10

Физические аспекты изменений в светоизлучающих структурах с InGaN/GaN квантовыми ямами при нагреве и кратковременных электрических воздействиях

© А.М. Иванов, А.В. Клочков

ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия e-mail: alexandr.ivanov@mail.ioffe.ru

Поступила в редакцию 02.11.2024 г. В окончательной редакции 12.02.2025 г. Принята к публикации 24.02.2025 г.

> Экспериментально подтверждена возможность улучшения оптических характеристик на начальных этапах старения нитридных квантоворазмерных структур путем нагрева, не превышающего 84°C. Сконструированная камера позволяла проводить температурные измерения относительных изменений внешней квантовой эффективности и спектральной плотности низкочастотного шума при нагреве до 100°C. Наблюдаемые улучшения внешней квантовой эффективности и оптической мощности ультрафиолетовых светодиодов происходят при более мягких термических воздействиях, чем в синих светодиодах. Объяснения полученных результатов строятся на изменениях в туннельном транспорте носителей в квантовые ямы и взаимодействии возникающих в них дефектов с индием.

> Ключевые слова: внешняя квантовая эффективность, скачковая туннельная проводимость, низкочастотный шум.

DOI: 10.61011/OS.2025.04.60535.7296-24

Создание твердотельных источников освещения с учетом их массовости вызывает повышенный интерес к исследованию процессов старения в оптоэлектронных приборах и структурах на основе нитрида галлия, их надежности, скорости деградации и оценок продолжительности бесперебойной работы. Также светодиодные структуры с квантовыми ямами (КЯ) на базе нитридных материалов широко применяются при использовании светодиодов и лазеров на основе InGaN/GaN и AlGaN/GaN в промышленном и сельскохозяйственном производстве, в биологии и медицине.

Определение механизмов транспорта носителей и деградации светоизлучательных характеристик оптоэлектронных приборов важно для конструктивных решений и совершенствования технологии изготовления светодиодов и лазеров на базе нитридных материалов. Одним из экспериментальных направлений является исследование физических процессов, происходящих в светоизлучающих структурах при их нагреве, в том числе при нагреве протекающим через них электрическим током. Исследователи наблюдали уменьшение люминесценции и внешней квантовой эффективности (ВКЭ) η с увеличением температуры выше комнатной [1–3].

Измерение плотности низкочастотного шума является одним из методов неразрушающего контроля процессов в полупроводниковых приборах [4]. Избыточный уровень шума позволяет прогнозировать скорость деградации элементов микроэлектроники, например лазеров и светодиодов [5]. Физическая природа шума в светоизлучающих приборах, его мощность и спектральный состав во многом определяются спектром дефектов: их расположением в запрещенной зоне, перезарядкой и изменениями их состава. А их возникновение объясняется воздействием горячих носителей заряда на атомы решетки полупроводника при протекании тока [6,7], а также энергией, близкой к ширине запрещенной зоны материала, выделяющейся в кристалле в рекомбинационных процессах [8].

Задачей настоящей работы было экспериментально показать возможность улучшения исходных параметров оптоэлектронных приборов из нитрида галлия. Сравнительные исследования проводились на светодиодах при нагреве до 84°C и при разогреве проходящими токами до 190 mA при прямом смещении с целью установить возможности начального улучшения их характеристик в условиях повышенных температур, тем самым замедляя негативные изменения параметров приборов.

Эксперимент был выполнен на промышленных ультрафиолетовых светодиодах с КЯ InGaN/GaN с длиной волны излучения $\lambda = 375$ nm (пиковая энергия излучения $hv_{QW} = 3.31 \text{ eV}$) и ВКЭ 30% (фирма Nichia NSPU510CS, корпус "Т1 3/4" [9]). Активная площадь светодиодов составляла примерно 10^{-3} сm², рабочий номинальный ток I = 20 mA. Температурные измерения выполнялись в камере, позволяющей в едином цикле тестировать светодиоды от комнатной температуры до температуры 100° C. С помощью кремниевого фотодиода ФД-7К в режиме короткого замыкания определялась только относительная величина изменений фототока (оптической мощности) и ВКЭ.

Рис. 1. (*a*) Зависимости ВКЭ УФ светодиода от тока при прямом смещении: (1) до, (2-4) после трех последовательных воздействий током, время 1 h, I, mA: 2 - 80, 3 - 150, 4 - 190. На вставке — зависимости фототока фотодиода от напряжения на p-n-переходе исследуемого светодиода. (*b*) Рассчитанные зависимости фактора идеальности от напряжения на p-n-переходе. На вставке — зависимости тока от напряжения на p-n-переходе исследуемого светодиода. Цифровые обозначения те же.

В таблице представлена примерная оценка перегрева светодиодов током при прямом смещении. Об этих расчетах и измерениях спектральной плотности низкочастотного шума сообщалось ранее в работах [10,11].

На рис. 1 представлены результаты исследования изменения характеристик УФ светодиодов при трех последовательных воздействиях токами, превышающими номинальное значение. Рисунок 1, *а* фиксирует резкий рост ВКЭ с увеличением тока на участке I < 0.1 mA, переходящий при I > 1 mA в отрезок практически без зависимости эффективности от тока. Главный результат заключается в том, что после воздействия током 80 mA в течение 1 h ВКЭ на ~ 20% больше исходной величины. Уменьшение эффективности после воздействия 150 mA (1 h) происходит на участке I < 0.07 mA. Вставка к

Ток <i>I</i> , mA	Мощность W , W	Перегрев ΔT , °С
80	0.285	40
150	0.445	85
190	0.739	110

рис. 1, *а* иллюстрирует изменения порогового напряжения V_{th} .

Расчет зависимостей фактора идеальности помогает раскрыть природу протекающего в светодиодах тока. Для определения фактора идеальности $n_{\rm I}(I)$ рассчитывались зависимости тока от напряжения на p-n-переходе, $I(V_{\rm I}), V_{\rm I} = V - Ir_{\rm s}$. Последовательное сопротивление $r_{\rm s}$ определялось из линейного участка зависимости V(I) и составляло ~ 5 Ω . Аппроксимируя вольтамперные зависимости $I(V_{\rm I})$ (вставка к рис. 1, b) функцией $\exp(qV_{\rm I}/n_{\rm I}(V_{\rm I})kT)$, где kT — тепловая энергия, а q — заряд электрона, можно рассчитать зависимость фактора идеальности от напряжения на p-n-переходе:

$$n_{\rm I}(V_{\rm I}) = (q/kT)/(d\ln I/dV_{\rm I})$$

(рис. 1, *b*). Так как при смещениях $V_{\rm I} < 3 \,{\rm V} \, n_{\rm I}(V_{\rm I}) \ge 2$, то в этом интервале напряжений важную роль играет ток, связанный с туннелированием по дефектам и хвостам плотности состояний разрешенных зон. Поскольку в интервале $2.2 \text{ V} < V_{\text{I}} < 3 \text{ V} n_{\text{I}}(V_{\text{I}})$ возрастает после каждого последовательного токового воздействия, достигая значения $n_{\rm I}(V_{\rm I}) = 6$, то возрастает и доля носителей заряда, подбарьерно преодолевающих области пространственного заряда (ОПЗ) и достигающих КЯ по механизму прыжковой проводимости. Этому способствует процесс изменения спектра дефектов, возникновение центров (возможно метастабильных), обеспечивающих туннельный транспорт носителей в КЯ. При $V_{\rm I} \ge 3 \, {\rm V}$ заброс носителей в КЯ осуществляется в основном по механизму надбарьерной инжекции. При этом последовательное сопротивление в цепи *p*-*n*-перехода, которое замедляло рост тока, не может рассматриваться как постоянный резистор [6].

Основным механизмом деградации InGaN- и AlGaNсветодиодов в настоящее время считается образование дефектов, принимающих участие в безызлучательной рекомбинации. Рис. 1, *а* доказывает, что процесс деградации может происходить немонотонно. Воздействие током 80 mA (1 h) приводило к росту ВКЭ светодиодов. Наиболее общим подходом к рассмотрению процессов изменения интенсивности излучения является использование модели *ABC*, представляющей конкуренцию процессов излучательной и безызлучательной рекомбинации. Согласно этой модели, внутренняя квантовая эффективность

$$\eta_{\rm int} = Bn^2/[An + Bn^2 + Cn^3 + F(n)],$$

где A, B и C — коэффициенты безызлучательной рекомбинации Шокли-Рида-Холла, излучательной и безызлучательной оже-рекомбинации соответственно, а слагаемое F(n) учитывает делокализацию носителей (n их концентрация) и возможный отток носителей из КЯ [12]. Эти явления характеризуются токами электронной делокализации:

$$I_{\rm ed} = k(n - n_0)^{\rm s}$$

и электронной утечки [13]

$$I_{\text{leak}} = \alpha I^p$$
.

Рост ВКЭ после воздействия током 80 mA (1 h) наиболее существен при $I < 100 \,\mu$ А. На этом участке токовой зависимости важную роль играет туннелирование в КЯ. Туннельный транспорт носителей в КЯ уменьшает величину F(n), ускоряя локализацию носителей и уменьшая их утечку из КЯ, что положительно сказывается на пороговом токе (вставка к рис. 1, а). После последующих воздействий токами 150 и 190 mA (1 h) начинается падение ВКЭ: коэффициент А связан с совершенством структуры InGaN/GaN, так как он пропорционален плотности дефектов, тепловой скорости и сечению захвата носителей. Дефектообразование усиливает безызлучательную рекомбинацию. После пропускания тока 190 mA (1 h) ВКЭ уменьшается в 1.5 раз при токе ~ 20 mA. Повышение концентрации носителей в КЯ затрудняет их локализацию, растет неравномерность их распределения по КЯ, вызывая поляризацию [12]. Рост безызлучательной рекомбинации происходит также изза перераспределения носителей заряда при шнуровании протекающего тока (current crowding) [14,15].

На рис. 2, *а* представлены зависимости плотности низкочастотного шума при номинальных токах для температур 23 (до и после теста с отжигом на воздухе при температуре 84°С в течение 2.5 h и сутки хранения светодиодов на воздухе при комнатной температуре) и 84°С. При повышении температуры плотность шума возрастала на ~ 80% при 84°С. После воздействия график токового шума от частоты при комнатной температуре практически полностью совпадает с исходной зависимостью. Это свидетельствует о том, что дефекты, возникающие в результате этого воздействия, носят метастабильный (обратимый) характер или не влияют на шум. Согласно формуле Хоуге, спектральная плотность токового 1/*F* шума

$$S_I = (\alpha I^2) / (FN),$$

здесь α — постоянная Хоуге, а N — количество электронов, участвующих в проводимости. Наблюдаемые шумы связаны с изменениями плотности носителей заряда (N) за счет генерации-рекомбинации и туннелирования в КЯ и из КЯ. При частоте F < 100 Hz наблюдается сильный рост плотности низкочастотного шума: $S_I \sim 1/F^3$, что говорит о сложении нескольких возможных механизмов

А.М. Иванов, А.В. Клочков

 10^{-14}

Рис. 2. Зависимости для УФ светодиода (*a*) спектральной плотности токового шума при *T*, °С: *1*, 3 — 23, 2 — 84. 3 — после отжига 2.5 h при 84°С. (*b*) Зависимости ВКЭ от тока при прямом смещении. На вставке — зависимости фототока фотодиода от тока при прямом смещении. Цифровые обозначения те же.

формирования шума: к фликкер-шуму добавляются телеграфный, генерационно-рекомбинационный и шум туннельного сопротивления, определяемый неравномерностью в его распределении по области пространственного заряда барьера и неравномерностью заполнения центров (уровней в запрещенной зоне, 33) туннелирования [16].

Возрастание ВКЭ по сравнению с эффективностью при комнатной температуре (эксперимент рис. 2) наблюдалось при нагреве светодиода до 84° С при $I < 10 \mu$ А и при I > 1 mA (рис. 2, b). Это противоречит уменьшению коэффициента B [17] и падению эффективности InGaN/GaN-светодиодов при нагреве. Возможное объяснение — это рост прыжковой проводимости [18] и туннельного тока носителей в барьерах [2]. Измерения, выполненные после нагрева и выдержки при комнатной температуре в течение суток, показали рост эффективности по сравнению с исходной во всем диапазоне измерения тока и возрастание интенсивности излучения (вставка к рис. 2, b) на $\sim 20\%$ и на $\sim 18\%$ соответственно при номинальном токе. При нагреве током 80 mA равный рост ВКЭ достигается при меньшей температуре (таблица).

Последствия дефектообразования в КЯ тесно связаны с состоянием индия в них: его концентрацией, особенностями распределения, кластеризацией [19].

На начальных стадиях деградация быстрее развивается в УФ светодиодах по сравнению с синими светодиодами [20,21], так как кластеризация индия увеличивает потенциал локализации и люминесценцию [22]. Полученные результаты подтверждают, что изменения оптических характеристик УФ светодиодов начинаются при меньших температурных воздействиях, чем синих светодиодов. Более высокая концентрация In увеличивает глубину локализации носителей заряда в синих светодиодах, а рост температуры повышает долю нелокализованных носителей [3]. Важнейшее значение приобретает оптимизация состава твердого раствора в КЯ [1], так как возникающие дефекты локализуются на гетерограницах и флуктуациях состава [23].

Улучшение некоторых параметров светодиодов (рис. 1, 2) связано с изменениями состояния In в КЯ. В процессе эксплуатации генерация точечных дефектов активнее происходит в областях с меньшим содержанием индия [6]. При нагреве в КЯ происходит перераспределение In на основе рекомбинационностимулированной диффузии [23], что сопровождается улучшением условий для локализации носителей по всей ширине КЯ. Уменьшается *I*_{ed}, а также *I*_{leak} и время жизни носителей относительно излучательной рекомбинации. Этим объясняется наблюдаемый нами рост ВКЭ на начальных участках старения.

Фактором, способствующим усилению ВКЭ при незначительных термических воздействиях, являются изменения в транспорте носителей. Возникновение или перестройка точечных дефектов в 33 GaN способствует не только усилению безызлучательной рекомбинации (возрастание коэффициента *A* модели), но и усиливает туннельную составляющую проводимости по глубоким уровням и хвостам плотности состояний в 33. Рост туннельной (прыжковой) проводимости в барьерах к КЯ за счет изменения спектра дефектов не только объясняет увеличение ВКЭ, но и уменьшение мощности шума, связанного с туннельным сопротивлением. Тем самым это препятствует общему росту спектральной плотности низкочастотного шума, нивелируя возрастание, например, плотности генерационно-рекомбинационного шума.

Проведенные сравнительные исследования подтвердили возможность улучшения исходных параметров УФ светодиодов путем более мягких термических воздействий, чем синих светодиодов. Важную роль в этом играет содержание индия, его состояние в КЯ. Основным механизмом старения является дефектообразование в КЯ и прилегающих барьерах. Индий, усиливающий радиационную рекомбинацию, помогает предотвратить образование дефектов во время электрических стрессов и тормозит проявления возникающих дефектов в безызлучательной рекомбинации, так как способствует локализации носителей с последующей излучательной рекомбинацией. Это объясняет рост ВКЭ после нагрева током 80 mA (1 h) и после отжига при 84°C (2.5 h). Подобные мягкие воздействия положительно сказываются на миграции точечных дефектов и перераспределении индия в КЯ. Добиваясь более равномерного распределения индия в КЯ, можно тормозить дефектообразование и увеличивать излучательную рекомбинацию.

Вторым фактором роста оптической мощности и ВКЭ на начальных этапах старения является возможность улучшения транспорта носителей в КЯ. Дефекты, формирующиеся в барьерах, вносят свой вклад в безызлучательною рекомбинацию, но одновременно содействуют туннелированию носителей в КЯ. Изменения приборной морфологии должны учитывать такие возможности улучшения оптоэлектронных характеристик приборов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M-J. Lai, Y-T. Chang, S-C. Wang, S-F. Huang, R-S. Liu, X. Zhang, L-C. Chen, R-M. Lin. Molecules, 27, 7596 (2022). DOI: 10.3390/molecules27217596
- [2] Н.М. Шмидт, Е.И. Шабунина, А.Е. Черняков, А.Е. Иванов, Н.А. Тальнишних, А.Л. Закгейм. Письма в ЖТФ, 46 (24), 45 (2020). DOI: 10.61011/OS.2025.04.60535.7296-24
 [N.M. Shmidt, E.I. Shabunina, А.Е. Chernyakov, А.Е. Ivanov, N.A. Tal'nishnikh, A.L. Zakgeim. Tech. Phys. Lett., 46 (12), 1253 (2020). DOI: 10.1134/S1063785020120275].
- Д.С. Сизов, В.С. Сизов, Е.Е. Заварин, В.В. Лундин, А.В. Фомин, А.Ф. Цацульников, Н.Н. Леденцов. ФТП, **39** (4), 492 (2005). [D.S. Sizov, V.S. Sizov, E.E. Zavarin, V.V. Lundin, A.V. Fomin, A.F. Tsatsul'nikov, N.N. Ledentsov. Semiconductors, **39** (4), 467 (2005)].
- [4] Б.И. Якубович. Надежность, 17 (2), 31 (2017).
 DOI: 10.21683/1729-2646-2017-17-2-31-35
- [5] B. Šaulys, J. Matukas, V. Palenskis, S. Pralgauskaite, G. Kulikauskas. Acta Phys. Pol. A, **119** (4), 514 (2011).
 DOI: 10.12693/APhysPolA.119.514
- [6] Ф.И. Маняхин. ФТП, **52** (3), 378 (2018).
 DOI: 10.61011/OS.2025.04.60535.7296-24
 [F.I. Manyakhin. Semiconductors, **52** (3), 359 (2018).
 DOI: 10.1134/S1063782618030168].
- J. Ruschel, J. Glaab, B. Beidoun, N.L. Ploch, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Kneissl. Photonics Res., 7 (7), B36 (2019). DOI: 10.1364/PRJ.7.000B36
- [8] N. Renso, C. De Santi, A. Caria, F. Dalla Torre, L. Zecchin, G. Meneghesso, E. Zanoni, M. Meneghini. J. Appl. Phys., **127**, 185701 (2020). DOI: 10.1063/1.5135633
- [9] Nichia Corporation Specifications for UV LED NSPU510CS.
 [Электронный ресурс]. URL: https://led-ld.nichia.co.jp/en/product/led_product_data.html? type=NSPU510CS+%28375nm%29&kbn=1

- [10] А.М. Иванов. ЖТФ, 91 (1), 76 (2021).
 DOI: 10.61011/OS.2025.04.60535.7296-24
 [A.M. Ivanov. Tech. Phys., 66 (1), 71 (2021).
 DOI: 10.1134/S1063784221010114].
- [11] A.M. Ivanov, G.V. Nenashev, A.N. Aleshin. J. Mater Sci.: Mater. Electron., 33, 21666 (2022).
 DOI: 10.1007/s10854-022-08955-7
- [12] Q. Lv, J. Gao, X. Tao, J. Zhang, C. Mo, X. Wang, C. Zheng, J. Liu. J. Lumin., 222, 117186 (2020).
 DOI: 10.1016/j.jlumin.2020.117186
- P. Sahare, B.K. Sahoo. AIP Conf. Proc., 2220, 040008 (2020).
 DOI: 10.1063/5.0001262
- [14] M. Shatalov, G. Simin, V. Adivarahan, A. Chitnis, S. WU, R. Pachipulusu, V. Mandavilli, K. Simin, J.P. Zhang, J.W. Yang, M.A. Khan. Jpn. J. Appl. Phys., **41** (8), 5083 (2002).
- [15] A.E. Chernyakov, M.E. Levinshtein, N.A. Talnishnikh, E.I. Shabunina, N.M. Shmidt. J. Cryst. Growth., 401, 302 (2014). DOI: 10.1016/j.jcrysgro.2013.11.097
- [16] Н.И. Бочкарева, Ю.Г. Шретер. ФТТ, 64 (3), 371 (2022). DOI: 10.61011/OS.2025.04.60535.7296-24
 [N.I. Bochkareva, Y.G. Shreter. Phys. Solid State, 64 (3), 371 (2022). DOI: 10.61011/OS.2025.04.60535.7296-24].
- [17] P. Tian, J.J.D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira I.M. Watson, E. Gu, A.E. Kelly, M.D. Dawson. Appl. Phys. Lett., **105**, 171107 (2014). DOI: 10.1063/1.4900865
- [18] Н.И. Солин, С.В. Наумов, ФТТ, **45** (3), 460 (2003). [N.I. Solin, S.V. Naumov. Phys. Solid State, **45** (3), 486 (2003). DOI: 10.1134/1.1562235].
- [19] M. Buffolo, A. Caria, F. Piva, N. Roccato, C. Casu, C. De Santi, N. Trivellin, G. Meneghesso, E. Zanoni, M. Meneghini. Phys. Status Solidi A, **219**, 2100727 (2022). DOI: 10.1002/pssa.202100727
- [20] L. Huang, T. Yu, Z. Chen, Z. Qin, Z. Yang, G. Zhang. J. Lumin., **129** (12), 1981 (2009).
 DOI: 10.1016/j.jlumin.2009.04.078
- [21] C. Casu, M. Buffolo, A. Caria, C. De Santi, E. Zanoni, G. Meneghesso, M. Meneghini. Micromachines, 13 (8), 1266 (2022). DOI: 10.3390/mi13081266
- [22] J. Huang, W. Liu, L. Yi, M. Zhou, D. Zhao, D. Jiang. Superlattices and Microstruct., **113**, 534 (2018). DOI: 10.1016/j.spmi.2017.11.036
- [23] Н.А. Тальнишних, А.Е. Иванов, Е.И. Шабунина, Н.М. Шмидт. Опт. и спектр., 131 (11), 1499 (2023).
 DOI: 10.61011/OS.2025.04.60535.7296-24 [N.A. Tal'nishnikh, A.E. Ivanov, E.I. Shabunina, N.M. Shmidt. Opt. Spectrosc., 131 (11), 1423 (2023).
 DOI: 10.61011/OS.2025.04.60535.7296-24].