitation of an object with generatrix of an arbitrary

shape was implemented in two Matlab programs used for

comparative analysis of focusing of a circularly polarized

plane wave by a hemispherical Maxwell lens and by a

cylindrical Mikaelian lens with axial symmetry during wave

propagation in the axial direction. The effectiveness of the

method and operation of the corresponding programs were

tested in several ways described earlier in [9,10], including
a comparison of the results of his work with the results

obtained by the method of surface integral equations applied

to multilayer models of the Maxwell and Mikaelian lenses.
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Figure 7. Comparison of the results obtained by the HPM and by the surface integral equation method for dielectric (a) and magneto-

dielectric (b) Mikaelian lenses with radius r c = h = 2.5λ.
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Figure 8. Field distribution along the axis of the Mikaelian lens of different radius r c = h: solid lines — magneto-dielectric lens, dashed

lines — dielectric lens.

The comparison showed that the calculation time with use

of the new programs, at all other things being equal, was

several times less than the calculation time taken in case of

using the surface integral equation method. It was also

demonstrated a decrease in the maximum field level in

the focusing area due to replacement of the continuous

refractive index profile by a stepped profile. The new

programs were used for analysis of the effect of matching

the surfaces for both types of the lenses with free space on

the quality of focusing. Improved matching was achieved

by use of magneto-dielectric material in the lenses with

the same profiles of dielectric permittivity and magnetic

permeability, which ensured that the wave resistance of the

material was equal to the wave resistance of free space.

The obtained results demonstrate that the use of a

magneto-dielectric material makes it possible to almost com-
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pletely eliminate the wave reflection from the illuminated

flat part of the lens surface, thus leading to increased field

level in the focusing area compared to a purely dielectric

lens. The indicated increase in the field level in the

Mikaelian lens is less noticeable compared to the Maxwell

lens, since the ideal matching in the Mikaelian lens is

provided only in the direction of the normal to the flat

surface in the focusing area. It is also shown that the

Mikaelian lens, which has a longitudinal dimension equal

to the transverse dimension, provides a higher field level in

the focusing area compared to the Maxwell lens of the same

transverse dimension.
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