Оптимизация параметров кремниевого электрооптического фазовращателя, работающего на эффекте обеднения свободными носителями

© Е.А. Лаврухина¹, Д.С. Пашин¹, А.В. Нежданов¹, К.В. Сидоренко¹, П.В. Волков², А.И. Бобров¹

 ¹ Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Научно-исследовательский физико-технический институт, 603022 Нижний Новгород, Россия
 ² Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

оозэзо нижний новгород, госсия

E-mail: ekaterina.a.lavrukhina@gmail.com

Поступила в Редакцию 26 марта 2025 г. В окончательной редакции 31 марта 2025 г. Принята к публикации 3 апреля 2025 г.

Выполнена оптимизация геометрических размеров поперечного сечения и концентраций легирующих примесей *p*-*n*-перехода электрооптического фазовращателя на основе обедненного кремния свободными носителями методом градиентного спуска. Полученная в результате моделирования конфигурация обеспечивает баланс между эффективностью фазового сдвига и потерями на свободных носителях. Кроме того, определена область геометрических параметров, реализующая одномодовый режим высоколегированных волноводов неполного травления. Предложенная методика и полученные результаты могут быть полезны для проектирования интегральных фотонных устройств.

Ключевые слова: кремниевая фотоника, электрооптические фазовращатели, кремний-на-изоляторе, дисперсия плазмы свободных носителей, одномодовый режим.

DOI: 10.61011/FTP.2025.01.60495.7693

1. Введение

Объемы информации, передаваемой через сеть Интернет, неуклонно растут с момента его появления, что обусловливает потребность в увеличении пропускной способности коммуникационных каналов [1]. Решением этой задачи могут стать кремниевые фотонные устройства, которые превосходят электрические системы как по энергоэффективности, так и по скорости передачи данных [2]. Эти устройства совместимы с технологическими процессами производства комплементарных структур металл-оксид-полупроводник (КМОП) [3,4], обладают низким рассеянием энергии и хорошей масштабируемостью, а также потенциалом для монолитной фотонноэлектронной интеграции. Эти преимущества послужили бурному развитию электрооптических (ЭО) модуляторов по схеме интерферометра Маха-Цендера [4-7], в конструкции которых ключевую роль играют фазовращатели, обеспечивающие модуляцию несущего сигнала [8].

Кремний характеризуется слабым проявлением традиционных ЭО механизмов, таких как эффекты Поккельса и Франца-Келдыша [9]. Альтернативным подходом является использование ЭО эффекта дисперсии плазмы свободных носителей [10,11]. Для его реализации в кремниевом фазовращателе создается высоколегированный p - n-переход, встроенный в волновод неполного травления [12]. Приложенное электрическое поле изменяет плотность свободных носителей (электронов и дырок), что влияет на комплексный показатель преломления

материала и приводит к изменению фазы несущего сигнала, распространяющегося в оптическом волноводе. Однако этот метод сопровождается ростом оптических потерь при высоких концентрациях свободных носителей.

В настоящее время существует три основных механизма реализации фазовращателя на эффекте дисперсии плазмы свободных носителей [8]: инжекция носителей в *p*-*i*-*n*-переходе при прямом напряжении смещения [13,14], обеднение носителями p-n-перехода при обратном напряжении смещения [15] и накопление заряда в структуре металл-диэлектрик-полупроводник [12,16]. Первый из вышеперечисленных подходов обладает самой высокой эффективностью [17] и компактностью, а также низкими потерями на свободных носителях благоларя наличию собственной области в волноводе, что, однако, уменьшает полосу пропускания до сотен МГц изза медленной рекомбинации дырок и электронов [18,19]. Третий подход технологически сложен и требует применения литографических процессов с разрешением на уровне единиц нанометра [20,21]. В результате одним из широко применяемых подходов в кремниевой фотонике стали фазовращатели, работающие на эффекте обеднения свободными носителями оптического волновода, благодаря простоте изготовления [22,23] и высокой скорости работы, с полосой пропускания до нескольких десятков ГГц. Это делает их подходящими для использования в устройствах, требующих быстродействия, таких как интерферометры Маха-Цендера [5]. Однако фазовращатели на обеднении имеют и свои ограничения, за счет которых они сильно уступают конструкциям на эффекте инжекции/накопления носителей [1]. Основное из них связано с небольшими изменениями показателя преломления, которые могут быть достигнуты в результате уменьшения плотности носителей, что ограничивает эффективность фазового сдвига [10].

В настоящее время разработаны различные дизайны фазовращателей на основе эффекта обеднения свободными носителями [23]. Особое внимание уделяется смещенным p-n-переходам относительно центра оптического волновода [24–28], что позволяет повысить эффективность фазового сдвига и снизить потери на свободных носителях [10]. Предложены также конфигурации с PIPIN-переходами [29,30], *L*- и *U*-образными переходами [31,32], а также с чередующимися p-nпереходами по всему волноводу [33–36]. Актуальной задачей кремниевой фотоники остается поиск оптимальной геометрии p-n-перехода для фазовращателей на основе обеднения, которая обеспечивает минимальные потери, широкую полосу пропускания при относительно высокой эффективности фазового сдвига [37].

В данной работе предпринята попытка нахождения оптимального баланса между эффективностью фазового сдвига и потерями на свободных носителях в фазовращателе. Предложен математический метод оптимизации геометрических параметров и концентраций легирующих примесей фазовращателя. Оптимизация проводится путем нахождения локального минимума функции, учитывающей эффективность фазового сдвига и оптические потери. В ходе численного моделирования была найдена оптимальная конфигурация исследуемой структуры. Кроме того, обсуждаются критерии одномодовости волноводов неполного травления, что позволило определить область допустимых геометрических параметров для сохранения одномодового режима.

2. Модель кремниевого электрооптического фазовращателя

Мы исследуем конфигурацию поперечного сечения ЭО фазовращателя, представленного на рис. 1, *а*. Структура смоделирована на платформе кремний-наизоляторе с толщиной активного слоя кремния 0.22 мкм и изолятором из диоксида кремния толщиной 2 мкм, что соответствует стандартным параметрам для кремниевых фотонных интегральных схем [4]. Активная область фазовращателя включает волновод неполного травления с p-n-переходом, работающим на эффекте обеднения свободными носителями.

Сильно легированные области (p^{++}/n^{++}) с концентрацией $2 \cdot 10^{20}$ см⁻³, расположенные на расстоянии 1.2 мкм от центра волновода, соединены с алюминиевыми электродами для формирования омических контактов и подачи обратного напряжения. Такое расположение

минимизирует перекрытие оптической моды с высоколегированными зонами, снижая потери. Для увеличения полосы пропускания [38], предусмотрены промежуточные области (p^+/n^+) с концентрацией легирующей примеси 2 · 10¹⁸ см⁻³, расположенные на расстоянии 0.4 мкм от центра волновода. В ходе моделирования принималось однородное легирование по всему поперечному сечению легированных областей волновода с резкими границами между ними.

На рис. 1, b схематически представлена увеличенная область поперечного сечения активной зоны фазовращателя. Здесь обозначены оптимизируемые параметры: ширина ребра (w), глубина неполного травления (h), расстояние от областей p^+/n^+ до ребра волновода (A), смещение *p*-*n*-перехода относительно центра волновода (x), а также концентрации легирующей примеси в *p*/*n*-областях (*p*, *n*). Ширина ребра (*w*) и глубина неполного травления (h) определяет одномодовость волновода, оптические потери на свободных носителях и шероховатостях стенок. Параметры А, х, р и п влияют на эффективность и компактность фазовращателя, а также на оптические потери. Численное моделирование выполнено с использованием программных модулей Lumerical CHARGE и MODE. Решатель CHARGE применялся для расчета профилей концентрации свободных носителей в поперечном сечении фазовращателя при вариации параметров w, h, A, x, p, n и напряжений смещения от 0 до -4 В. Полученные распределения экспортировались в решатель МОДЕ для оценки фазового сдвига и потерь распространения.

3. Метод оптимизации основных параметров фазовращателя

Градиентный спуск является одним из основных численных методов оптимизации, широко применяемый для поиска локальных минимумов дифференцируемых функций. Этот итеративный алгоритм основывается на последовательном движении в направлении, противоположном градиенту целевой функции, что обеспечивает движение вдоль траектории наискорейшего убывания [39].

Для достижения баланса между оптическими потерями и изменением показателя преломления волновода в процессе обеднения в качестве целевой функции F была выбрана зависимость, представляющая собой произведение оптических потерь на эффективность фазовращателя $F = (\alpha_{pn} + \alpha_0)V_{\pi}L_{\pi}$. Здесь α_{pn} обозначает потери на свободных носителях, величина α_0 определяет пассивные потери на шероховатостях ребра при сухом травлении волновода, принятые равными 1 дБ/см [40]. Параметр L_{π} представляет собой длину, необходимую для обеспечения фазового сдвига на π между несущей волной, проходящей через фазовращатель при нулевом напряжении, и той же волной при приложении напряжения V_{π} .

Рис. 1. a — схема поперечного сечения ЭО фазовращателя, работающего на эффекте обеднения свободными носителями, без выдержки масштаба. b — увеличенная область волновода неполного травления, где символами w, h, A, x, p, n обозначены его геометрические размеры и концентрации легирующих примесей, используемые в процессе оптимизации.

Произведение $V_{\pi}L_{\pi}$ характеризует эффективность фазовращателя и рассчитывается по формуле: $L_{\pi} = \lambda_0/2\Delta n_{\rm eff}$, где $\lambda_0 = 1.55$ мкм — длина волны несущего сигнала, $\Delta n_{\rm eff}$ — изменение эффективного показателя преломления легированного кремния в процессе обеднения свободными носителями.

Поиск локального минимума целевой функции *F* осуществляется по итеративной формуле:

$$\mathbf{X}_{j+1} = \mathbf{X}_j - ds \nabla F(\mathbf{X}_j), \tag{1}$$

где $\mathbf{X}_{j+1,j}$ — вектор оптимизируемых параметров на шаге j + 1 и j соответственно, включающий геометрические размеры ребра волновода и концентрации легирующей примеси p-n-перехода $\{w, h, A, x, p, n\}$; ds — размер шага, изменяющий вектор параметров на каждой итерации, $\nabla F(\mathbf{X}_j)$ — градиент целевой функции F по вектору **X**. Применение формулы (1) формирует убывающую последовательность значений функции $F(\mathbf{X}_0) > F(\mathbf{X}_1) > \ldots > F(\mathbf{X}_{n+1})$, которая постепенно сходится к локальному минимуму. Величина ds определяет сходимость алгоритма: слишком большие значения могут привести к пропуску локального минимума, а слишком маленькие — к замедлению процесса оптимизации. Метод градиентного спуска позволяет находить такие значения вектора X, которые минимизируют целевую функцию F, что отражает оптимальный баланс между потерями и эффективностью фазового сдвига.

Оптимальная модель фазовращателя и условие одномодового режима

В результате минимизации функции $(\alpha_{pn} + \alpha_0) V_{\pi}L_{\pi}$ методом градиентного спуска по формуле (1) были получены оптимальные геометрические размеры фазовращателя и концентрации легирующих примесей: w = 0.5 мкм, h = 0.15 мкм, A = 0.04 мкм, x = 0.03 мкм, $p = 1 \cdot 10^{17}$ см⁻³, $n = 1 \cdot 10^{17}$ см⁻³. На рис. 2, *а* представлено поперечное сечение оптимизированного волновода. Получившаяся конструкция обладает смещенным p-nпереходом относительно центра волновода, при котором область p-типа занимает наибольшую площадь в поперечном сечении ребра. Это согласуется с известными результатами [10], согласно которым дырки эффективнее изменяют показатель преломления по сравнению с электронами, что требует увеличения площади p-области для повышения эффективности фазового сдвига.

Как показано на рис. 2, *b*, при приложении обратного напряжения смещения, равного 4 В, область обеднения, обусловленная смещением p-n-перехода, локализуется в пределах ребра волновода, значительно перекрывая основную моду. Это позволяет достичь максимального значения $\Delta n_{\rm eff}$ при оптимальных концентрациях свободных носителей в p/n-областях, минимизируя потери на свободных носителях и сохраняя высокую эффективность. Локализация основной моды представлена на рис. 2, *c*.

Для данной геометрии ожидаемые оптические потери на свободных носителях основной моды составляют 2.5 дБ/см. При приложении обратного напряжения величиной 4В изменение эффективного показателя преломления достигает $1.07 \cdot 10^{-4}$, а длина фазовращателя, необходимая для фазового сдвига на π , равна 0.725 см.

Одним из необходимых условий корректной работы фазовращателей является их одномодовость [41–44]. Для выполнения этого условия необходимо, чтобы только одна мода с наибольшим эффективным показателем преломления могла распространяться и была хорошо локализована в области ребра волновода. Количественная оценка локализации моды проводится с использованием фактора заполнения [43]:

Фактор заполнения =
$$\frac{\int\limits_{R} P(S)dS}{\int\limits_{\infty} P(S)dS}$$
, (2)

где P(S) — плотность распределения мощности моды, а R — область ребра волновода. Мода считается распространяющейся, если ее фактор заполнения превышает 5% [43,44].

Для высоколегированных фазовращателей, к которым относится исследуемая структура с p-n-переходом, показанная на рис. 1, a, можно определить дополнительный критерий для распространяющейся моды, связанный с потерями на свободных носителях. Амплитуда моды электромагнитного поля, распространяемого вдоль волновода в направлении y, в среде с комплексным эффективным показателем преломления $n_{\rm eff} + i\kappa_{\rm eff}$ пропорциональна $\sim \exp(-2\pi\kappa_{\rm eff}y/\lambda_0)$. Потери при распространении моды по волноводу рассчитываются по формуле

$$\alpha = 20 \, \frac{2\pi \kappa_{\rm eff}}{\lambda_0} \, \log_{10}(e), \tag{3}$$

где $\lambda_0 = 1.55$ мкм. Будем считать моду не распространяющейся, если ее мощность затухает в ~ 100 раз при распространении на длину *L*. Тогда пороговое значение

Рис. 2. *а* — увеличенная область поперечного сечения ребра фазовращателя, с указанными геометрическими размерами, полученными в результате оптимизации методом градиентного спуска. Концентрация *p*/*n*-областей составляет значение $1 \cdot 10^{17}$ см⁻³, обеспечивая умеренные оптические потери и достаточную ширину области обеднения. Цветом показано распределение концентрации свободных носителей при отсутствии напряжения. *b* — распределение концентрации свободных носителей (в логарифмическом масштабе) в процессе обеднения *p*-*n*-перехода при приложении обратного напряжения смещения 4 В. *с* — распределение энергии основной моды волновода на длине волны 1.55 мкм.

потерь из (3) примет вид

$$\alpha^* \approx \frac{20\,\mathrm{gB}}{L}.\tag{4}$$

Таким образом, для характерной длины фазовращателя L = 0.5 см, оптические моды считаются полностью затухающими при потерях ≥ 40 дБ/см.

В приведенных расчетах учитывались только те моды, для которых эффективный показатель преломле-

Рис. 3. Плоскость параметров ширины ребра (w) и глубины (h) волновода неполного травления, на которой серым цветом выделена область одномодового режима для легированного и нелегированного волновода, черным — многомодовый режим, а промежуточная область, заштрихованная линиями, соответствует одномодовому режиму для легированного волновода и многомодовому для нелегированного на длине волны 1.55 мкм.

ния $n_{\rm eff}$ превышает показатель преломления окружающей среды n_c , в нашем случае $n_c = n_{{
m SiO}_2} = 1.44$ (при $\lambda_0 = 1.55$ мкм), что является необходимым условием для полного внутреннего отражения. На рис. 3 область одномодового режима для легированного и нелегированного волноводов закрашена серым цветом, многомодового — черным, а промежуточная область, заштрихованная линиями, соответствует одномодовому режиму для легированного волновода и многомодовому для нелегированного. Эта особенность обусловлена тем, что при определенных геометрических размерах некоторые моды в легированном волноводе, локализованные в ребре, испытывают значительные потери на свободных носителях.

Иногда в качестве условия отсечки принимается условие равенства эффективного показателя преломления моды и показателя преломления окружающей среды. Однако с точки зрения работы конкретного устройства моды, формально являющиеся распространяющимися, но имеющие большие потери, не оказывают влияния на работу и могут не приниматься в расчет. При этом улучшение локализации моды под ребром при увеличении, например, глубины травления может приводить к увеличению потерь высших мод в легированных волноводах, поскольку большая часть моды начинает распространяться в области с сильным легированием. Оптические характеристики для мод в фазовращателе с оптимальной конфигурацией, представленной на рис. 2, *а*

Мода	$n_{\rm eff}$	α_{pn} , дБ/см	Фактор заполнения, %
1	2.56	2.5	74
2	2.0	63	24
3	1.89	1132	10
4	1.76	414	32

Сравнение рис. 3 с известными работами [41–43], посвященными изучению одномодового режима в кремниевых нелегированных волноводах неполного травления, выявляет существенные отличия в поведении границы одномодовости. Это связано, во-первых, с различием материалов окружающей среды, а во-вторых, с близостью исследуемых геометрических размеров к пределу, обусловленному эффективной длиной волны в кремнии $\lambda_0/n_{\rm Si} \approx 0.447$ мкм, где $n_{\rm Si} = 3.47$ при $\lambda_0 = 1.55$ мкм.

Для фазовращателя с оптимальной геометрией, полученной методом градиентного спуска и представленной на рис. 2, a, в таблице приведены оптические характеристики первых четырех мод с наибольшими $n_{\rm eff}$ и факторами заполнения, превышающими 5%.

Из таблицы следует, что фазовращатель с оптимальной геометрией является одномодовым: другие моды либо слабо локализованы в ребре, либо имеют потери на свободных носителях выше 40 дБ/см, что хорошо согласуется с критерием одномодовости, представленным на рис. 3.

5. Заключение

В данной работе предложен подход к оптимизации кремниевых ЭО фазовращателей, работающих на эффекте обеднения свободными носителями. Применение градиентного спуска для подбора оптимальных геометрических размеров поперечного сечения волновода неполного травления и концентраций легирующих примесей позволило достичь баланса между эффективностью фазового сдвига и потерями на свободных носителях.

Разработанная конструкция удовлетворяет условиям одномодовости, что подтверждено расчетами фактора заполнения и дополнительным критерием потерь на свободных носителях (> 40 дБ/см), обеспечивая эффективное распространение основной моды. Оптимизированная конфигурация демонстрирует потери на свободных носителях 2.5 дБ/см и изменение эффективного показателя преломления на $1.07 \cdot 10^{-4}$ при приложении обратного напряжения смещения $V_{\pi} = 4$ В, при этом длина фазовращателя $L_{\pi} = 0.725$ см.

Предложенный фазовращатель является перспективным кандидатом для интегральной фотоники благодаря сочетанию низких потерь и относительно высокой эффективности, что делает его подходящим для высокоскоростных модуляторов, таких как интерферометры Маха-Цендера.

Финансирование работы

В части математического моделирования работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, проект № FSWR-2022-0007. В части эксперимента исследование выполнено в рамках научной программы Национального центра физики и математики, направление № 1 "Национальный центр исследования архитектур суперкомпьютеров. Этап 2023-2025".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. Van Thourhout, R. Baets. Adv. Photon., 3 (2), 024003 (2021). https://doi.org/10.1117/1.AP.3.2.024003
- [2] Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita. IEEE Commun. Mag., 51 (3), 72 (2013). DOI: 10.1109/MCOM.2013.6476868
- [3] G. Sinatkas, T. Christopoulos, O. Tsilipakos, E.E. Kriezis. J. Appl. Phys., **130** (1), 010901 (2021). https://doi.org/10.1063/5.0048712
- [4] C.R. Doerr. Front. Phys., **3**, 37 (2015).
- https://doi.org/10.3389/fphy.2015.00037
- [5] A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia. Opt. Express, 15 (2), 660 (2007). https://doi.org/10.1364/OE.15.000660
- [6] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A.V. Krishnamoorthy, M. Asghari. Opt. Express, 17 (25), 22484 (2009). https://doi.org/10.1364/OE.17.022484
- [7] G.V. Treyz, P.G. May, J.M. Halbout. Appl. Phys. Lett., 59 (7), 771 (1991). DOI: 10.1063/1.105338
- [8] Y. Kim, J.H. Han, D. Ahn, S. Kim. Micromachines, 12 (6), 625 (2021). https://doi.org/10.3390/mi12060625
- [9] R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev. Nature, 441 (7090), 199 (2006). DOI: 10.1038/nature04706
- [10] R. Soref, B. Bennett. IEEE J. Quant. Electron., 23 (1), 123 (1987). DOI: 10.1109/JQE.1987.1073206
- [11] M. Nedeljkovic, R. Soref, G.Z. Mashanovich. IEEE Photonics J., 3 (6), 1171 (2011). DOI: 10.1109/JPHOT.2011.2171930
- [12] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge,
 D. Rubin, U.D. Keil, T. Franck. Opt. Express, 13 (8), 3129 (2005). https://doi.org/10.1364/OPEX.13.003129
- [13] C.K. Tang, G.T. Reed. Electron. Lett., 31 (6), 451 (1995).
 DOI: 10.1049/EL:19950328
- [14] W.M. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov. Opt. Express, 15 (25), 17106 (2007). https://doi.org/10.1364/OE.15.017106

[15] F.Y. Gardes, G.T. Reed, N.G. Emerson, C.E. Png. Opt. Express, 13 (22), 8845 (2005).

https://doi.org/10.1364/OPEX.13.008845

- [16] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin,
 O. Cohen, R. Nicolaescu, M. Paniccia. Nature, 427 (6975),
 615 (2004). DOI: 10.1038/nature02310
- [17] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Nature, 435 (7040), 325 (2005). DOI: 10.1038/nature03569
- [18] F. Gan, F.X. Kartner. IEEE Photon. Technol. Lett., 17 (5), 1007 (2005). DOI: 10.1109/LPT.2005.846756
- [19] T. Baba, S. Akiyama, M. Imai, T. Usuki. Opt. Express, 23 (26), 32950 (2015). https://doi.org/10.1364/OE.23.032950
- [20] J. Fujikata, S. Takahashi, M. Takahashi, M. Noguchi, T. Nakamura, Y. Arakawa. Jpn. J. Appl. Phys., 55 (4S), 04EC01 (2016). DOI: 10.7567/JJAP.55.04EC01
- [21] K. Debnath, D.J. Thomson, W. Zhang, A.Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M.K. Husain, K. Ibukuro, F.Y. Gardes, G.T. Reed, S. Saito. Photonics Res., 6 (5), 373 (2018). https://doi.org/10.1364/PRJ.6.000373
- [22] K. Ogawa. Photonics, 11 (6), 535 (2024). https://doi.org/10.3390/photonics11060535
- [23] T.G. Reed, G.Z. Mashanovich, F.Y. Gardes, M. Nedeljkovic, Y. Hu, D.J. Thomson, K. Li, P.R. Wilson, S.-W. Chen, S.S. Hsu. Nanophotonics, 3 (4–5), 229 (2014). https://doi.org/10.1515/nanoph-2013-0016
- [24] D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, D.V. Plant. Opt. Express, 22 (22), 26788 (2014). https://doi.org/10.1364/OE.22.026788
- [25] J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, F. Gan. J. Lightwave Technol., 31 (24), 4119 (2013).
 DOI: 10.1109/Jlt.2013.2287671
- [26] N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J.E. Cunningham, A.V. Krishnamoorthy, M. Asghari. Opt. Express, 18 (8), 7994 (2010). https://doi.org/10.1364/OE.18.007994
- [27] C.E. Png, M.J. Sun, S.T. Lim, T.Y. Ang, K. Ogawa.
 IEEE J. Select. Topics Quant. Electron., 22 (6), 99 (2016).
 DOI: 10.1109/JSTQE.2016.2564648
- [28] X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, J. Yu. Opt. Express, 21 (4), 4116 (2013). https://doi.org/10.1364/OE.21.004116
- [29] M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, L. Vivien. Opt. Express, 20 (10), 10591 (2012). https://doi.org/10.1364/OE.20.010591
- [30] X. Tu, T.Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.Q. Lo. Opt. Express, 21 (10), 12776 (2013). https://doi.org/10.1364/OE.21.012776
- [31] Y. Kim, T. Jin, Y. Bae. Jpn. J. Appl. Phys., 60 (5), 052002 (2021). DOI: 10.35848/1347-4065/abeedd
- [32] Y. Zheng, W.D. Sacher, Y. Huang, J.C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P.G.-Q. Lo, E. Bernier, J.K.S. Poon. Opt. Express, 25 (7), 8425 (2017). https://doi.org/10.1364/OE.25.008425
- [33] D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. Bœuf, L. Vivien. Opt. Express, 21 (19), 22471 (2013). https://doi.org/10.1364/OE.21.022471
- [34] X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li. IEEE Photon. Technol. Lett., 24 (19), 1712 (2012).
 DOI: 10.1109/LPT.2012.2213244

- [35] Z.Y. Li, D.X. Xu, W.R. McKinnon, S. Janz, J.H. Schmid, P. Cheben, J.Z. Yu. Opt. Express, **17** (18), 15947 (2009). https://doi.org/10.1364/OE.17.015947
- [36] D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan,
 C. Baudot, T. Korthorst, F. Boeuf, L. Vivien. Opt. Express,
 24 (23), 26332 (2016). https://doi.org/10.1364/OE.24.026332
- [37] J. Witzens. Proc. IEEE, 106 (12), 2158 (2018).
 DOI: 10.1109/JPROC.2018.2877636
- [38] R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Eu-Jin Lim, G.Q. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg. J. Lightwave Technol., **32** (12), 2240 (2014). DOI: 10.1109/JLT.2014.2323954
- [39] А.В. Гасников. Современные численные методы оптимизации. Метод универсального градиентного спуска (М., МФТИ, 2018). ISBN 978-5-7417-0667-1
- [40] K. Debnath, H. Arimoto, M.K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H.M.H. Chong, G.T. Reed, S. Saito. Front. Mater., 3, 10 (2016). https://doi.org/10.3389/fmats.2016.00010
- [41] R.A. Soref, J. Schmidtchen, K. Petermann. IEEE J. Quant. Electron., 27 (8), 1971 (1991). DOI: 10.1109/3.83406
- [42] O. Powell. J. Lightwave Technol., 20 (10), 1851 (2002).
 DOI: 10.1109/JLT.2002.804036
- [43] H. Huang, K. Liu, B. Qi, V.J. Sorger. J. Lightwave Technol., 34 (16), 3811 (2016). DOI: 10.1109/JLT.2016.2579163
- [44] D. Dai, Z. Sheng, J. Opt. Soc. Am. B, 24, 2853 (2007). https://doi.org/10.1364/JOSAB.24.002853

Редактор Г.А. Оганесян

Optimization of carrier-depletion silicon optical phase shifter

E.A. Lovrukhina¹, D.S. Pashin¹, A.V. Nezhdanov¹, K.V. Sidorenko¹, P.V. Volkov², A.I. Bobrov¹

 ¹ Physical and Technical Research Institute, National Research State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
 ² The Institute for Physics of Microstructures, Russian Academy of Sciences, 603087 Nizhny Novgorod, Russia

Abstract The optimization of the cross-sectional geometry and doping concentrations of the p-n-junction in an electro-optic phase shifter, based on the depletion of free carriers in a silicon waveguide, has been performed using the gradient descent method. The configuration obtained through numerical simulation achieves a balance between phase shift efficiency and propagation loss. Additionally, a range of geometrical parameters ensuring single-mode operation in highly doped rib waveguides has been identified. The proposed optimization methodology and resulting findings offer valuable insights for the design of integrated photonic devices.